Chapter 11

11.1

a) Firm 2 chooses its quantity to maximize:

$$
\begin{aligned}
& \pi_{2}=Q_{2}\left(1000-4 Q_{1}-4 Q_{2}\right)-20 Q_{2} \\
& \frac{\partial \pi_{2}}{\partial Q_{2}}=1000-4 Q_{1}-8 Q_{2}-20=0 \Rightarrow Q_{2}=\frac{245-Q_{1}}{2}
\end{aligned}
$$

Now firm 1 chooses its quantity to maximize

$$
\begin{aligned}
& \pi_{1}=Q_{1}\left(1000-4 Q_{1}-4 Q_{2}\right)-20 Q_{1}=Q_{1}\left(980-4 Q_{1}-4 \frac{245-Q_{1}}{2}\right)=\frac{1}{2} Q_{1}\left(980-4 Q_{1}\right) \\
& \frac{\partial \pi_{1}}{\partial Q_{1}}=\frac{1}{2}\left(980-8 Q_{1}\right)=0 \Rightarrow Q_{1}=\frac{980}{8}=122.5 \Rightarrow Q_{2}=61.25
\end{aligned}
$$

11.1

b)

There is no non-negative c such that the leader and the follower have the same market share. To
see this, conisder $c=0$. Then the leader's quantity is 120 , whereas the follower's quantity is less
than 120. As c increases, the market share of the leader goes up and the market share of the
follower goes down.

11.2

Let p_{1} be the price charged by Ben and p_{2} be the price charged by Will. Let x be the location of a consumer who is indifferent between buying from Ben and Will.

Therefore,

$$
p_{1}+x=p_{2}+(10-x) \Rightarrow x=\frac{1}{2}\left(p_{2}-p_{1}+10\right)
$$

Consequently, the demand faced by Ben is

$$
D_{1}\left(p_{1}, p_{2}\right)=\frac{1}{2}\left(\frac{1000}{10}\right)\left(p_{2}-p_{1}+10\right)=500+50\left(p_{2}-p_{1}\right)
$$

11.2

Demand faced by Will is

$$
D_{2}\left(p_{1}, p_{2}\right)=\left(\frac{1000}{10}\right)\left(10-\frac{1}{2}\left(p_{2}-p_{1}+10\right)\right)=500-50\left(p_{2}-p_{1}\right)
$$

Ben's profit is given by

$$
\pi_{1}\left(p_{1}, p_{2}\right)=\left(p_{1}-1\right)\left(500+50\left(p_{2}-p_{1}\right)\right)-250
$$

Will's profit is given by

$$
\pi_{2}\left(p_{1}, p_{2}\right)=\left(p_{2}-1\right)\left(500-50\left(p_{2}-p_{1}\right)\right)-250
$$

11.2

Since Will is the follower, we first maximize π_{2} with respect to p_{2}, to derive Will's reaction function.

$$
\begin{aligned}
& \frac{\partial \pi_{2}\left(p_{1}, p_{2}\right)}{\partial p_{2}}=\left(p_{2}-1\right)(-50)+\left(500-50\left(p_{2}-p_{1}\right)\right)=0 \\
& \Rightarrow p_{2}=\frac{1}{100}\left(550+50 p_{1}\right)=\frac{1}{2}\left(11+p_{1}\right)
\end{aligned}
$$

Now, substitute Will's reaction function in to Ben's profit function to get:

$$
\pi_{1}\left(p_{1}, p_{2}\right)=\left(p_{1}-1\right)\left(500+50\left(\frac{1}{2}\left(11+p_{1}\right)-p_{1}\right)\right)-250=\left(p_{1}-1\right)\left(775-25 p_{1}\right)-250
$$

11.2

We now maximize π_{1} with respect to p_{1}

$$
\begin{gathered}
\frac{\partial \pi_{1}\left(p_{1}, p_{2}\right)}{\partial p_{1}}=\left(p_{2}-1\right)(-25)+\left(775-25 p_{1}\right)=0 \\
\Rightarrow p_{1}=\frac{800}{50}=16
\end{gathered}
$$

Now from Will's reaction function, we get

$$
\Rightarrow p_{2}=\frac{1}{2}\left(11+p_{1}\right)=13.5
$$

11.2

Hence, Ben will serve

$$
D_{1}\left(p_{1}, p_{2}\right)=500+50\left(p_{2}-p_{1}\right)=500-50\left(\frac{5}{2}\right)=375
$$

Will serves

$$
D_{2}\left(p_{1}, p_{2}\right)=500-50\left(p_{2}-p_{1}\right)=500+50\left(\frac{5}{2}\right)=625
$$

Ben's profit is

$$
\pi_{1}=375(16-1)-250=5375
$$

Will's profit is

$$
\pi_{2}=625(13.5-1)-250=7562.5
$$

Chapter 12

12.1

a) Setting marginal revenu equal to marginal cost will yield

$$
\begin{aligned}
& M R=50-0.2 q_{I}=0.05 q_{I}=M C \\
& \quad \Rightarrow 0.25 q_{I}=50 \\
& \quad \Rightarrow q_{I}=200 \\
& \Rightarrow P=50-0.1 q_{I}=50-20=30
\end{aligned}
$$

The firm will have profits equal to

$$
\pi_{I}=(30)(200)-(0,025)(200)^{2}=6000-1000=5000
$$

12.1

b) The residual industry demand curve can be written as

$$
P=50-0.1 Q=50-0.1 q_{I}-0.1 q_{E}=50-0.1(200)-0.1 q_{E}=30-0.1 q_{E}
$$

Marginal revenue from the entrant firm will be

$$
M R_{E}=30-0.2 q_{E}
$$

Setting marginal revenue equal to marginal cost we obtain

$$
\begin{gathered}
T R_{E}=\left(30-0.1 q_{E}\right) q_{E} \\
M R_{E}=30-0.2 q_{E}=10+0.05 q_{E}=M C_{E} \\
\Rightarrow 0.25 q_{E}=20 \\
\Rightarrow q_{E}=80 \\
\Rightarrow P=50-0.1(200)-0.1(80)=50-20-8=22
\end{gathered}
$$

The entrant will export 80 units to the market and the price will fall from $\$ 30$ to $\$ 22$. The total quantity transacted will rise from 200 to 280 . Profits for the two firms will be

$$
\begin{gathered}
\pi_{I}=(22)(200)-(0,025)(200)^{2}=4400-1000=3400 \\
\pi_{E}=(22)(80)-10(80)-(0,025)(200)^{2}=1760-800-160=800
\end{gathered}
$$

12.1

c) We simply need to find the level of $q_{I}=Q$ such that the best response of the entrant is to produce zero output. Writing the residulal demand curve as a function of q_{I} we obtain

$$
P=50-0.1 Q=50-0.1 q_{I}-0.1 q_{E}
$$

Marginal revenue for the entrant firm will be

$$
M R_{E}=50-0.1 q_{I}-0.2 q_{E}
$$

Setting marginal revenue equal to marginal cost we obtain

$$
\begin{aligned}
M R_{E}=50- & 0.1 q_{I}-0.2 q_{E}=10+0.05 q_{E}=M C_{E} \\
& \Rightarrow 0.25 q_{E}=40-0.1 q_{I} \\
& \Rightarrow q_{E}=160-0.4 q_{I}
\end{aligned}
$$

If the incumbent chooses q_{I} such that the optimal $q_{E}=0$, the entrant will not enter. This implies

$$
q_{E}=160-0.4 q_{I}=0 \Rightarrow q_{I}=400=Q
$$

With this level of output price and profits of the two firms are
$P=10, \pi_{I}=0$ and $\pi_{E}=0$

12.2

Now consider a two-firm Cournot model with different cost functions for each firm. The solution is obtained by choosing q_{I} to maximize profit given the rival's output. For firm 1:

$$
\begin{aligned}
& \pi_{I}=\left[P q_{I}-C\left(q_{I}\right)\right]=\left[\left(50-0.1 q_{I}-0.1 q_{E}\right) q_{I}-0.025 q_{I}^{2}\right] \\
& =\left[50 q_{I}-0.1 q_{I}^{2}-0.1 q_{I} q_{E}-0.025 q_{I}^{2}\right] \\
& \Rightarrow \frac{\partial \pi_{I}}{\partial q_{I}}=50-0.2 q_{I}-0.1 q_{E}-0.05 q_{I}=0 \\
& \Rightarrow 0.25 q_{I}=50-0.1 q_{E} \\
& \Rightarrow q_{I}^{*}=200-0.4 q_{E}
\end{aligned}
$$

Similarly, the best response function for the second firm is given by

$$
\begin{aligned}
& \pi_{E}=\left[P q_{E}-C\left(q_{E}\right)\right]=\left[\left(50-0.1 q_{I}-0.1 q_{E}\right) q_{E}-10 q_{E}-0.025 q_{E}^{2}\right] \\
& =\left[50 q_{I}-0.1 q_{I}^{2}-0.1 q_{I} q_{E}-0.025 q_{I}^{2}\right] \\
& \Rightarrow \frac{\partial \pi_{E}}{\partial q_{E}}=50-0.2 q_{E}-0.1 q_{I}-10-0.05 q_{E}=0 \\
& \Rightarrow 0.25 q_{E}=40-0.1 q_{I} \\
& \Rightarrow q_{E}^{*}=160-0.4 q_{I}
\end{aligned}
$$

12.2

We solve for the optimal q_{I}^{*} and q_{E}^{*} as follows

$$
\begin{aligned}
q_{E}=160-0.4 q_{I}= & 160-0.4\left(200-0.4 q_{E}\right)=80+16 q_{E} \\
& \Rightarrow q_{E}^{*}=95.238 \\
& \Rightarrow q_{I}^{*}=161.90476 \\
& \Rightarrow P=24.285715
\end{aligned}
$$

Profits are given by

$$
\begin{aligned}
& \pi_{I}^{*}=3276.644 \\
& \pi_{E}^{*}=1133.787
\end{aligned}
$$

The incumbent earns a profit less than if he maintains the monopoly output of 200 and the entrant produces 80 . However, his output of 200 is not optimal if the entrant produces 80 units as given his reaction function het should only produce 168 , which of course is not 200 so the threat is not creadible in this one shot game.
12.3
a)

$$
\begin{gathered}
\pi_{I}=\left(100-2 q_{1}-2 q_{2}\right) q_{I}-20 q_{I}-100 \text { if } q_{1} \leq \bar{K}_{1} \\
\pi_{I}=\left(100-2 q_{1}-2 q_{2}\right) q_{I}-40 q_{I}-100 \text { if } q_{1}>\bar{K}_{1} \\
\pi_{E}=\left(100-2 q_{1}-2 q_{2}\right) q_{E}-40 q_{E}-100 \\
\frac{\partial \pi_{I}}{\partial q_{1}}=100-4 q_{1}-2 q_{2}-20=0 \Rightarrow q_{1}=20-\frac{q_{2}}{2} \text { if } q_{1} \leq \bar{K}_{1} \\
\frac{\partial \pi_{I}}{\partial q_{1}}=100-4 q_{1}-2 q_{2}-40=0 \Rightarrow q_{1}=15-\frac{q_{2}}{2} \text { if } q_{1}>\bar{K}_{1}
\end{gathered}
$$

b)

$$
\frac{\partial \pi_{I}}{\partial q_{1}}=100-2 q_{1}-4 q_{2}-40=0 \Rightarrow q_{2}=15-\frac{q_{1}}{2}
$$

12.4

a)

$$
\begin{gathered}
q_{2}=15-\frac{q_{1}}{2}=15-\frac{15}{2}=7.5 \\
\Rightarrow \pi_{E}=(100-2(22.5)) 7.5-40(7.5)-100=12.5 \\
\Rightarrow \pi_{I}=(100-2(22.5)) 15-40(15)-100=125
\end{gathered}
$$

$$
\begin{gathered}
q_{2}=15-\frac{q_{1}}{2}=15-\frac{16}{2}=7 \\
\Rightarrow \pi_{E}=(100-2(23))-40(7)-100=-2
\end{gathered}
$$

b) The entrant is not going to enter, so:

$$
\Rightarrow \pi_{I}=(100-2(16)) 16-40(16)-100=348
$$

Chapter 14

14.1

a)

$$
\begin{gathered}
\pi_{1,2}=\left(260-2 Q_{1}-2 Q_{2}\right) Q_{1,2}-20 Q_{1,2} \\
\frac{\partial \pi_{1,2}}{\partial Q_{1,2}}=240-4 Q_{1,2}-2 Q_{2,1}=0 \\
\left.Q_{1}=60-\frac{Q_{2}}{2} \quad \right\rvert\, \quad Q_{1}=Q_{2} \text { because of symmetry } \\
Q_{1}=Q_{2}=60\left(\frac{2}{3}\right)=40 \\
\pi_{1}^{\text {Cournot }}=\pi_{2}^{\text {Cournot }}=(100-20)(40)=3200
\end{gathered}
$$

14.1

b)

$$
Q^{\text {Monopoly }}=\frac{260-20}{2(2)}=60 \Rightarrow P^{\text {Monopoly }}=260-2(60)=140
$$

Therefore, profit of each firm in a cartel is

$$
\pi_{1}^{\text {Cartel }}=\pi_{2}^{\text {Cartel }}=(140-20)(30)=3600
$$

14.2

Without loss of generality, suppose Firm 2 cheats, but Firm 1 maintains its cartel quantity of 30 .

Then, the optimal choice for Firm 2 can be found from its best response function.

$$
Q_{2}^{\text {Cheating }}=\frac{1}{4}(260-20-2(30))=45
$$

Therefore, the market price is $260-2(30+45)=110$.

As a result, the profit of the cheating firm is: $\pi_{2}^{\text {Cheating }}=(110-20)(45)=4050$.

The profit of the firm, that is cheated on, is then $\pi_{1}^{\text {Cheating }}=2700$.

14.3

If Firm 2 cheats, then it earns 4050 for one period, but earns its Cournot profit; 3200 , for all periods afterwards. On the other hand, if Firm 2 does not cheat, it can continue earning its cartel profit for ever. Hence, the collusive outcome can be sustained if

$$
\begin{aligned}
3600+\delta(3600) & +\delta^{2}(3600)+\cdots \geq 4050+\delta(3200)+\delta^{2}(3200)+\cdots \\
& \Rightarrow \frac{3600}{1-\delta} \geq 4050+\frac{3200 \delta}{1-\delta} \Rightarrow \delta \geq 0.53
\end{aligned}
$$

, where δ is the probability adjusted discount factor.

14.4 \& 14.5

14.4
a) With the Bertrand price competition $P_{1}=P_{2}=20 \Rightarrow Q_{1}=Q_{2}=60$ en $\pi_{1}=\pi_{2}=0$
b)

$$
Q^{\text {Monopoly }}=\frac{260-20}{2(2)}=60 \Rightarrow P^{\text {Monopoly }}=260-2(60)=140
$$

Therefore, profit of each firm in a cartel is

$$
\pi_{1}^{\text {Cartel }}=\pi_{2}^{\text {Cartel }}=(140-20)(30)=3600
$$

14.5

Without loss of generality, let Firm 1 charge $\$ 140$, but firm 2 cheat. Firm 2 needs to undercut Firm 1 only slightly to capture almost the entire monopoly profit. At the limit, Firm 2 captures the entire monopoly profit by cheating. Therefore $\pi_{2}^{\text {Cheating }}=7200$

14.6

If Firm 2 cheats, then it earns 7200 for one period, but earns its Bertrand profit, 0 , for all periods afterwards. On the other hand, if Firm 2 does not cheat, it can continue earning its cartel profit forever. Hence, the collusive outcome can be sustained if

$$
\begin{aligned}
3600+\delta(3600)+ & \delta^{2}(3600)+\cdots \geq 7200+\delta(0)+\delta^{2}(0)+\cdots \\
& \Rightarrow \frac{3600}{1-\delta} \geq 7200 \Rightarrow \delta \geq \frac{1}{2}
\end{aligned}
$$

, where δ is the probability adjusted discount factor.

14.7

Comparing the discount factors, it can be seen it is more difficult to sustain a cartel under Cournot competition, since it requires a larger discount factor, but only slightly. Cheating is more rewarding, but the punishment is harsher under Bertrand competition.

