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CHAPTER 1:  Introduction, Measurement, Estimating 
 
Responses to Questions 
 
1.  (a) A particular person’s foot. Merits: reproducible. Drawbacks: not accessible to the general  

public; not invariable (could change size with age, time of day, etc.); not indestructible. 
(b) Any person’s foot. Merits: accessible. Drawbacks: not reproducible (different people have  

different size feet); not invariable (could change size with age, time of day, etc.); not 
indestructible. 

Neither of these options would make a good standard. 
 
2.  The number of digits you present in your answer should represent the precision with which you 

know a measurement; it says very little about the accuracy of the measurement. For example, if you 
measure the length of a table to great precision, but with a measuring instrument that is not 
calibrated correctly, you will not measure accurately.  

 
3.   The writers of the sign converted 3000 ft to meters without taking significant figures into account. 

To be consistent, the elevation should be reported as 900 m.  
 
4.  The distance in miles is given to one significant figure and the distance in kilometers is given to five 

significant figures! The figure in kilometers indicates more precision than really exists or than is 
meaningful. The last digit represents a distance on the same order of magnitude as the car’s length!   

 
5.  If you are asked to measure a flower bed, and you report that it is “four,” you haven’t given enough 

information for your answer to be useful. There is a large difference between a flower bed that is 4 m 
long and one that is 4 ft long. Units are necessary to give meaning to the numerical answer. 

 
6.  Imagine the jar cut into slices each about the thickness of a marble. By looking through the bottom 

of the jar, you can roughly count how many marbles are in one slice. Then estimate the height of the 
jar in slices, or in marbles. By symmetry, we assume that all marbles are the same size and shape. 
Therefore the total number of marbles in the jar will be the product of the number of marbles per 
slice and the number of slices.  

 
7.  You should report a result of 8.32 cm. Your measurement had three significant figures. When you 

multiply by 2, you are really multiplying by the integer 2, which is exact. The number of significant 
figures is determined by your measurement. 

 
8.  The correct number of significant figures is three: sin 30.0º = 0.500. 
 
9.  You only need to measure the other ingredients to within 10% as well. 
 
10.  Useful assumptions include the population of the city, the fraction of people who own cars, the 

average number of visits to a mechanic that each car makes in a year, the average number of weeks a 
mechanic works in a year, and the average number of cars each mechanic can see in a week. 
(a) There are about 800,000 people in San Francisco. Assume that half of them have cars. If each of  

these 400,000 cars needs servicing twice a year, then there are 800,000 visits to mechanics in a 
year. If mechanics typically work 50 weeks a year, then about 16,000 cars would need to be 
seen each week. Assume that on average, a mechanic can work on 4 cars per day, or 20 cars a 
week. The final estimate, then, is 800 car mechanics in San Francisco. 

(b) Answers will vary. 
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Sun 

Earth 

Venus 
11.  One common way is to observe Venus at a 

time when a line drawn from Earth to Venus 
is perpendicular to a line connecting Venus 
to the Sun. Then Earth, Venus, and the Sun 
are at the vertices of a right triangle, with 
Venus at the 90º angle. (This configuration 
will result in the greatest angular distance 
between Venus and the Sun, as seen from 
Earth.) One can then measure the distance to 
Venus, using radar, and measure the angular distance between Venus and the Sun. From this 
information you can use trigonometry to calculate the length of the leg of the triangle that is the 
distance from Earth to the Sun. 

 
12.  No. Length must be included as a base quantity.  
 
 

Solutions to Problems 
 

1. (a) 1014 billion years 1.4 10 years u  

 (b)  � �� �10 7 171.4 10 y 3.156 10 s 1 y 4.4 10 su u  u  

 

2. (a) 214         3 significant figures  

 (b) 81.60      4 significant figures  

 (c) 7.03        3 significant figures  

 (d) 0.03        1 significant figure  

 (e) 0.0086    2 significant figures  

 (f) 3236       4 significant figures  

 (g) 8700       2 significant figures  

 

3. (a) 01.156 1.156 10 u  

 (b) 121.8 2.18 10 u  

 (c) 30.0068 6.8 10� u  

 (d) 2328.65 3.2865 10 u  

 (e) 10.219 2.19 10� u  

 (f) 2444 4.44 10 u  
 

4. (a) 48.69 10 86,900u   

 (b) 39.1 10 9,100u   

 (c) 18.8 10 0.88�u   
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 (d) 24.76 10 476u   

 (e) 53.62 10 0.0000362�u   
 

5. 
0.25 m

% uncertainty 100% 4.6%
5.48 m

 u   

 

6. (a) 
0.2 s

% uncertainty 100% 4%
5 s

 u   

 (b) 
0.2 s

% uncertainty 100% 0.4%
50 s

 u   

 (c) 
0.2 s

% uncertainty 100% 0.07%
300 s

 u   

 
7. To add values with significant figures, adjust all values to be added so that their exponents are all the 

same. 

  
� � � � � � � � � � � �

� �

3 4 6 3 3 3

3 3 5

9.2 10 s 8.3 10 s 0.008 10 s 9.2 10 s 83 10 s 8 10 s

9.2 83 8 10 s 100.2 10 s 1.00 10 s     

u � u � u  u � u � u

 � � u  u  u
 

When adding, keep the least accurate value, and so keep to the “ones” place in the last set of 
parentheses. 

 

8. � � � �2 12.079 10 m 0.082 10 1.7 m .�u u   When multiplying, the result should have as many digits as 

the number with the least number of significant digits used in the calculation. 
 
9. T (radians) sin(T )  tan(T )   
       0  0.00   0.00   Keeping 2 significant figures in the angle, and 

      0.10  0.10   0.10   expressing the angle in radians, the largest angle that has  

       0.12  0.12   0.12   the same sine and tangent is 0.24 radians .  In degrees,  
      0.20  0.20   0.20   the largest angle (keeping 2 significant figure) is 12 .q  
      0.24  0.24   0.24   The spreadsheet used for this problem can be found on  
      0.25 0.25   0.26   the Media Manager, with filename  

“PSE4_ISM_CH01.XLS,” on tab “Problem 1.9.” 
 
10. To find the approximate uncertainty in the volume, calculate the volume for the minimum radius and 

the volume for the maximum radius.  Subtract the extreme volumes.  The uncertainty in the volume 
is then half this variation in volume. 

� �
� �
� �

33 34 4
specified specified3 3

33 34 4
min min3 3

33 34 4
max max3 3

0.84 m 2.483m

0.80 m 2.145m

0.88m 2.855m

V r

V r

V r

S S

S S

S S

   

   

   

 

� � � �3 3 31 1
max min2 2 2.855m 2.145m 0.355mV V V'  �  �   

 The percent uncertainty is 
3

3

specified

0.355m
100 14.3 14 %

2.483m
.

V
V
'

 u  |  
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11. (a) 286.6 mm   3286.6 10 m�u   0.286 6 m  

 (b)  85 VP    685 10 V�u   0.000085 V  

 (c)  760 mg    6760 10 kg�u   0.000 76 kg   (if last zero is not significant) 

 (d)  60.0 ps    1260.0 10 s�u   0.000 000 0000600 s  

 (e)  22.5 fm    1522.5 10 m�u   0.0000000000000225 m  

 (f)  2.50 gigavolts  92.5 10 voltsu   2,500, 000,000 volts  

 

12. (a) 61 10 voltsu   1 megavolt 1 Mvolt  

 (b)  62 10 meters�u   2 micrometers 2 mP  

 (c)  36 10 daysu   6 kilodays 6 kdays  

 (d)  218 10 bucksu   18 hectobucks 18 hbucks  or 1.8 kilobucks 

 (e)  88 10 seconds�u  80 nanoseconds 80 ns  
 

13. Assuming a height of 5 feet 10 inches, then � � � �5'10" 70 in 1 m 39.37 in 1.8 m .   Assuming a 

weight of 165 lbs, then � � � �165 lbs 0.456 kg 1 lb 75.2 kg .  Technically, pounds and mass 

measure two separate properties.  To make this conversion, we have to assume that we are at a 
location where the acceleration due to gravity is 9.80 m/s2.   

  

14.   (a)  � �� �6 1193 million miles 93 10 miles 1610 m 1 mile 1.5 10 m u  u   

 (b) 11 91.5 10 m 150 10 m 150 gigametersu  u   or 11 121.5 10 m 0.15 10 m 0.15 terametersu  u   

 

15. (a) � � � �22 2 21 ft 1 ft 1 yd 3 ft 0.111 yd  , and so the conversion factor is 
2

2

0.111 yd

1 ft
.  

(b) � �� �22 2 21 m 1 m 3.28 ft 1 m 10.8 ft  , and so the conversion factor is  
2

2

10.8 ft

1m
.  

 
16. Use the speed of the airplane to convert the travel distance into a time.  d vt , so t d v . 

1 h 3600s
1.00 km 3.8s

950 km 1 h
t d v   § ·§ ·

¨ ¸¨ ¸
© ¹© ¹

  

 

17. (a) � �� �10 10 91.0 10 m 1.0 10 m 39.37 in 1 m 3.9 10 in� � �u  u  u  

 (b) � � 8

10

1 m 1 atom
1.0 cm 1.0 10 atoms

100 cm 1.0 10 m�
 u

u
§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹
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18. To add values with significant figures, adjust all values to be added so that their units are all the 
same. 

  51.80 m 142.5 cm 5.34 10 m 1.80 m 1.425 m 0.534 m 3.759 m 3.76 mP� � u  � �    
When adding, the final result is to be no more accurate than the least accurate number used.  In this 
case, that is the first measurement, which is accurate to the hundredths place when expressed in 
meters. 

 

19. (a) � � 0.621 mi
1km h 0.621mi h

1 km
 § ·

¨ ¸
© ¹

, and so the conversion factor is 
0.621mi h

1km h
.  

 (b) � � 3.28 ft
1m s 3.28ft s

1 m
 § ·

¨ ¸
© ¹

, and so the conversion factor is 
3.28ft s

1m s
.  

 (c) � � 1000 m 1 h
1km h 0.278 m s

1 km 3600 s
 § ·§ ·

¨ ¸¨ ¸
© ¹© ¹

, and so the conversion factor is 
0.278 m s

1km h
.  

 

20. One mile is 31.61 10 mu .  It is 110 m longer than a 1500-m race.  The percentage difference is  
calculated here. 

  
110 m

100% 7.3%
1500 m

u   

 
21. (a) Find the distance by multiplying the speed times the time. 

� � � �8 7 15 151.00 ly 2.998 10 m s 3.156 10 s 9.462 10 m 9.46 10 m u u  u | u  

 (b) Do a unit conversion from ly to AU. 

� �
15

4

11

9.462 10 m 1 AU
1.00 ly 6.31 10 AU

1.00 ly 1.50 10 m

u
 u

u
§ ·§ ·

¨ ¸¨ ¸© ¹© ¹
  

 (c) � �8

11

1 AU 3600 s
2.998 10 m s 7.20 AU h

1.50 10 m 1 hr
u  

u
§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 

22. � �9 1char 1min 1hour 1day 1year
82 10 bytes 2598 years 2600 years

1byte 180char 60 min 8hour 365.25days
u u u u u u  |  

 

23. The surface area of a sphere is found by � �22 24 4 2 .A r d dS S S    

 (a) � �22 6 13 2

Moon Moon 3.48 10 m 3.80 10 mA DS S  u  u  

 (b) 

2 2 22 6

Earth Earth Earth Earth

2 6

Moon Moon Moon Moon

6.38 10 m
13.4

1.74 10 m

A D D R
A D D R

S
S

u
     

u
§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸

© ¹© ¹ © ¹
 

 

24.  (a) 3 3 32800 2.8 10 1 10 10 u | u   

 (b) 2 3 3 486.30 10 8.630 10 10 10 10u  u | u   

 (c) 3 3 20.0076 7.6 10 10 10 10� � � u | u   

 (d) 8 9 9 915.0 10 1.5 10 1 10 10u  u | u   



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

6 

25. The textbook is approximately 25 cm deep and 5 cm wide.  With books on both sides of a shelf, the 
shelf would need to be about 50 cm deep.  If the aisle is 1.5 meter wide, then about 1/4 of the floor 
space is covered by shelving.  The number of books on a single shelf level is then 

� � � � � �
2 41

4

1 book
3500 m 7.0 10 books.

0.25 m 0.05 m
 u

§ ·
¨ ¸
© ¹

  With 8 shelves of books, the total number of 

books stored is as follows. 

� �4 5books
7.0 10 8 shelves 6 10  books

shelf level
u | u§ ·

¨ ¸
© ¹

 

 
26. The distance across the United States is about 3000 miles. 

� � � � � �3000 mi 1 km 0.621 mi 1 hr 10 km 500 hr|  

Of course, it would take more time on the clock for the runner to run across the U.S.  The runner 
could obviously not run for 500 hours non-stop.  If they could run for 5 hours a day, then it would 
take about 100 days for them to cross the country. 

 
27.  A commonly accepted measure is that a person should drink eight 8-oz. glasses of water each day.  

That is about 2 quarts, or 2 liters of water per day.   Approximate the lifetime as 70 years. 

  � � � �� � 470 y 365 d 1 y 2 L 1 d 5 10 L| u  

 
28.  An NCAA-regulation football field is 360 feet long (including the end zones) and 160 feet wide, 

which is about 110 meters by 50 meters, or 5500 m2.  The mower has a cutting width of 0.5 meters. 
Thus the distance to be walked is as follows. 

  
2area 5500 m

11000 m 11 km
width 0.5 m

d      

 At a speed of 1 km/hr, then it will take about 11 h to mow the field. 
 
29. In estimating the number of dentists, the assumptions and estimates needed are: 

the population of the city 
the number of patients that a dentist sees in a day 
the number of days that a dentist works in a year 
the number of times that each person visits the dentist each year 

We estimate that a dentist can see 10 patients a day, that a dentist works 225 days a year, and that 
each person visits the dentist twice per year. 

 (a) For San Francisco, the population as of 2001 was about 1.7 million, so we estimate the  
population at two million people.  The number of dentists is found by the following calculation. 

  � �6

visits
2

1 yr 1 dentistyear
2 10 people 1800 dentists

visits1 person 225 workdays 10
workday

u

§ · § ·
¨ ¸ ¨ ¸§ · |¨ ¸ ¨ ¸¨ ¸

© ¹¨ ¸ ¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹

 

 (b) For Marion, Indiana, the population is about 50,000.  The number of dentists is found by a  
similar calculation to that in part (a), and would be 45 dentists .  There are about 50 dentists 
listed in the 2005 yellow pages. 

 
30. Assume that the tires last for 5 years, and so there is a tread wearing of 0.2 cm/year.  Assume the 

average tire has a radius of 40 cm, and a width of 10 cm.  Thus the volume of rubber that is 
becoming pollution each year from one tire is the surface area of the tire, times the thickness per year 
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To 1st sunset

To 2nd sunset

A

B

Earth center

R
R

hd

T

T

that is wearing.  Also assume that there are 81.5 10u  automobiles in the country – approximately one 
automobile for every two people.  And there are 4 tires per automobile.  The mass wear per year is 
given by the following calculation. 

� � � �

� � � � � � � � � �3 8 8

mass surface area thickness wear
density of rubber # of tires

year tire year

2 0.4 m 0.1m
             0.002 m y 1200 kg m 6.0 10 tires 4 10 kg y

1 tire

S

 

 u  u

§ · § ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹© ¹ © ¹
ª º
« »¬ ¼

 

 
31. Consider the diagram shown (not to scale).  The balloon is a distance h above the 

surface of the Earth, and the tangent line from the balloon height to the surface of 
the earth indicates the location of the horizon, a distance d away from the balloon.  
Use the Pythagorean theorem. 

 

� �

� � � � � � � �

2 2 2 2 2 2 2

2 2 2

26 4 4

    2

2     2

2 6.4 10 m 200 m 200 m 5.1 10 m 5 10 m 80 mi

r h r d r rh h r d

rh h d d rh h

d

�  � o � �  �

�  o  �

 u �  u | u |

 

 
32. At $1,000 per day, you would earn $30,000 in the 30 days.  With the other pay method, you would 

get � �1$0.01 2t�  on the tth day.  On the first day, you get � �1 1$0.01 2 $0.01�  .  On the second day, 

you get � �2 1$0.01 2 $0.02�  .  On the third day, you get � �3 1$0.01 2 $0.04�  .  On the 30th day, you 

get � �30 1 6$0.01 2 $5.4 10�  u , which is over 5 million dollars.  Get paid by the second method. 

 
33. In the figure in the textbook, the distance d is perpendicular to the vertical radius.  Thus there is a 

right triangle, with legs of d and R, and a hypotenuse of R+h.  Since h R� , 2 2 .h Rh�  

  

� �
� �
� �

22 2 2 2 2 2 2

22
6

2     2     2   

4400 m
6.5 10 m

2 2 1.5 m

d R R h R Rh h d Rh h d Rh

d
R

h

�  �  � � o  � o | o

   u
 

 A better measurement gives 66.38 10 m.R  u  
 
34. To see the Sun “disappear,” your line of sight to the top  

of the Sun is tangent to the Earth’s surface.  Initially, you 
are lying down at point A, and you see the first sunset.  
Then you stand up, elevating your eyes by the height h.  
While standing, your line of sight is tangent to the 
Earth’s surface at point B, and so that is the direction to 
the second sunset.  The angle T  is the angle through 
which the Sun appears to move relative to the Earth 
during the time to be measured.  The distance d is the 
distance from your eyes when standing to point B. 

 

Use the Pythagorean theorem for the following 
relationship. 

 � �22 2 2 2 2 22     2d R R h R Rh h d Rh h�  �  � � o  �  
 

h

r
r

d
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The distance h is much smaller than the distance R, and so 2 2h Rh�  which leads to 2 2 .d Rh|   We 
also have from the same triangle that tand R T , and so tan .d R T   Combining these two 

relationships gives 2 2 22 tand Rh R T | , and so 
2

2

tan
.

h
R

T
  

The angle T  can be found from the height change and the radius of the Earth.  The elapsed time 
between the two sightings can then be found from the angle, knowing that a full revolution takes 24 
hours. 

� � � �

� �

o1 1 2

2 6

o

o2

o o

2 1.3m2 2
    tan tan 3.66 10

tan 6.38 10 m

sec
  

3600s360 24 h
1h

3.66 103600s 3600s
24 h 24 h 8.8s

360 1h 360 1h

h h
R

R
t

t

T
T

T

T

� � �

�

 o    u
u

 o
u

u
 u  u  

§ ·§ · § ·§ · ¨ ¸¨ ¸¨ ¸ ¨ ¸¨ ¸© ¹© ¹ © ¹© ¹

 

 

35. 
3

mass units
Density units

volume units

M
L

  ª º
« »¬ ¼

 

 

36. (a) For the equation 3v At Bt � , the units of 3At  must be the same as the units of v .  So the units  

of A  must be the same as the units of 3v t , which would be 4 .L T   Also, the units of Bt  

must be the same as the units of v .  So the units of B  must be the same as the units of v t , 

which would be 2 .L T  

 (b) For A, the SI units would be 4m s ,  and for B, the SI units would be 2m s .  

 

37. (a) The quantity 2vt  has units of � � � �2m s s m s < , which do not match with the units of meters  

for x.  The quantity 2at  has units � � � �2m s s m s ,  which also do not match with the units of 

meters for x.  Thus this equation cannot be correct .  

 (b) The quantity 0v t  has units of � � � �m s s m,  and 21
2

at  has units of � � � �2 2m s s m.   Thus,  

since each term has units of meters, this equation can be correct .  

 (c) The quantity 0v t  has units of � � � �m s s m,  and 22at  has units of � � � �2 2m s s m.   Thus,  

since each term has units of meters, this equation can be correct .  
 

38. > @

3 2

2 3 2 5 5
2

55 3 5 3
    P

L ML
MT TGh L L T M T

t T T
c MT L TL

T

 o     

ª º ª º
« » « » ª º ª º¬ ¼ ¬ ¼ ª º« » « » ¬ ¼

¬ ¼ ¬ ¼ª º
« »¬ ¼
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39. The percentage accuracy is 5

7

2 m
100% 1 10 %

2 10 m
.�u  u

u
  The distance of 20,000,000 m needs to  

be distinguishable from 20,000,002 m, which means that  8 significant figures  are needed in the 
distance measurements. 

 
40. Multiply the number of chips per wafer times the number of wafers that can be made from a  

cylinder. 

chips 1 wafer 250 mm chips
100 83,000

wafer 0.300 mm 1 cylinder cylinder
 § ·§ ·§ ·

¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹
 

 

41. (a) # of seconds in 1.00 y:  � �
7

73.156 10 s
1.00 y 1.00 y 3.16 10 s

1 y

u
  u

§ ·
¨ ¸
© ¹

  

(b) # of nanoseconds in 1.00 y: � �
7 9

163.156 10 s 1 10 ns
1.00 y 1.00 y 3.16 10 ns

1 y 1 s

u u
  u

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

  

(c) # of years in 1.00 s:  � � 8

7

1 y
1.00 s 1.00 s 3.17 10 y

3.156 10 s
�  u

u
§ ·
¨ ¸
© ¹

  

 
42. Since the meter is longer than the yard, the soccer field is longer than the football field. 

  
soccer football

soccer football

1.09 yd
100 m 100 yd 9 yd

1m

1m
100 m 100 yd 8 m

1.09 yd

L L

L L

�  u �  

�  � u  
 

Since the soccer field is 109 yd compare to the 100-yd football field, the soccer field is 9% longer 
than the football field. 

 
43.  Assume that the alveoli are spherical, and that the volume of a typical human lung is about 2 liters, 

which is .002 m3. The diameter can be found from the volume of a sphere, 34
3 .rS  

� �

� � � �

3
334 4

3 3

1/ 333
8 3 3 3 4

8

2
6

6 2 10
3 10 2 10 m     m 2 10 m

6 3 10

d
r d

d
d

SS S

S
S

�
� �

  

u
u  u o   u

u

ª º
« »
« »¬ ¼

   

 

44. � �
24 2

4 2

1.000 10 m 3.281ft 1acre
1 hectare 1 hectare 2.471acres

1hectare 1m 4.356 10 ft

u
  

u
§ ·§ · § ·

¨ ¸¨ ¸¨ ¸ © ¹© ¹© ¹
 

 

45. There are about 83 10u  people in the United States.  Assume that half of them have cars, that they 
each drive 12,000 miles per year, and their cars get 20 miles per gallon of gasoline. 

� �8 111 automobile 12,000 1 gallon
3 10 people 1 10 gal y

2 people 1 y 20 mi

mi auto
u | u§ ·§ ·§ ·

¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹
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46. (a) 
15

12

27

10 kg 1 proton or neutron
10 protons or neutrons

1 bacterium 10 kg

�

�
 

§ ·§ ·
¨ ¸¨ ¸

© ¹© ¹
  

(b) 
17

10

27

10 kg 1 proton or neutron
10 protons or neutrons

1 DNA molecule 10 kg

�

�
 

§ ·§ ·
¨ ¸¨ ¸

© ¹© ¹
  

(c)  
2

29

27

10 kg 1 proton or neutron
10 protons or neutrons

1 human 10 kg�
 

§ ·§ ·
¨ ¸¨ ¸

© ¹© ¹
  

(d) 
41

68

27

10 kg 1 proton or neutron
10 protons or neutrons

1 galaxy 10 kg�
 

§ ·§ ·
¨ ¸¨ ¸

© ¹© ¹
  

 
47. The volume of water used by the people can be calculated as follows: 

� �
33

4 3 3

5

1200 L day 365day 1000cm 1km
4 10 people 4.38 10 km y

4 people 1 y 1L 10 cm
�u  u

§ ·§ ·§ · § ·
¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹© ¹

  

 The depth of water is found by dividing the volume by the area. 

  
3 3 5

5

2

4.38 10 km y km 10 cm
8.76 10 8.76cm y 9cm y

50 km y 1 km

V
d

A

�
�u

   u  |
§ ·§ ·

¨ ¸¨ ¸
© ¹© ¹

 

 
48. Approximate the gumball machine as a rectangular box with a square cross-sectional area.  In 

counting gumballs across the bottom, there are about 10 in a row.  Thus we estimate that one layer 
contains about 100 gumballs.  In counting vertically, we see that there are about 15 rows.  Thus we 
estimate that there are 1500 gumballs  in the machine. 

 
49. Make the estimate that each person has 1.5 loads of laundry per week, and that there are 300 million  

people in the United States. 

  � �6 9 91.5 loads week 52 weeks 0.1kg kg kg
300 10 people 2.34 10 2 10

1person 1 y 1load y y
u u u u  u | u  

 

50.  The volume of a sphere is given by 34
3 ,V rS  and so the radius is 

1/ 3
3

4
.

V
r

S
 § ·
¨ ¸
© ¹

  For a 1-ton rock, 

the volume is calculated from the density, and then the diameter from the volume. 

� �
3

32000 lb 1ft
1 T 10.8 ft

1 T 186 lb
V   

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

 

� � 1/ 331/ 3 3 10.8 ft3
2 2 2 2.74 ft 3 ft

4 4

V
d r

S S
    |

ª º§ ·
« »¨ ¸

© ¹ « »¬ ¼
 

 

51. � �6

6

8 bits 1sec 1min
783.216 10 bytes 74.592 min 75 min

1byte 1.4 10 bits 60sec
u u u u  |

u
  

 
 
 
 
 



Chapter 1  Introduction, Measurement, Estimating 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

11 

52. A pencil has a diameter of about 0.7 cm.  If held about 0.75 m from the eye, it can just block out the  
Moon.  The ratio of pencil diameter to arm length is the same as the ratio of Moon diameter to Moon 
distance.  From the diagram, we have the following ratios. 
 
 
 
 
 
 

   

� � � �
3

5

Pencil diameter Moon diameter
    

Pencil distance Moon distance

Pencil diameter 7 10 m
Moon diameter Moon distance 3.8 10 km 3500 km

Pencil distance 0.75 m

�

 o

u
  u |

 

 The actual value is 3480 km. 
 
53.  To calculate the mass of water, we need to find the volume of water, and then convert the volume to 

mass.  The volume of water is the area of the city � �240km times the depth of the water (1.0 cm). 

� � � �
25 3

1 2 5

3 3

10 cm 10 kg 1 metric ton
4 10  km 1.0 cm 4 10 metric tons

1 km 1 cm 10 kg

�

u  u
ª º§ · § ·§ ·
« » ¨ ¸¨ ¸ ¨ ¸© ¹© ¹ © ¹« »¬ ¼

 

 To find the number of gallons, convert the volume to gallons. 

  � � � �
25

1 2 8 8

3 3

10 cm 1 L 1 gal
4 10  km 1.0 cm 1.06 10 gal 1 10 gal

1 km 1 10 cm 3.78 L
u  u | u

u

ª º§ · § ·§ ·« » ¨ ¸¨ ¸¨ ¸ © ¹© ¹© ¹« »¬ ¼
 

 
54. A cubit is about a half of a meter, by measuring several people’s forearms.  Thus the dimensions of 

Noah’s ark would be 150 m long , 25 m wide, 15 m high .   The volume of the ark is found by 

multiplying the three dimensions. 

  � �� �� � 4 3 4 3150 m 25 m 15 m 5.625 10 m 6 10 mV   u | u  

 
55. The person walks 4 km h , 10 hours each day.  The radius of the Earth is about 6380 km, and the 

distance around the Earth at the equator is the circumference, Earth2 .RS   We assume that the person 

can “walk on water,” and so ignore the existence of the oceans. 

� � 31 h 1 d
2 6380 km 1 10 d

4 km 10 h
S  u§ · § ·

¨ ¸ ¨ ¸
© ¹ © ¹

 

 

56. The volume of the oil will be the area times the thickness.  The area is � �22 2 ,r dS S  and so  

� � � �

3

3

2 3

10

1 m
1000cm

100 cm2     2 2 3 10 m
2 10 m

V
V d t d

t
S

S S �
 o    u

u

§ ·
¨ ¸
© ¹ . 

 
 
 

Moon 
Pencil 

Pencil 
Distance 

Moon 
Distance
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57. Consider the diagram shown.  Let l represent is the distance she walks upstream, which 
is about 120 yards.  Find the distance across the river from the diagram. 

� �

� �

o o otan 60     tan 60 120 yd tan 60 210 yd

3ft 0.305m
210 yd 190 m

1yd 1ft

d
d o    

 
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l
l

 

 

58. 5

7

8 s 1 y
100% 3 10 %

1 y 3.156 10 s
�u  u

u
§ ·§ ·

¨ ¸¨ ¸© ¹© ¹
 

 

59. (a) 
10o o

o 9

10 m 1 nm
1.0 A 1.0 A 0.10 nm

10 m1A

�

�
  

§ ·§ ·§ ·¨ ¸¨ ¸ ¨ ¸¨ ¸© ¹ © ¹© ¹
 

 (b) 
10o o

5

o 15

10 m 1 fm
1.0 A 1.0 A 1.0 10 fm

10 m1A

�

�
  u

§ ·§ ·§ ·¨ ¸¨ ¸ ¨ ¸¨ ¸© ¹ © ¹© ¹
 

 (c) � �
o

o
10

10

1A
1.0 m 1.0 m 1.0 10 A

10 m�
  u

§ ·
¨ ¸
¨ ¸
© ¹

  

 (d) � �
o

15 o
25

10

9.46 10 m 1A
1.0 ly 1.0 ly 9.5 10 A

1 ly 10 m�

u
  u

§ ·§ ·¨ ¸¨ ¸¨ ¸© ¹© ¹
  

 

60. The volume of a sphere is found by 34
3 .V rS  

  � �33 6 19 34 4
Moon Moon3 3

1.74 10 m 2.21 10 mV RS S  u  u   

  

3 33 64
EarthEarth 3 Earth

3 64
Moon Moon Moon3

6.38 10 m
49.3

1.74 10 m

RV R
V R R

S
S

u
    

u
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

Thus it would take about 49.3  Moons to create a volume equal to that of the Earth. 
 
61. (a) Note that osin15.0 0.259  and osin15.5 0.267,  and so sin 0.267 0.259 0.008.T'  �   

   
o

o

0.5
100 100 3%

15.0

T
T
'

  
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
   

3sin 8 10
100 100 3%

sin 0.259

T
T

�' u
  
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
 

 (b) Note that osin 75.0 0.966  and osin 75.5 0.968,  and so sin 0.968 0.966 0.002.T'  �   

   
o

o

0.5
100 100 0.7%

75.0

T
T
'

  
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
  

3sin 2 10
100 100 0.2%

sin 0.966

T
T

�' u
  
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
 

 A consequence of this result is that when using a protractor, and you have a fixed uncertainty in the 

angle ( o0.5r  in this case), you should measure the angles from a reference line that gives a large 
angle measurement rather than a small one.  Note above that the angles around 75o had only a 0.2% 
error in sin T , while the angles around 15o had a 3% error in sin T. 

 

l 

d

60o 
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62.  Utilize the fact that walking totally around the Earth along the meridian would trace out a circle 
whose full 360o would equal the circumference of the Earth.   

 � � � �3o

o

2 6.38 10 km1 0.621 mi
1 minute 1.15 mi

60 minute 360 1 km

S u
 

§ ·§ · § ·
¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹

 

 
63. Consider the body to be a cylinder, about 170 cm tall � �5 7c cc| , and about 12 cm in cross-sectional 

radius (which corresponds to a 30-inch waist).  The volume of a cylinder is given by the area of the 
cross section times the height. 

  � � � �22 2 3 2 30.12 m 1.7 m 7.69 10 m 8 10 mV r hS S � �   u | u  

 
64. The maximum number of buses would be needed during rush hour.  We assume that a bus can hold  

50 passengers.   
 (a) The current population of Washington, D.C. is about half a million people.  We estimate that  

10% of them ride the bus during rush hour. 
1bus 1driver

50,000 passengers 1000drivers
50 passengers 1bus

u u |  

 (b) For Marion, Indiana, the population is about 50,000.  Because the town is so much smaller  
geographically, we estimate that only 5% of the current population rides the bus during rush 
hour. 

   
1bus 1driver

2500 passengers 50drivers
50 passengers 1bus

u u |  

 
65. The units for each term must be in liters, since the volume is in liters. 

> @> @ > @ > @

> @> @ > @ > @

> @

L
units of 4.1 m L    units of 4.1

m

L
units of 0.018 y L     units of 0.018

y

units of 2.69 L

 o  

 o  

 

 

 

66. 3 3

3

mass 8g
density 2.82 g cm 3g cm

volume 2.8325cm
   |  

 

67. (a) 
� �
� �

232 2

Earth Earth Earth

22 2 3
Moon Moon Moon

6.38 10 kmSA 4
13.4

SA 4 1.74 10 km

R R
R R

S
S

u
    

u
 

 (b) 
� �
� �

333 34
EarthEarth 3 Earth

33 34 3
Moon Moon Moon3

6.38 10 kmV
49.3

V 1.74 10 km

R R
R R

S
S

u
    

u
 

 

68. 
� �

23 23
9

22 2 26
Earth

# atoms 6.02 10 atoms 6.02 10 atoms atoms
1.18 10

m 4 m4 6.38 10 mRS S

u u
   u

u
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69. Multiply the volume of a spherical universe times the density of matter, adjusted to ordinary matter.  

The volume of a sphere is 34
3 .rS  

� � � � � �
315

26 3 94
3

51 51

9.46 10 m
1 10 kg m 13.7 10 ly 0.04

1ly

  3.65 10 kg 4 10 kg

m VU S� u
  u u u

 u | u

§ ·
¨ ¸
© ¹   
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CHAPTER 2:  Describing Motion: Kinematics in One Dimension 
 
Responses to Questions 
 
1.  A car speedometer measures only speed, since it gives no indication of the direction in which the car 

is traveling. 
 
2.  If the velocity of an object is constant, the speed must also be constant. (A constant velocity means 

that the speed and direction are both constant.) If the speed of an object is constant, the velocity 
CAN vary. For example, a car traveling around a curve at constant speed has a varying velocity, 
since the direction of the velocity vector is changing. 

 
3.  When an object moves with constant velocity, the average velocity and the instantaneous velocity 

are the same at all times. 
 
4.  No, if one object has a greater speed than a second object, it does not necessarily have a greater 

acceleration. For example, consider a speeding car, traveling at constant velocity, which passes a 
stopped police car. The police car will accelerate from rest to try to catch the speeder. The speeding 
car has a greater speed than the police car (at least initially!), but has zero acceleration. The police 
car will have an initial speed of zero, but a large acceleration. 

 
5.  The accelerations of the motorcycle and the bicycle are the same, assuming that both objects travel 

in a straight line. Acceleration is the change in velocity divided by the change in time. The 
magnitude of the change in velocity in each case is the same, 10 km/h, so over the same time interval 
the accelerations will be equal. 

  
6.  Yes, for example, a car that is traveling northward and slowing down has a northward velocity and a 

southward acceleration. 
 
7.  Yes. If the velocity and the acceleration have different signs (opposite directions), then the object is 

slowing down. For example, a ball thrown upward has a positive velocity and a negative acceleration 
while it is going up. A car traveling in the negative x-direction and braking has a negative velocity 
and a positive acceleration. 

 
8.  Both velocity and acceleration are negative in the case of a car traveling in the negative x-direction 

and speeding up. If the upward direction is chosen as +y, a falling object has negative velocity and 
negative acceleration.  

 
9.  Car A is going faster at this instant and is covering more distance per unit time, so car A is passing 

car B. (Car B is accelerating faster and will eventually overtake car A.) 
 
10.  Yes. Remember that acceleration is a change in velocity per unit time, or a rate of change in 

velocity. So, velocity can be increasing while the rate of increase goes down. For example, suppose a 
car is traveling at 40 km/h and a second later is going 50 km/h. One second after that, the car’s speed 
is 55 km/h. The car’s speed was increasing the entire time, but its acceleration in the second time 
interval was lower than in the first time interval. 

 
11.  If there were no air resistance, the ball’s only acceleration during flight would be the acceleration 

due to gravity, so the ball would land in the catcher’s mitt with the same speed it had when it left the 
bat, 120 km/h. The path of the ball as it rises and then falls would be symmetric. 
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12.  (a) If air resistance is negligible, the acceleration of a freely falling object stays the same as the  
object falls toward the ground. (Note that the object’s speed increases, but since it increases at a 
constant rate, the acceleration is constant.) 

(b) In the presence of air resistance, the acceleration decreases. (Air resistance increases as speed  
increases. If the object falls far enough, the acceleration will go to zero and the velocity will 
become constant. See Section 5-6.)   

 
13.  Average speed is the displacement divided by the time. If the distances from A to B and from B to C 

are equal, then you spend more time traveling at 70 km/h than at 90 km/h, so your average speed 
should be less than 80 km/h. If the distance from A to B (or B to C) is x, then the total distance 
traveled is 2x. The total time required to travel this distance is x/70 plus x/90. Then 

 
2 2(90)(70)

79 km/h.
70 90 90 70

d x
v

t x x
    

� �
 

 
14.  Yes.  For example, a rock thrown straight up in the air has a constant, nonzero acceleration due to 

gravity for its entire flight. However, at the highest point it momentarily has a zero velocity. A car, at 
the moment it starts moving from rest, has zero velocity and nonzero acceleration.  

 
15.  Yes. Anytime the velocity is constant, the acceleration is zero. For example, a car traveling at a 

constant 90 km/h in a straight line has nonzero velocity and zero acceleration. 
 
16.  A rock falling from a cliff has a constant acceleration IF we neglect air resistance. An elevator 

moving from the second floor to the fifth floor making stops along the way does NOT have a 
constant acceleration. Its acceleration will change in magnitude and direction as the elevator starts 
and stops. The dish resting on a table has a constant acceleration (zero). 

 
17.  The time between clinks gets smaller and smaller. The bolts all start from rest and all have the same 

acceleration, so at any moment in time, they will all have the same speed. However, they have 
different distances to travel in reaching the floor and therefore will be falling for different lengths of 
time. The later a bolt hits, the longer it has been accelerating and therefore the faster it is moving. 
The time intervals between impacts decrease since the higher a bolt is on the string, the faster it is 
moving as it reaches the floor. In order for the clinks to occur at equal time intervals, the higher the 
bolt, the further it must be tied from its neighbor. Can you guess the ratio of lengths? 

 
18.  The slope of the position versus time curve is the velocity. The object starts at the origin with a 

constant velocity (and therefore zero acceleration), which it maintains for about 20 s. For the next 10 
s, the positive curvature of the graph indicates the object has a positive acceleration; its speed is 
increasing. From 30 s to 45 s, the graph has a negative curvature; the object uniformly slows to a 
stop, changes direction, and then moves backwards with increasing speed. During this time interval 
its acceleration is negative, since the object is slowing down while traveling in the positive direction 
and then speeding up while traveling in the negative direction. For the final 5 s shown, the object 
continues moving in the negative direction but slows down, which gives it a positive acceleration. 
During the 50 s shown, the object travels from the origin to a point 20 m away, and then back 10 m 
to end up 10 m from the starting position.  

 
19.  The object begins with a speed of 14 m/s and increases in speed with constant positive acceleration 

from t = 0 until t = 45 s. The acceleration then begins to decrease, goes to zero at t = 50 s, and then 
goes negative. The object slows down from t = 50 s to t = 90 s, and is at rest from t = 90 s to t = 108 
s. At that point the acceleration becomes positive again and the velocity increases from t = 108 s to 
t = 130 s.  
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Solutions to Problems 
 
1. The distance of travel (displacement) can be found by rearranging Eq. 2-2 for the average velocity.  

Also note that the units of the velocity and the time are not the same, so the speed units will be 
converted. 

� � � �1 h
 110 km h 2.0s 0.061 km 61 m

3600 s
 x

v x v t
t

'
 o '  '    
'

§ ·
¨ ¸
© ¹

 

   
2.   The average speed is given by Eq. 2-2. 

235 km 3.25 h 72.3 km hv x t ' '    

 
3. The average velocity is given by Eq. 2.2. 

 
� �

8.5 cm 4.3cm 4.2 cm
0.65 cm s

4.5s 2.0 s 6.5s
x

v
t

' �
    
' � �

 

The average speed cannot be calculated.  To calculate the average speed, we would need to know the 
actual distance traveled, and it is not given.  We only have the displacement. 

 
4. The average velocity is given by Eq. 2-2. 

  
4.2 cm 3.4 cm 7.6 cm

3.6 cm s
5.1s 3.0s 2.1s

x
v

t
' � � �

    �
' �

 

 The negative sign indicates the direction. 
 
5. The speed of sound is intimated in the problem as 1 mile per 5 seconds.  The speed is calculated as 

follows. 
distance 1mi 1610 m

speed 300 m s
time 5s 1 mi

   
§ ·§ ·

¨ ¸¨ ¸© ¹© ¹
 

The speed of 300 m s  would imply the sound traveling a distance of 900 meters (which is 
approximately 1 km) in 3 seconds.  So the rule could be approximated as  1 km every 3 seconds . 

 
6. The time for the first part of the trip is calculated from the initial speed and the first distance.   

1 1
1 1

1 1

130 km
1.37 h 82 min

95km h
x x

v t
t v

' '
 o '     
'

 

 The time for the second part of the trip is now calculated. 
2 total 1 3.33 h 1.37 h 1.96 h 118 mint t t'  ' � '  �    

The distance for the second part of the trip is calculated from the average speed for that part of the 
trip and the time for that part of the trip. 

� �� � 22
2 2 2 2

2

65 km h 1.96 h 127.5 km 1.3 10 km
x

v x v t
t

'
 o '  '    u
'

 

 (a) The total distance is then 2
total 1 2 130 km 127.5 km 257.5 km 2.6 10 km .x x x'  ' � '  �  | u  

 (b) The average speed is NOT the average of the two speeds.  Use the definition of average speed,  
Eq. 2-2. 

   total

total

257.5 km
77 km h

3.33 h
x

v
t

'
   
'
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7. The distance traveled is � �1
2116 km 116 km 174 km,�   and the displacement is  

� �1
2116 km 116 km 58 km.�   The total time is 14.0 s + 4.8 s = 18.8 s. 

(a)  Average speed = distance 174 m
9.26 m s

time elapsed 18.8 s
   

  (b)  Average velocity = avg
displacement 58 m

3.1m s
time elapsed 18.8 s

v     

 
8. (a) 

 
 

  
 
 
 
 
 
 
 
 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS”, on tab “Problem 2.8a”. 

(b) The average velocity is the displacement divided by the elapsed time. 

   
� � � � � � � � � �334 10 3.0 2 3.0 m 34 m3.0 0.0

8.0 m s
3.0s 0.0s 3.0s

x x
v

� � ��
   �

�

ª º¬ ¼  

 (c) The instantaneous velocity is given by the derivative of the position function. 

   � �2 2 5
10 6 m s         10 6 0    s 1.3s

3
dx

v t t t
dt

  � �  o    

  This can be seen from the graph as the “highest” point on the graph. 
 
9. Slightly different answers may be obtained since the data comes from reading the graph. 
  (a) The instantaneous velocity is given by the slope of the tangent line to the curve.  At 10.0s,t    

the slope is approximately � � 3m 0
10 0.3m s

10.0 s 0
.v

�
|  

�
 

 (b) At 30.0 s,t   the slope of the tangent line to the curve, and thus the instantaneous velocity, is  

approximately � � 22 m 10 m
30 1.2 m s

35s 25s
.v

�
|  

�
 

 (c)  The average velocity is given by � � � �5 0 1.5m 0
0.30 m s

5.0s 0s 5.0s
.x x

v
� �

   
�

 

 (d)  The average velocity is given by � � � �30 25 16 m 9 m
1.4 m s

30.0s 25.0s 5.0s
.x x

v
� �

   
�

 

 (e)  The average velocity is given by � � � �50 40 10 m 19.5 m
0.95 m s

50.0s 40.0s 10.0s
.x x

v
� �

   �
�

 

 
 

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t  (sec)

x 
(m

)
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10. (a) Multiply the reading rate times the bit density to find the bit reading rate. 

   6
6

1.2 m 1bit
4.3 10 bits s

1s 0.28 10 m
N

�
 u  u

u
  

 (b) The number of excess bits is 0.N N�  

   6 6 6
0 4.3 10 bits s 1.4 10 bits s 2.9 10 bits sN N�  u � u  u  

   
6

0
6

2.9 10 bits s
0.67 67%

4.3 10 bits s
N N

N
� u

   
u

 

 
11. Both objects will have the same time of travel.  If the truck travels a distance truck ,x'  then the 

distance the car travels will be car truck 110 m.x x'  ' �   Use Eq. 2-2 for average speed, ,v x t ' '  
solve for time, and equate the two times. 

truck car truck truck

truck car

110 m
        

75 km h 95 km h
x x x x

t
v v
' ' ' ' �

'     

Solving for truckx'  gives � � � �
� �truck

75km h
110 m 412.5m.

95km h 75km h
x'   

�
 

The time of travel is 1truck

truck

412.5 m 60 min
0.33min 19.8s 2.0 10 s

75000 m h 1h
x

t
v
'

'      u
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

. 

Also note that car

car

412.5m 110 m 60 min
0.33min 20s.

95000 m h 1h
x

t
v
' �

'     
§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 

 ALTERNATE SOLUTION: 
 The speed of the car relative to the truck is 95km h 75km h 20 km h�  .  In the reference frame of 

the truck, the car must travel 110 m to catch it. 

  
0.11 km 3600 s

19.8 s
20 km h 1 h

t'   § ·
¨ ¸
© ¹

 

 
12. Since the locomotives have the same speed, they each travel half the distance, 4.25 km.  Find the 

time of travel from the average speed. 
4.25 km 60 min

0.0447 h 2.68 min 2.7 min
95km h 1 h

x x
v t

t v
' '

 o '     |
'

§ ·
¨ ¸
© ¹

 

 
13. (a) The area between the concentric circles is equal to the length times the width of the spiral path. 

   � � � � � �

2 2
2 1

2 22 2
2 1 3

6

  

0.058m 0.025m
5.378 10 m 5400 m

1.6 10 m

R R w

R R

w

S S

SS
�

�  o

��
   u |

u

ª º¬ ¼

l

l

 

 (b) 3 1s 1min
5.378 10 m 72 min

1.25 m 60s
u  

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹
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14. The average speed for each segment of the trip is given by ,x
v

t
'

 
'

 so 
x

t
v
'

'   for each  

segment.  For the first segment, 1
1

1

3100 km
4.306 h.

720 km h
x

t
v
'

'      For the second segment, 

2
2

2

2800 km
2.828h.

990 km h
x

t
v
'

'    .  

Thus the total time is tot 1 2 4.306 h 2.828 h 7.134 h 7.1h .t t t'  ' � '  �  |  

The average speed of the plane for the entire trip is tot

tot

3100 km 2800 km
827 km h

7.134 h
x

v
t

' �
   
'  

830 km h .|  

 
15. The distance traveled is 500 km (250 km outgoing, 250 km return, keep 2 significant figures).  The 

displacement � �x' is 0 because the ending point is the same as the starting point. 
(a) To find the average speed, we need the distance traveled (500 km) and the total time elapsed.   

During the outgoing portion, 1
1

1

x
v

t
'

 
'

 and so 1
1

1

250 km
2.632 h.

95km h
x

t
v
'

'      During the 

return portion, 2
2

2

,x
v

t
'

 
'

 and so 2
2

2

250 km
4.545h.

55km h
x

t
v
'

'      Thus the total time, 

including lunch, is total 1 lunch 2 8.177 h.t t t t'  ' � ' � '   

total

total

500 km
61km h

8.177 h
x

v
t

'
   
'

 

(b) Average velocity = 0v x t ' '   

 
16. We are given that � � � � � �2 22.0 m 3.6 m s 1.1m s .x t t t � �  

 (a) � � � �� � � �� �221.0s 2.0 m 3.6 m s 1.0s 1.1m s 1.0s 0.5mx  � �  �  

  
� � � �� � � �� �
� � � �� � � �� �

22

22

2.0s 2.0 m 3.6 m s 2.0s 1.1m s 2.0s 0.8 m

3.0s 2.0 m 3.6 m s 3.0s 1.1m s 3.0s 1.1m

x

x

 � �  �

 � �  
 

 (b) 
� �1.1m 0.5m

0.80 m s
2.0s

x
v

t
� �'

   
'

 

 (c) The instantaneous velocity is given by � � � � � �23.6 m s 2.2 m s .
dx t

v t t
dt

  � �  

   
� � � �� �
� � � �� �

2

2

2.0s 3.6 m s 2.2 m s 2.0s 0.8 m s

3.0s 3.6 m s 2.2 m s 3.0s 3.0 m s

v

v

 � �  

 � �  
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17. The distance traveled is � �1
2120 m 120 m 180 m,�   and the displacement is  

� �1
2120 m 120 m 60 m.�    The total time is � �1

38.4s 8.4s 11.2s.�   

(a)  Average speed = 
distance 180 m

16 m s
time elapsed 11.2 s

   

  (b)  Average velocity = � � � �avg

displacement 60 m
5m s  1 sig fig

time elapsed 11.2 s
in original directionv    �  

 
18. For the car to pass the train, the car must travel the length of the train AND the distance the train 

travels.  The distance the car travels can thus be written as either � �car car 95km hd v t t   or 

� �car train train 1.10 km 75km h .d v t t �  �l   To solve for the time, equate these two expressions for 
the distance the car travels.  

� � � � 1.10 km
95 km h 1.10 km 75 km h     0.055 h 3.3 min

20 km h
t t t � o     

The distance the car travels during this time is � � � �95 km h 0.055 h 5.225 km 5.2 km .d   |  
 

 If the train is traveling the opposite direction from the car, then the car must travel the length of the 
train MINUS the distance the train travels.  Thus the distance the car travels can be written as either 

� �car 95 km hd t  or � �car 1.10 km 75 km h .d t �   To solve for the time, equate these two 
expressions for the distance the car travels. 

  � � � � 31.10 km
95 km h 1.10 km 75 km h     6.47 10  h 23.3 s

170 km h
t t t � � o   u    

The distance the car travels during this time is � � � �395 km h 6.47 10  h 0.61 km .d � u   

 
19. The average speed of sound is given by sound ,v x t ' '  and so the time for the sound to travel from 

the end of the lane back to the bowler is 2
sound

sound

16.5 m
4.85 10 s.

340 m s
t

v
x �'    u

'
  Thus the time for 

the ball to travel from the bowler to the end of the lane is given by ball total soundt t t'  ' � '   
22.50s 4.85 10 s 2.4515s.�� u     And so the speed of the ball is as follows.

 ball
ball

16.5m
6.73m s

2.4515s
.x

v
t
'

   
'

 

 
20. The average acceleration is found from Eq. 2-5. 

� �
2

1m s
95km h

3.6 km h95km h 0 km h
5.9 m s

4.5s 4.5s
v

a
t

' �
    
'

§ ·
¨ ¸
© ¹  

 
21. The time can be found from the average acceleration, .a v t ' '  

� �
2 2

1m s
30 km h

3.6 km h110 km h 80 km h
4.630s 5s

1.8 m s 1.8 m s
v

t
a
' �

'     |

§ ·
¨ ¸
© ¹  
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22. (a) The average acceleration of the sprinter is 29.00 m s 0.00 m s
7.03m s

1.28 s
.v

a
t

' �
   
'

 

(b) � �
2

2 4 21 km 3600 s
7.03m s 9.11 10 km h

1000 m 1 h
a   u§ ·§ ·

¨ ¸¨ ¸
© ¹© ¹

 

 
23.   Slightly different answers may be obtained since the data comes from reading the graph. 

(a) The greatest velocity is found at the highest point on the graph, which is at 48 s .t |  
 (b) The indication of a constant velocity on a velocity–time graph is a slope of 0, which occurs  

from 90 s  to  108 s .t t |  
 (c) The indication of a constant acceleration on a velocity–time graph is a constant slope, which  

occurs from 0 s  to  42 s ,t t |  again from 65 s  to  83 s ,t t| |  and again from 

90 s  to  108 s .t t |  
 (d) The magnitude of the acceleration is greatest when the magnitude of the slope is greatest, which  

occurs from 65 s  to  83 s .t t| |  
 
24. The initial velocity of the car is the average speed of the car before it accelerates. 

0

110 m
22 m s

5.0 s
x

v v
t

'
    
'

 

The final speed is 0v  , and the time to stop is 4.0 s.  Use Eq. 2-12a to find the acceleration. 
20

0

0 22 m s
    5.5 m s

4.0 s
v v

v v at a
t
� �

 � o    �  

Thus the magnitude of the acceleration is 25.5 m s ,  or � �2
2

1 
5.5 m s 0.56 ' s

9.80 m s
.g

g 
§ ·
¨ ¸
© ¹

 

 

25. (a) 385 m 25 m
21.2 m s

20.0s 3.0 s
x

v
t

' �
   
' �

 

 

 (b) 245.0 m s 11.0 m s
2.00 m s

20.0s 3.0 s
v

a
t

' �
   
' �

 

 
26. Slightly different answers may be obtained since the data comes from reading the graph.  We assume  

that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and 
those times are not counted as being “in” a certain gear. 

(a) The average acceleration in 2nd gear is given by 22
2

2

24 m s 14 m s
2.5 m s

8s 4 s
.v

a
t

' �
   
' �

 

(b) The average acceleration in 4th gear is given by 24
4

4

44 m s 37 m s
0.6 m s

27 s 16s
.v

a
t

' �
   
' �

 

(c) The average acceleration through the first four gears is given by v
a

t
'

  
'

  

 244 m s 0 m s
1.6 m s

27 s 0 s
.v

a
t

' �
   
' �
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27. The acceleration is the second derivative of the position function. 

  
2

2 2
2

6.8 8.5     6.8 17.0     17.0 m s
dx d x dv

x t t v t a
dt dt dt

 � o   � o     

 
28. To estimate the velocity, find the average velocity over 

each time interval, and assume that the car had that velocity 
at the midpoint of the time interval.  To estimate the 
acceleration, find the average acceleration over each time 
interval, and assume that the car had that acceleration at the 
midpoint of the time interval.  A sample of each calculation 
is shown. 

 

From 2.00 s to 2.50 s, for average velocity:   

mid

avg

2.50 s 2.00 s
2.25 s

2
13.79 m 8.55 m 5.24 m

10.48 m s
2.50 s 2.00 s 0.50 s

t

x
v

t

�
  

' �
    
' �

 

 
 From 2.25 s to 2.75 s, for average acceleration: 

mid

avg

2

2.25 s 2.75 s
2.50 s

2
13.14 m s 10.48 m s 2.66 m s

2.75 s 2.25 s 0.50 s
    5.32 m s

t

v
a

t

�
  

' �
   
' �

 

  

 
 
 

 

0

5

10

15

20

25

30

0 1 2 3 4 5 6
t  (s)

v
 (m

/s
)

0

1

2

3

4

5

6

0 1 2 3 4 5 6
t  (s)

a
 (m

/s2 )

 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS,” on tab “Problem 2.28.” 

 
29. (a) Since the units of A times the units of t must equal meters, the units of A must be m s .  

  Since the units of B times the units of 2t  must equal meters, the units of B must be  
2m s .  

 
 
 

t (s) x (m) t (s) v  (m/s) t (s) a (m/s2)
0.00 0.00 0.00 0.00

0.125 0.44
0.25 0.11 0.25 3.84

0.375 1.40
0.50 0.46 0.50 4.00

0.625 2.40
0.75 1.06 0.75 4.48

0.875 3.52
1.00 1.94 1.06 4.91

1.25 5.36
1.50 4.62 1.50 5.00

1.75 7.86
2.00 8.55 2.00 5.24

2.25 10.48
2.50 13.79 2.50 5.32

2.75 13.14
3.00 20.36 3.00 5.52

3.25 15.90
3.50 28.31 3.50 5.56

3.75 18.68
4.00 37.65 4.00 5.52

4.25 21.44
4.50 48.37 4.50 4.84

4.75 23.86
5.00 60.30 5.00 4.12

5.25 25.92
5.50 73.26 5.50 3.76

5.75 27.80
6.00 87.16

0.063 3.52

Table of Calculations 
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 (b) The acceleration is the second derivative of the position function. 

   
2

2 2
2

    2     2 m s
dx d x dv

x At Bt v A Bt a B
dt dt dt

 � o   � o     

 (c) � � � � 22     5 10 m s 2 m s     v A Bt v A B a B � o  �   

  
(d) The velocity is the derivative of the position function. 

   3 4    3
dx

x At Bt v A Bt
dt

� � � o   �  

 
30. The acceleration can be found from Eq. 2-12c. 

� � � �
� �
� �

22 2
2 2 20

0 0
0

0 25 m s
2     3.7 m s

2 2 85 m
v v

v v a x x a
x x

��
 � � o    �

�
 

 

31. By definition, the acceleration is 20 21m s 12 m s
1.5 m s

6.0 s
.v v

a
t
� �

    

 The distance of travel can be found from Eq. 2-12b. 
� � � � � � � �22 21 1

0 0 2 212 m s 6.0 s 1.5m s 6.0 s 99 mx x v t at�  �  �   

 
32. Assume that the plane starts from rest.  The runway distance is found by solving Eq. 2-12c for 

0.x x�  

� � � �
� �

22 2
2 2 20

0 0 0 2

32 m s 0
2     1.7 10 m

2 2 3.0 m s
v v

v v a x x x x
a

��
 � � o �    u  

 
33. For the baseball, 0 0v  , 0 3.5m,x x�   and the final speed of the baseball (during the throwing 

motion) is 41m s.v    The acceleration is found from Eq. 2-12c. 

� � � �
� �

� �

22 2
2 2 20

0 0
0

41m s 0
2     240 m s

2 2 3.5 m
v v

v v a x x a
x x

��
 � � o    

�
 

 

34. The average velocity is defined by Eq. 2-2, 0 .x x x
v

t t
' �

  
'

  Compare this expression to Eq. 2-

12d, � �1
02 .v v v �   A relation for the velocity is found by integrating the expression for the 

acceleration, since the acceleration is the derivative of the velocity.  Assume the velocity is 0v  at 
time 0.t   

  � � � �
0

21
0 2

0

            
v t

v

dv
a A Bt dv A Bt dt dv A Bt dt v v At Bt

dt
 �  o  � o  � o  � �³ ³  

 Find an expression for the position by integrating the velocity, assuming that 0x x  at time 0.t   

  
� �

� �
0

2 21 1
0 02 2

2 2 31 1 1
0 0 02 2 6

0

      

    
x t

x

dx
v v At Bt dx v At Bt dt

dt

dx v At Bt dt x x v t At Bt

 � �  o  � � o

 � � o �  � �³ ³
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 Compare 0x x
t
�

 to � �1
02 .v v�  

  
2 31 1

22 60 0 1 1
0 2 6

x x v t At Bt
v v At Bt

t t
� � �

   � �  

  � �
21

220 01 1 1
0 02 2 42

v v At Bt
v v v At Bt

� � �
�   � �  

 They are different, so � �1
02 .v v vz �  

 
35. The sprinter starts from rest.  The average acceleration is found from Eq. 2-12c. 

� � � �
� �

� �

22 2
2 2 2 20

0 0
0

11.5 m s 0
2     4.408 m s 4.41m s

2 2 15.0 m
v v

v v a x x a
x x

��
 � � o    |

�
 

 Her elapsed time is found by solving Eq. 2-12a for time. 
0

0 2

11.5 m s 0
    2.61 s

4.408 m s
v v

v v at t
a
� �

 � o     

 
36. Calculate the distance that the car travels during the reaction time and the deceleration. 

� � � �1 0 18.0 m s 0.200s 3.6 mx v t'  '    

� �
� �

22 2
2 2 0

0 2 2 2

0 18.0 m s
2     44.4 m

2 2 3.65 m s

3.6 m 44.4 m 48.0 m

v v
v v a x x

a

x

��
 � ' o '    

�

'  �  

 

 He will NOT be able to stop in time.  
 
37. The words “slows down uniformly” implies that the car has a constant acceleration.  The distance of 

travel is found from combining Eqs. 2-2 and 2-9. 

� �0
0

18.0 m s 0 m s
5.00 sec 45.0 m

2 2
v v

x x t
� �

�    § ·
¨ ¸
© ¹

 

 
38. The final velocity of the car is zero.  The initial velocity is found from Eq. 2-12c with 0v   and 

solving for 0.v   Note that the acceleration is negative. 

� � � � � �� �2 2 2 2
0 0 0 02     2 0 2 4.00 m s 85 m 26 m sv v a x x v v a x x � � o  � �  � �   

 
39. (a) The final velocity of the car is 0.  The distance is found from Eq. 2-12c with an acceleration of  

20.50 m sa  �  and an initial velocity of 85 km h.  

   
� �

� �

2

2 2
0

0 2

1m s
0 85 km h

3.6 km h
557 m 560 m

2 2 0.50 m s
v v

x x
a

�
�

�    |
�

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

(b) The time to stop is found from Eq. 2-12a. 

   
� �

� �
0

2

1m s
0 85 km h

3.6 km h
47.22 s 47 s

0.50 m s
v v

t
a

�
�

   |
�

ª º§ ·
¨ ¸« »
© ¹¬ ¼  



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

26 

 (c) Take � �0 0 0 m.x x t     Use Eq. 2-12b, with 20.50 m sa  � and an initial velocity  
of 85 km h.   The first second is from 0 st   to 1s,t   and the fifth second is from 4 st   to 

5s.t   

   
� � � � � � � � � �� �

� � � �

221
2

1m s
0 0  ;  1 0 85 km h 1s 0.50 m s 1s 23.36 m  

3.6 km h

1 0 23 m

x x

x x

  � � �  o

�  

§ ·
¨ ¸
© ¹  

   

� � � � � � � �� �

� � � � � � � �� �

� � � �

221
2

221
2

1m s
4 0 85 km h 4 s 0.50 m s 4 s 90.44 m

3.6 km h

1m s
5 0 85 km h 5s 0.50 m s 5s 111.81m

3.6 km h

5 4 111.81m 90.44 m 21.37m 21m

x

x

x x

 � � �  

 � � �  

�  �  |

§ ·
¨ ¸
© ¹
§ ·
¨ ¸
© ¹

 

 
40. The final velocity of the driver is zero.  The acceleration is found from Eq. 2-12c with 0v   and   

solving for a . 

� �

� �

� �

2

2 2
2 2 20

0

1m s
0 105 km h

3.6 km h
531.7 m s 5.3 10 m s

2 2 0.80 m
v v

a
x x

�
�

   � | � u
�

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

Converting to “g’s”:  � �
2

2

531.7 m s
54 's

9.80 m s
a g

g
�

  �  

 
41. The origin is the location of the car at the beginning of the reaction time.  The initial speed of the car 

is � � 1m s
95 km h 26.39 m s

3.6 km h
. 

§ ·
¨ ¸
© ¹

  The location where the brakes are applied is found from 

the equation for motion at constant velocity: � � � �0 0 26.39 m s 1.0 s 26.39 m.Rx v t     This is now 
the starting location for the application of the brakes.  In each case, the final speed is 0. 
(a) Solve Eq. 2-12c for the final location.  

� � � �
� �

22 2
2 2 0

0 0 0 2

0 26.39 m s
2     26.39 m 96 m

2 2 5.0 m s
v v

v v a x x x x
a

��
 � � o  �  �  

�
 

(b) Solve Eq. 2-12c for the final location with the second acceleration. 
� �
� �

22 2
0

0 2

0 26.39 m s
26.39 m 76 m

2 2 7.0 m s
v v

x x
a

��
 �  �  

�
 

 
42. Calculate the acceleration from the velocity–time data using Eq. 2-12a, and then use Eq. 2-12b to 

calculate the displacement at 2.0st   and 6.0s.t    The initial velocity is 0 65 m s.v   

  
� � � � � � � �� � � � � �� �

2 20 1
0 0 2

2 21 1
0 0 0 02 2

162 m s 65 m s
9.7 m s       

10.0s

6.0s 2.0s 6.0s 6.0s 2.0s 2.0s

v v
a x x v t at

t

x x x v a x v a

� �
    � � o

�  � � � � �ª º¬ ¼
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� � � � � � � � � � � � � �2 2 2 21 1
0 2 2

2

   6.0s 2.0s 6.0s 2.0s 65 m s 4.0s 9.7 m s 32 s

   415 m 4.2 10 m

v a � � �  �

 | u

ª º¬ ¼  

 
43. Use the information for the first 180 m to find the acceleration, and the information for the full 

motion to find the final velocity.  For the first segment, the train has 0 0 m s ,v  1 23 m s ,v   and a 
displacement of 1 0 180 m.x x�    Find the acceleration from Eq. 2-12c. 

� � � �
� �

� �

22 2
2 2 21 0
1 0 1 0

1 0

23m s 0
2     1.469 m s

2 2 180 m
v v

v v a x x a
x x

��
 � � o    

�
 

 Find the speed of the train after it has traveled the total distance (total displacement of 
2 0 255 m)x x�  using Eq. 2-12c. 

� � � � � �� �2 2 2 2
2 0 2 0 2 0 2 02     2 2 1.469 m s 255 m 27 m sv v a x x v v a x x � � o  � �    

 
44. Define the origin to be the location where the speeder passes the police car.  Start a timer at the 

instant that the speeder passes the police car, and find another time that both cars have the same 
displacement from the origin. 

 

For the speeder, traveling with a constant speed, the displacement is given by the following. 

� � � � � �1m s
135 km h 37.5  m

3.6 km hs sx v t t t'    
§ ·
¨ ¸
© ¹

 

For the police car, the displacement is given by two components.  The first part is the distance 
traveled at the initially constant speed during the 1 second of reaction time. 

� � � � � �1 1

1m s
1.00s 95km h 1.00s 26.39 m

3.6 km hp px v'    
§ ·
¨ ¸
© ¹

 

The second part of the police car displacement is that during the accelerated motion, which lasts for  
� �1.00 s.t �   So this second part of the police car displacement, using Eq. 2-12b, is given as follows.  

� � � � � � � � � � � �2 221 1
2 1 2 21.00 1.00 26.39 m s 1.00 2.00 m s 1.00 mp p px v t a t t t'  � � �  � � �ª º

¬ ¼  

So the total police car displacement is � � � �� �2
1 2 26.39 26.39 1.00 1.00 m.p p px x x t t'  ' � '  � � � �  

Now set the two displacements equal, and solve for the time. 
� � � �

� �

2 2

2

2

26.39 26.39 1.00 1.00 37.5         13.11 1.00 0

13.11 13.11 4.00
7.67 10 s , 13.0s

2

t t t t t

t �

� � � �  o � �  

r �
  u

 

The answer that is approximately 0 s corresponds to the fact that both vehicles had the same 
displacement of zero when the time was 0.  The reason it is not exactly zero is rounding of previous 
values.  The answer of 13.0 s is the time for the police car to overtake the speeder. 

  

As a check on the answer, the speeder travels � � � �37.5 m s 13.0 s 488 m,sx'    and the police car 

travels � � � �226.39 26.39 12.0 12.0 m 487 m.px'  � �  ª º¬ ¼ .  The difference is due to rounding. 
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45. Define the origin to be the location where the speeder passes the police car.  Start a timer at the 
instant that the speeder passes the police car.  Both cars have the same displacement 8.00 s after the 
initial passing by the speeder. 

 

For the speeder, traveling with a constant speed, the displacement is given by � �8.00 m.s s sx v t v'      
For the police car, the displacement is given by two components.  The first part is the distance 
traveled at the initially constant speed during the 1.00 s of reaction time. 

� � � � � �1 1

1m s
1.00s 95 km h 1.00s 26.39 m

3.6 km hp px v'    
§ ·
¨ ¸
© ¹

 

The second part of the police car displacement is that during the accelerated motion, which lasts for  
7.00 s.  So this second part of the police car displacement, using Eq. 2-12b, is given by the following. 

� � � � � � � � � � � �2 221 1
2 1 2 27.00s 7.00 s 26.39 m s 7.00 s 2.00 m s 7.00s =233.73 mp p px v a'  �  �  

Thus the total police car displacement is � �1 2 26.39 233.73 m 260.12 m.p p px x x'  ' � '  �   
Now set the two displacements equal, and solve for the speeder’s velocity. 

� � � � 3.6 km h
8.00 m 260.12 m    32.5m s 117 km h

1m ss sv v o   
§ ·
¨ ¸
© ¹

 

 
46. During the final part of the race, the runner must have a displacement of 1100 m in a time of 180 s 

(3.0 min).  Assume that the starting speed for the final part is the same as the average speed thus far. 

� � 0

8900 m
5.494 m s

27 60  s
x

v
t

v '
   

' u
  

The runner will accomplish this by accelerating from speed 0v  to speed v for t seconds, covering a 
distance 1,d  and then running at a constant speed of v for � �180 t� seconds, covering a distance 2.d   
We have these relationships from Eq. 2-12a and Eq. 2-12b. 

� � � � � �
� � � �

21
1 2 02

2 21 1
1 2 0 02 2

                    180 180

1100 m 180     1100 m 180 180     
o o

o

v v at d v t at d v t v at t

d d v t at v at t v at at

 �  �  �  � �

 �  � � � � o  � � o

  
� � � � � � � � � �2 2 21

2

2

1100 m 180 s 5.494 m s 180 s 0.2 m s 0.2 m s

0.1 36 111 0        357 s , 3.11 s

t t

t t t

 � �

� �   
 

Since we must have 180 st � , the solution is 3.1s .t   

 
47. For the runners to cross the finish line side-by-side means they must both reach the finish line in the 

same amount of time from their current positions.  Take Mary’s current location as the origin.  Use 
Eq. 2-12b. 

 

 For Sally: � � 2 21
222 5 5 .5     20 68 0  t t t t � � � o � �  o   

� �220 20 4 68
4.343s, 15.66s

2
t

r �
   

The first time is the time she first crosses the finish line, and so is the time to be used for the 
problem.  Now find Mary’s acceleration so that she crosses the finish line in that same amount of 
time. 

For Mary: 
� �

� �
2 21

2 221 1
2 2

22 4 4.34322 4
22 0 4     0.49 m s

4.343

t
t at a

t
��

 � � o     
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48. Choose downward to be the positive direction, and take 0 0y   at the top of the cliff.  The initial 

velocity is 0 0,v   and the acceleration is 29.80 m s .a    The displacement is found from Eq. 2-
12b, with x replaced by y. 

� � � �22 21 1
0 0 2 2    0 0 9.80 m s 3.75 s     68.9 my y v t at y y � � o �  � o   

 
49. Choose downward to be the positive direction.  The initial velocity is 0 0,v   the final velocity is 

� � 1m s
55km h 15.28 m s

3.6 km h
,v   

§ ·
¨ ¸
© ¹

 and the acceleration is 29.80 m s .a    The time can be 

found by solving Eq. 2-12a for the time. 

  0
0 2

15.28 m s 0
    1.6s

9.80 m s
v v

v v at t
a
� �

 � o     

 
50. Choose downward to be the positive direction, and take 0 0y   to be at the top of the Empire State 

Building.  The initial velocity is 0 0,v   and the acceleration is 29.80 m s .a     
(a) The elapsed time can be found from Eq. 2-12b, with x replaced by y. 

� �21
0 0 2 2

2 380 m2
      8.806s 8.8 s

9.80 m s
y

y y v t at t
a

�  � o    | . 

 (b)  The final velocity can be found from Eq. 2-12a. 
� �� �2

0 0 9.80 m s 8.806 s 86 m sv v at �  �   

 
51. Choose upward to be the positive direction, and take 0 0y   to be at the height where the ball was 

hit.  For the upward path, 0 20 m s ,v   0v   at the top of the path, and 29.80 m s .a  �  
(a)  The displacement can be found from Eq. 2-12c, with x replaced by y . 

� � � �
� �

22 2
2 2 0

0 0 0 2

0 20 m s
2     0 20 m

2 2 9.80 m s
v v

v v a y y y y
a

��
 � � o  �  �  

�
 

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0  
for the displacement of the ball returning to the height from which it was hit. 

� � � �2 01 1
0 0 02 2 2

2 20 m s2
0      0      0 , 4 s

9.80 m s
v

y y v t at t v at t t
a

 � �  o �  o     
�

 

The result of t = 0 s is the time for the original displacement of zero (when the ball was hit), and 
the result of t = 4 s is the time to return to the original displacement.  Thus the answer is t = 4 s. 

 
 
52. Choose upward to be the positive direction, and take 0 0y   to be the height from which the ball 

was thrown.  The acceleration is 29.80 m s .a  �   The displacement upon catching the ball is 0, 
assuming it was caught at the same height from which it was thrown.  The starting speed can be 
found from Eq. 2-12b, with x replaced by y. 

� �� �

21
0 0 2

21
20 2 1 1

0 2 2

0   

9.80 m s 3.2 s 15.68 m s 16 m s

y y v t at

y y at
v at

t

 � �  o

� �
  �  � �  |
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The height can be calculated from Eq. 2-12c, with a final velocity of 0v   at the top of the path. 

� � � �
� �

22 2
2 2 0

0 0 0 2

0 15.68 m s
2     0 12.54 m 13 m

2 2 9.80 m s
v v

v v a y y y y
a

��
 � � o  �  �  |

�
 

 
53. Choose downward to be the positive direction, and take 0 0y   to be at the maximum height of the 

kangaroo.  Consider just the downward motion of the kangaroo.  Then the displacement is 
1.65 m,y   the acceleration is 29.80 m s ,a   and the initial velocity is 0 0 m s.v    Use Eq. 2-

12b to calculate the time for the kangaroo to fall back to the ground.  The total time is then twice the 
falling time. 

  
� �

� �

2 21 1
0 0 fall2 2

total 2

2
0            

2 1.65 m2
2 2 1.16 s

9.80 m s

y
y y v t at y at t

a

y
t

a

 � �  o  o  o

   
 

 
54. Choose upward to be the positive direction, and take 0 0y   to be at the floor level, where the jump 

starts.  For the upward path, 1.2 my  , 0v   at the top of the path, and 29.80 m sa  � . 
(a)  The initial speed can be found from Eq. 2-12c, with x replaced by y . 

 
� �
� � � �� �

2 2
0 0

2 2
0 0

2   

2 2 2 9.80 m s 1.2 m 4.8497 m s 4.8 m s

v v a y y

v v a y y ay

 � � o

 � �  �  � �  |
 

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0  
for the displacement of the jumper returning to the original height. 

� �
� �

21 1
0 0 02 2

0
2

0      0   

2 4.897 m s2
0 , 0.99 s

9.80 m s

y y v t at t v at

v
t t

a

 � �  o �  o

    
�

 

The result of t = 0 s is the time for the original displacement of zero (when the jumper started to 
jump), and the result of t = 0.99 s is the time to return to the original displacement.  Thus the 
answer is t = 0.99 seconds. 

 
55. Choose downward to be the positive direction, and take 0 0y   to be the height where the object 

was released. The initial velocity is 0 5.10 m s ,v  �  the acceleration is 29.80 m s ,a   and the 
displacement of the package will be 105 m.y    The time to reach the ground can be found from 
Eq. 2-12b, with x replaced by y. 

� � � �2 2 201
0 0 2 2 2

2 5.10 m s 2 105 m2 2
     0     0   

9.80 m s 9.80 m s
5.18s ,  4.14s

v y
y y v t at t t t t

a a

t

�
 � � o � �  o � �  o

 �

   

 The correct time is the positive answer, 5.18s .t   
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56. Choose downward to be the positive direction, and take 0 0y   to be the height from which the 

object is released.  The initial velocity is 0 0,v   and the acceleration is .a g   Then we can 

calculate the position as a function of time from Eq. 2-12b, with x replaced by y, as � � 21
2 .y t gt   At 

the end of each second, the position would be as follows. 
� � � � � � � � � � � � � � � �2 21 1 1

2 2 20 0 ;      1  ;      2 2 4 1  ;      3 3 9 1y y g y g y y g y       
The distance traveled during each second can be found by subtracting two adjacent position values 
from the above list. 

� � � � � � � � � � � � � � � � � � � � � � � �1 1 0 1  ;      2 2 1 3 1  ;      3 3 2 5 1d y y y d y y y d y y y �   �   �  
We could do this in general. 

    

� � � � � �
� � � � � � � � � �� �

� � � �

221 1
2 2

2 22 21 1 1
2 2 2

2 21 1
2 2

        1 1

1 1 1 1

            2 1 2 1

y n gn y n g n

d n y n y n g n gn g n n

g n n n g n

 �  �

�  � �  � �  � �

 � � �  �

 

 The value of � �2 1n �  is always odd, in the sequence 1, 3, 5, 7, …. 
 
57. Choose upward to be the positive direction, and 0 0y   to be the level from which the ball was 

thrown.  The initial velocity is 0 ,v , the instantaneous velocity is 14 m s ,v   the acceleration is 
29.80 m s ,a  �  and the location of the window is 23m.y     

(a) Using Eq. 2-12c and substituting y for x, we have  
� �

� � � � � �� �

2 2
0 0

22 2
0 0

2   

2 14 m s 2 9.8 m s 23 m 25.43 m s 25 m s

v v a y y

v v a y y

 � � o

 r � �  r � �  |
 

Choose the positive value because the initial direction is upward. 
(b) At the top of its path, the velocity will be 0, and so we can use the initial velocity as found 

above, along with Eq. 2-12c. 

� � � �
� �

22 2
2 2 0

0 0 0 2

0 25.43 m s
2     0 33 m

2 2 9.80 m s
v v

v v a y y y y
a

��
 � � o  �  �  

�
 

(c) We want the time elapsed from throwing (speed 0 25.43m sv  ) to reaching the window (speed 
14 m sv  ).  Using Eq. 2-12a, we have the following.  

0
0 2

14 m s 25.43 m s
    1.166 s 1.2 s

9.80 m s
v v

v v at t
a
� �

 � o    |
�

 

 (d)  We want the time elapsed from the window (speed 0 14 m sv  ) to reaching the street (speed  
25.43 m sv  � ).  Using Eq. 2-12a, we have the following. 

0
0 2

25.43m s 14 m s
    4.0 s

9.80 m s
v v

v v at t
a
� � �

 � o    
�

 

This is the elapsed time after passing the window.  The total time of flight of the baseball from 
passing the window to reaching the street is 4.0s 1.2s 5.2s .�   
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58. (a) Choose upward to be the positive direction, and 0 0y   at the ground.  The rocket has 0 0,v    
23.2 m s ,a   and 950 my   when it runs out of fuel.  Find the velocity of the rocket when it 

runs out of fuel from Eq 2-12c, with x replaced by y. 
� �

� � � �� �

2 2
950 m 0 0

2 2
950 m 0 0

2   

2 0 2 3.2 m s 950 m 77.97 m s 78 m s

v v a y y

v v a y y

 � � o

 r � �  r �  |
 

The positive root is chosen since the rocket is moving upwards when it runs out of fuel. 
(b) The time to reach the 950 m location can be found from Eq. 2-12a. 

950 m 0
950  m 0 950 m 950 m 2

77.97 m s 0
    24.37 s 24 s

3.2 m s
v v

v v at t
a
� �

 � o    |  

(c) For this part of the problem, the rocket will have an initial velocity 0 77.97 m s ,v   an  

acceleration of 29.80 m s ,a  �  and a final velocity of 0v   at its maximum altitude.  The 
altitude reached from the out-of-fuel point can be found from Eq. 2-12c.   

� �
� �
� �

2 2
950 m

22
950 m

max 2

2 950 m   

77.97 m s0
950 m 950 m 950 m 310 m 1260 m

2 2 9.80 m s

v v a y

v
y

a

 � � o

��
 �  �  �  

�

 

 (d) The time for the “coasting” portion of the flight can be found from Eq. 2-12a. 
0

950  m coast coast 2

0 77.97 m s
    7.96 s

9.80 m s
v v

v v at t
a
� �

 � o    
�

 

Thus the total time to reach the maximum altitude is 24.37 s 7.96 s 32.33s 32 s .t  �  |  
(e) For the falling motion of the rocket, 0 0 m s ,v  29.80 m s ,a  �  and the displacement is 

1260 m�  (it falls from a height of 1260 m to the ground).  Find the velocity upon reaching the 
Earth from Eq. 2-12c. 

� �
� � � �� �

2 2
0 0

2 2
0 0

2   

2 0 2 9.80 m s 1260 m 157 m s 160 m s

v v a y y

v v a y y

 � � o

 r � �  r � � �  � | �
  

The negative root was chosen because the rocket is moving downward, which is the negative 
direction. 

(f) The time for the rocket to fall back to the Earth is found from Eq. 2-12a. 
0

0 fall 2

157 m s 0
    16.0 s

9.80 m s
v v

v v at t
a
� � �

 � o    
�

 

Thus the total time for the entire flight is 32.33 s 16.0 s 48.33s 48s .t  �  | . 

 
59. (a) Choose 0y   to be the ground level, and positive to be upward.  Then 0 m,y    

0 15m,y   ,a g �  and 0.83st   describe the motion of the balloon.  Use Eq. 2-12b. 

 � � � �
� �

21
0 0 2

22121
220

0

  

0 15m 9.80 m s 0.83s
14 m s

0.83s

y y v t at

y y at
v

t

 � � o

� � �� �
   �

 

So the speed is 14 m s .  
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 (b) Consider the change in velocity from being released to being at Roger’s room, using Eq. 2-12c. 

   
� �
� �

22 2
2 2 0

0 2

14 m s
2     10 m

2 2 9.8 m s
v v

v v a y y
a

� ��
 � ' o '    

�
 

  Thus the balloons are coming from 2 floors above Roger, and so the  fifth floor . 
 
60. Choose upward to be the positive direction, and 0 0y  to be the height from which the stone is 

thrown.  We have 0 24.0 m s ,v   29.80 m s ,a  �   and 0 13.0 m.y y�   
(a) The velocity can be found from Eq, 2-12c, with x replaced by y. 

� �

� � � �� �

2 2
0 0

22 2
0

2 0   

2 24.0 m s 2 9.80 m s 13.0 m 17.9 m s

v v a y y

v v ay

 � �  o

 r �  r � �  r
 

  Thus the speed is 17.9 m s .v   

 (b) The time to reach that height can be found from Eq. 2-12b. 
� � � �2 21

0 0 2 2 2

2

2 24.0 m s 2 13.0 m
     0   

9.80 m s 9.80 m s

4.898 2.653 0    4.28 s , 0.620 s

y y v t at t t

t t t

�
 � � o � �  o

� �

� �  o  

 

 (c) There are two times at which the object reaches that height – once on the way up � �0.620s ,t    

and once on the way down � �4.28s .t   
 
61. Choose downward to be the positive direction, and 0 0y   to be the height from which the stone is 

dropped.  Call the location of the top of the window ,wy  and the time for the stone to fall from 
release to the top of the window is .wt   Since the stone is dropped from rest, using Eq. 2-12b with y 

substituting for x, we have 2 21 1
0 0 2 20 0 .w wy y v t at gt � �  � �   The location of the bottom of the 

window is 2.2 m,wy �  and the time for the stone to fall from release to the bottom of the window is 
0.33s.wt �   Since the stone is dropped from rest, using Eq. 2-12b, we have the following: 

� �221 1
0 0 2 22.2 m 0 0 0.33s .w wy y v at g t�  � �  � � �   Substitute the first expression for wy  into 

the second expression. 
� �221 1

2 22.2 m 0.33 s     0.515 sw w wgt g t t�  � o   
Use this time in the first equation to get the height above the top of the window from which the stone 
fell. 

� �� �22 21 1
2 2 9.80 m s 0.515 s 1.3mw wy gt    

 
62. Choose upward to be the positive direction, and 0 0y   to be the location of the nozzle.  The initial 

velocity is 0 ,v  the acceleration is 29.80 m s ,a  �  the final location is 1.5m,y  �  and the time of 
flight is 2.0 s.t    Using Eq. 2-12b and substituting y for x gives the following. 

� �� �22121
22 21

0 0 02

1.5 m 9.80 m s 2.0 s
    9.1m s

2.0 s
y at

y y v t at v
t

� � ��
 � � o     
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63. Choose up to be the positive direction, so .a g �   Let the ground be the 0y  location.  As an 
intermediate result, the velocity at the bottom of the window can be found from the data given.  
Assume the rocket is at the bottom of the window at t = 0, and use Eq. 2-12b. 

  21
top of bottom of bottom of pass pass2
window window window window window

 y y v t at � � o  

  � � � � � �221
bottom of bottom of2
window window

10.0 m 8.0 m 0.15s 9.80 m s 0.15s     14.07 m sv v � � � o   

 Now use the velocity at the bottom of the window with Eq. 2-12c to find the launch velocity, 
assuming the launch velocity was achieved at the ground level. 

  

� �

� � � � � � � �

2 2
bottom of launch 0
window

22 2
launch bottom of 0

window

2   

2 14.07 m s 2 9.80 m s 8.0 m 18.84 m s

v v a y y

v v a y y

 � � o

 � �  �  
 

  18.8 m s       |  

 The maximum height can also be found from Eq. 2-12c, using the launch velocity and a velocity of 0 
at the maximum height. 

  

� �

� �
� �

2 2
maximum launch max 0
height

2 2
2maximum launch

height
max 0 2

2   

18.84 m s
18.1m

2 2 9.80 m s

v v a y y

v v
y y

a

 � � o

�
�

 �   
�

 

 
64. Choose up to be the positive direction.  Let the bottom of the cliff be the 0y   location.  The 

equation of motion for the dropped ball is � �2 2 21 1
ball 0 0 2 250.0 m+ 9.80 m s .y y v t at t � �  �   The 

equation of motion for the thrown stone is � � � �2 2 21 1
stone 0 0 2 224.0 m s 9.80 m s .y y v t at tt � �  ��   

Set the two equations equal and solve for the time of the collision.  Then use that time to find the 
location of either object. 

� � � � � �
� �

2 2 2 21 1
ball stone 2 2    50.0 m+ 9.80 m s 24.0 m s 9.80 m s   

50.0 m
50.0 m 24.0 m s     2.083s

24.0 m s

y y t t t

t t

 o �  � � o

 o   
 

� � � �22 21 1
ball 0 0 2 250.0 m 9.80 m s 2.083s 28.7 my y v t at � �  � �   

 
65. For the falling rock, choose downward to be the positive direction, and 0 0y   to be the height from 

which the stone is dropped.  The initial velocity is 0 0 m s ,v   the acceleration is ,a g   the  

displacement is ,y H  and the time of fall is 1.t   Using Eq. 2-12b with y substituting for x, we have 
2 21 1

0 0 12 20 0 .H y v t t gt � �  � �   For the sound wave, use the constant speed equation that 

1

,s

x H
v

t T t
'

  
' �

 which can be rearranged to give 1 ,
s

H
t T

v
 �  where 3.4sT   is the total time 

elapsed from dropping the rock to hearing the sound.  Insert this expression for 1t  into the equation 
for H from the stone, and solve for H. 
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2

2 21 1
2 22

5 2 4

    1 0  
2

4.239 10 1.098 56.64 0    51.7 m, 2.59 10 m
s s s

H g gT
H g T H H gT

v v v

H H H�

 � o � � �  o

u � �  o  u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹  

If the larger answer is used in 1 ,
s

H
t T

v
 �  a negative time of fall results, and so the physically 

correct answer is 52 m .H   

 
66. (a) Choose up to be the positive direction.  Let the throwing height of both objects be the 0y    

location, and so 0 0y   for both objects.  The acceleration of both objects is .a g �  The 

equation of motion for the rock, using Eq. 2-12b, is 2 21 1
rock 0 0  rock 0  rock2 2 ,y y v t at v t gt � �  �  

where t is the time elapsed from the throwing of the rock.  The equation of motion for the ball, 
being thrown 1.00 s later, is � � � �21

ball 0 0  ball 21.00s 1.00sy y v t a t � � � �   

� � � �21
0  ball 21.00s 1.00s .v t tg� � �   Set the two equations equal (meaning the two objects are at 

the same place) and solve for the time of the collision. 
� � � �

� � � � � � � � � � � �
� � � �

221 1
rock ball 0  rock 0  ball2 2

22 2 21 1
2 2

    1.00s 1.00s   

12.0 m s 9.80 m s 18.0 m s 1.00s 9.80 m s 1.00s   

15.8 m s 22.9 m     1.45s

y y v t gt v t g t

t t t t

t t

 o �  � � � o

�  � � � o

 o  

 

 (b) Use the time for the collision to find the position of either object. 
   � �� � � �� �22 21 1

rock 0  rock 2 212.0 m s 1.45s 9.80 m s 1.45s 7.10 my v t gt �  �   

(c) Now the ball is thrown first, and so 21
ball 0  ball 2y v t gt �  and 

� � � �21
rock 0  rock 21.00s 1.00s .y v t g t � � �   Again set the two equations equal to find the time of 

collision. 

   

� � � �
� � � � � � � � � � � �
� �

221 1
ball rock 0  ball 0  rock2 2

22 2 21 1
2 2

    1.00s 1.00s   

18.0 m s 9.80 m s 12.0 m s 1.00s 9.80 m s 1.00s   

3.80 m s 16.9 m    4.45s

y y v t gt v t g t

t t t t

t t

 o �  � � � o

�  � � � o

 o  

 

  But this answer can be deceptive.  Where do the objects collide? 
   � �� � � �� �22 21 1

ball 0  ball 2 218.0 m s 4.45s 9.80 m s 4.45s 16.9 my v t gt �  �  �  

Thus, assuming they were thrown from ground level, they collide below ground level, which 
cannot happen.  Thus they never collide .  

 
67. The displacement is found from the integral of the velocity, over the given time interval. 

  
� � � � � � � � � � � �

2

1

3.1s
3.1s 2 22

1.5s
1.5s

25 18 25 9 25 3.1 9 3.1 25 1.5 9 1.5

    106 m

t t
t

t
t t

x vdt t dt t t
 

 

 
 

'   �  �  � � �

 

ª º ª º¬ ¼ ¬ ¼³ ³
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68. (a) The speed is the integral of the acceleration. 

   

� �
0 0

3 / 2 3 / 2 5/2 3 / 22 2 2
0 03 3 3

              

    7.5 m s 2.0 m s

v t

v

dv
a dv adt dv A tdt dv A tdt

dt

v v At v v At v t

 o  o  o  o

�  o  � o  �

³ ³
 

 (b) The displacement is the integral of the velocity. 

   � �3 / 22
0 3          

dx
v dx vdt dx v At dt

dt
 o  o  � o  

   � � � � � �3 / 2 5 / 2 5/2 5 / 22 2 2 4
0 03 3 5 15

0 m 0

    7.5 m s 2.0 m s
x t

dx v At dt x v t At t t � o  �  �³ ³  

 (c) � � � �5/2 25.0s 2.0 m s 5.0s 4.5 m sa t     

  
� � � �� �
� � � �� � � �� �

3 / 25/22
3

5 / 25/24
15

5.0 s 7.5 m s 2.0 m s 5.0 s 22.41m s 22 m s

5.0 s 7.5 m s 5.0 s 2.0 m s 5.0 s 67.31m 67 m

v t

x t

  �  |

  �  |
 

 
69. (a) The velocity is found by integrating the acceleration with respect to time.  Note that with the  

substitution given in the hint, the initial value of u  is 0 0 .u g kv g �   

   � �            
dv dv

a dv adt dv g kv dt dt
dt g kv

 o  o  � o  
�

 

  Now make the substitution that .u g kv{ �  
1

                      
du dv du du

u g kv dv dt dt kdt
k g kv k u u

{ � o  �  o �  o  �
�

 

� �
0

    ln     ln       

1

u t
u kt
g

g

kt

du u
k dt u kt kt u ge g kv

u g

g
v e

k

�

�

 � o  � o  � o   � o

 �

³ ³
 

(b) As t goes to infinity, the value of the velocity is � �term t
lim 1 .kt gg

v e
k k

�

of
 �    We also note that 

if the acceleration is zero (which happens at terminal velocity), then 0  a g kv �  o  

term .v
g
k

  

70. (a) The train's constant speed is train 5.0 m s ,v   and the location of the empty box car as a  

function of time is given by � �train train 5.0 m s .x v t t    The fugitive has 0 0 m sv   and 
21.2 m sa   until his final speed is 6.0 m s.   The elapsed time during the acceleration is 

0
acc 2

6.0 m s
5.0 s.

1.2 m s
v v

t
a
�

     Let the origin be the location of the fugitive when he starts to 

run.  The first possibility to consider is, “Can the fugitive catch the empty box car before he 
reaches his maximum speed?”  During the fugitive's acceleration, his location as a function of 
time is given by Eq. 2-12b, � �2 2 21 1

fugitive 0 0 2 20 0 1.2 m s .x x v t at t � �  � �   For him to catch 
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the train, we must have � � � �2 21
train fugitive 2    5.0 m s 1.2 m s .x x t t o    The solutions of this 

are 0 s, 8.3s.t    Thus the fugitive cannot catch the car during his 5.0 s of acceleration.   
 

Now the equation of motion of the fugitive changes.  After the 5.0 s of acceleration, he runs 
with a constant speed of 6.0 m s.   Thus his location is now given (for times 5st ! ) by the 
following. 

� � � � � � � � � �221
fugitive 2 1.2 m s 5.0s 6.0 m s 5.0s 6.0 m s 15.0 mx t t � �  �  

So now, for the fugitive to catch the train, we again set the locations equal. 
� � � �train fugitive     5.0 m s 6.0 m s 15.0 m    15.0 sx x t t t o  � o   

(b) The distance traveled to reach the box car is given by the following. 
� � � � � �fugitive 15.0 s 6.0 m s 15.0 s 15.0 m 75 mx t   �   

 
71. Choose the upward direction to be positive, and 0 0y   to be the level from which the object was 

thrown.  The initial velocity is 0v  and the velocity at the top of the path is 0 m s.v    The height at 
the top of the path can be found from Eq. 2-12c with x replaced by y. 

� �
2

2 2 0
0 0 02     

2
v

v v a y y y y
a

�
 � � o �   

From this we see that the displacement is inversely proportional to the acceleration, and so if the 
acceleration is reduced by a factor of 6 by going to the Moon, and the initial velocity is unchanged, 
the displacement increases by a factor of 6 .  

 
72. (a) For the free-falling part of the motion, choose downward to be the positive direction, and  

0 0y   to be the height from which the person jumped.  The initial velocity is 0 0,v   

acceleration is 29.80 m s ,a   and the location of the net is 15.0 m.y    Find the speed upon 
reaching the net from Eq. 2-12c with x replaced by y.   

� �� � � � � �� �2 2 2
0 2      0 2 0 2 9.80 m s 15.0 m 17.1m sv v a y y v a y � � o  r � �  r  

The positive root is selected since the person is moving downward. 
For the net-stretching part of the motion, choose downward to be the positive direction, and 

0 15.0 my  to be the height at which the person first contacts the net.  The initial velocity is 

0 17.1m s ,v   the final velocity is 0,v   and the location at the stretched position is 
16.0 m.y  .  Find the acceleration from Eq. 2-12c with x replaced by y. 

� � � �
� �
� �

222 2
2 2 20

0 0
0

0 17.1m s
2      150 m s

2 2 1.0 m
v v

v v a y y a
y y

��
 � � o    �

�
 

(b) For the acceleration to be smaller, in the above equation we see that the displacement should  
be larger.  This means that the net should be  “loosened” . 

 

73. The initial velocity of the car is � �0

1m s
100 km h 27.8 m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  Choose 0 0x   to be the 

location at which the deceleration begins.  We have 0 m sv   and 230 294 m s .a g �  �  Find 
the displacement from Eq. 2-12c. 
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� � � �
� �

22 2
2 2 0

0 0 0 2 2

0 27.8 m s
2     0 1.31m 1.3m

2 2 2.94 10 m s
v v

v v a x x x x
a

��
 � � o  �  �  |

� u
 

 
74. Choose downward to be the positive direction, and 0 0y   to be at the start of the pelican’s dive.   

The pelican has an initial velocity is 0 0,v   an acceleration of ,a g  and a final location of 
16.0 m.y    Find the total time of the pelican’s dive from Eq. 2-12b, with x replaced by y. 

� �2 21 1
0 0 dive2 2 2

2 16.0 m2
    0 0     1.81 s

9.80 m s
y

y y v t at y at t
a

 � � o  � � o    . 

The fish can take evasive action if he sees the pelican at a time of 1.81 s – 0.20 s = 1.61 s into the 
dive.  Find the location of the pelican at that time from Eq. 2-12b. 

� �� �221 1
0 0 2 20 0 9.80 m s 1.61 s 12.7 my y v t at � �  � �   

Thus the fish must spot the pelican at a minimum height from the surface of the water of   
16.0 m 12.7 m 3.3m�  . 

 
75. (a) Choose downward to be the positive direction, and 0 0y   to be the level from which the  

car was dropped.  The initial velocity is 0 0,v   the final location is ,y H  and the 
acceleration is .a g   Find the final velocity from Eq. 2-12c, replacing x with y. 

� � � �2 2 2
0 0 0 02     2 2v v a y y v v a y y gH � � o  r � �  r . 

The speed is the magnitude of the velocity, 2 .v gH  

(b) Solving the above equation for the height, we have that 
2

2
.v

H
g

   Thus for a collision of  

� � 1m s
50 km h 13.89 m s

3.6 km h
,v   

§ ·
¨ ¸
© ¹

 the corresponding height is as follows.  

� �
� �

22

2

13.89 m s
9.84 m 10 m

2 2 9.80 m s
v

H
g

   |  

(c) For a collision of � � 1m s
100 km h 27.78 m s

3.6 km h
,v   

§ ·
¨ ¸
© ¹

the corresponding height is as  

follow. 
� �
� �

22

2

27.78 m s
39.37 m 40 m

2 2 9.80 m s
v

H
g

   |  

 
76. Choose downward to be the positive direction, and 0 0y   to be at the roof from which the stones 

are dropped.  The first stone has an initial velocity of 0 0v   and an acceleration of .a g   Eqs. 2-
12a and 2-12b (with x replaced by y) give the velocity and location, respectively, of the first stone as 
a function of time. 

2 21 1
0 1 1 0 0 1 12 2                    v v at v gt y y v t at y gt � o   � � o   

The second stone has the same initial conditions, but its elapsed time 1.50s,t �  and so has velocity 
and location equations as follows. 
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� � � �21
2 1 2 121.50s             1.50sv g t y g t �  �  

 The second stone reaches a speed of 2 12.0 m sv   at a time given by the following. 

2
1 2

12.0 m s
1.50s 1.50s 2.72 s

9.80 m s
v

t
g

 �  �   

The location of the first stone at that time is � � � �2221 1
1 12 2 9.80 m s 2.72 s 36.4 m.y gt   . 

The location of the second stone at that time is � �21
2 12 1.50sy g t �   

� � � �221
2 9.80 m s 2.72 1.50s 7.35 m.�   Thus the distance between the two stones is 

1 2 36.4 m 7.35m 29.0 m .y y�  �   

 

77. The initial velocity is � �0

1m s
15km h 4.17 m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  The final velocity is 

� �0

1m s
75km h 20.83m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  The displacement is 0 4.0 km 4000 m.x x�     Find the 

average acceleration from Eq. 2-12c. 

� � � �
� � � �

� �

2 22 2
2 2 2 20

0 0
0

20.83m s 4.17 m s
2     5.2 10 m s

2 2 4000 m
v v

v v a x x a
x x

���
 � � o    u

�
 

 

78. The speed limit is 
1m s

50 km h 13.89 m s
3.6 km h

. 
§ ·
¨ ¸
© ¹

 

(a) For your motion, you would need to travel � �10 15 50 15 70 15 m 175 m� � � � �   to get the 
front of the car all the way through the third intersection.  The time to travel the 175 m is found 
using the distance and the constant speed.   

175 m
    12.60 s

13.89 m s
x

x v t t
v
'

'  o '    '  

Yes , you can make it through all three lights without stopping. 
(b)  The second car needs to travel 165 m before the third light turns red.  This car accelerates from 

0 0 m sv   to a maximum of 13.89 m sv   with 22.0 m s .a   Use Eq. 2-12a to determine 
the duration of that acceleration. 

  0
0 acc 2

13.89 m s 0 m s
    6.94 s

2.0 m s
v v

v v at t
a
� �

 � o     

The distance traveled during that time is found from Eq. 2-12b. 
� � � � � �22 21 1

0 0 acc acc2 2acc
0 2.0 m s 6.94 s 48.2 mx x v t at�  �  �   

Since 6.94 s have elapsed, there are 13 – 6.94 = 6.06 s remaining to clear the intersection.  The 
car travels another 6.06 s at a speed of 13.89 m/s, covering a distance of constant

speed
avgx v t'    

� � � �13.89 m s 6.06 s 84.2 m.   Thus the total distance is 48.2 m + 84.2 m = 132.4 m.  No , 
the car cannot make it through all three lights without stopping. 
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The car has to travel another  32.6 m to clear the third intersection, and is traveling at a speed of 

13.89 m/s.  Thus the care would enter the intersection a time 
32.6 m

2.3s
13.89 m s

x
t

v
'

    after 

the light turns red. 
 
79. First consider the “uphill lie,” in which the ball is being putted down the hill.  Choose 0 0x   to be 

the ball’s original location, and the direction of the ball’s travel as the positive direction.  The final 
velocity of the ball is 0 m s ,v   the acceleration of the ball is 21.8 m s ,a  �  and the displacement 
of the ball will be 0 6.0 mx x�  for the first case and 0 8.0 mx x�  for the second case.  Find the 
initial velocity of the ball from Eq. 2-12c. 

� � � �
� � � �

� � � �

2

2 2 2
0 0 0 0

2

0 2 1.8 m s 6.0 m 4.6 m s
2     2

0 2 1.8 m s 8.0 m 5.4 m s
v v a x x v v a x x

� �  
 � � o  � �  

� �  


°
®
°̄

 

 The range of acceptable velocities for the uphill lie is 4.6 m s  to 5.4 m s ,  a spread of 0.8 m/s. 
 

 Now consider the “downhill lie,” in which the ball is being putted up the hill.  Use a very similar set-
up for the problem, with the basic difference being that the acceleration of the ball is now 

22.8 m s .a  �  Find the initial velocity of the ball from Eq. 2-12c. 

� � � �
� � � �

� � � �

2

2 2 2
0 0 0 0

2

0 2 2.8 m s 6.0 m 5.8 m s
2     2

0 2 2.8 m s 8.0 m 6.7 m s
v v a x x v v a x x

� �  
 � � o  � �  

� �  


°
®
°̄

 

 The range of acceptable velocities for the downhill lie is 5.8 m s  to 6.7 m s ,  a spread of 0.9 m/s. 
 

  Because the range of acceptable velocities is smaller for putting down the hill, more control in 
putting is necessary, and so putting the ball downhill (the “uphill lie”) is more difficult. 

 
80. To find the distance, we divide the motion of the robot into three segments.  First, the initial 

acceleration from rest; second, motion at constant speed; and third, deceleration back to rest. 

  
� � � � � � � �

� � � �

22 2 21 1
1 0 1 1 1 1 12 2

2 1 2 2 1

0 0.20 m s 5.0s 2.5m     0.20 m s 5.0s 1.0 m s

1.0 m s 68s 68 m          1.0 m s

d v t a t v a t

d v t v v

 �  �     

     
 

  
� � � � � � � �22 21 1

3 2 3 1 12 2

1 2 3

1.0 m s 2.5s 0.40 m s 2.5s 1.25m

2.5m 68 m 1.25 m 71.75m 72 m

d v t a t

d d d d

 �  � �  

 � �  � �  |
 

 
81. Choose downward to be the positive direction, and 0 0y   to be at the top of the cliff.  The initial 

velocity is 0 12.5 m s ,v  �  the acceleration is 29.80 m s ,a   and the final location is 75.0 m.y     
 
(a) Using Eq. 2-12b and substituting y for x, we have the following. 

� � � �2 2 21
0 0 2  4.9 m s 12.5 m s 75.0 m 0  2.839 s , 5.390sy y v t at t t t � � o � �  o  �   

The positive answer is the physical answer: 5.39s .t   

(b) Using Eq. 2-12a, we have � � � �2
0 12.5 m s 9.80 m s 5.390s 40.3m s .v v at �  � �   
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(c) The total distance traveled will be the distance up plus the distance down.  The distance down 
will be 75.0 m more than the distance up.  To find the distance up, use the fact that the speed at 
the top of the path will be 0.  Using Eq. 2-12c we have the following.  

� � � �
� �

22 2
2 2 0

0 0 0 2

0 12.5 m s
2      0 7.97 m

2 2 9.80 m s
v v

v v a y y y y
a

� ��
 � � o  �  �  �  

Thus the distance up is 7.97 m, the distance down is 82.97 m, and the total distance traveled is 
90.9 m .  

 
82. (a) In the interval from A to B, it is moving in the negative direction , because its displacement is  

negative. 
 (b) In the interval from A to B, it is speeding up , because the magnitude of its slope is increasing 

(changing from less steep to more steep). 
 (c) In the interval from A to B, the acceleration is negative , because the graph is concave down, 

indicating that the slope is getting more negative, and thus the acceleration is negative. 
 (d) In the interval from D to E, it is moving in the positive direction , because the displacement is  

positive. 
 (e) In the interval from D to E, it is speeding up , because the magnitude of its slope is increasing 

(changing from less steep to more steep). 
 (f) In the interval from D to E, the acceleration is positive , because the graph is concave upward, 

indicating the slope is getting more positive, and thus the acceleration is positive. 
 (g) In the interval from C to D, the object is not moving in either direction .  

The velocity and acceleration are both 0.  

 
83. This problem can be analyzed as a series of three one-dimensional motions:  the acceleration phase, 

the constant speed phase, and the deceleration phase.  The maximum speed of the train is as follows. 

� � 1m s
95km h 26.39 m s

3.6 km h
 

§ ·
¨ ¸
© ¹

 

In the acceleration phase, the initial velocity is 0 0 m s ,v   the acceleration is 21.1m s ,a   and 
the final velocity is 26.39 m s.v    Find the elapsed time for the acceleration phase from Eq. 2-12a. 

0
0 acc 2

26.39 m s 0
    23.99 s

1.1m s
v v

v v at t
a
� �

 � o     

Find the displacement during the acceleration phase from Eq. 2-12b. 
� � � � � �22 21 1

0 0 2 2acc
0 1.1m s 23.99s 316.5mx x v t at�  �  �   

In the deceleration phase, the initial velocity is 0 26.39 m s,v   the acceleration is 22.0 m s ,a  �  
and the final velocity is 0 m s.v    Find the elapsed time for the deceleration phase from Eq. 2-12a. 

0
0 dec 2

0 26.39 m s
    13.20s

2.0 m s
v v

v v at t
a
� �

 � o    
�

 

Find the distance traveled during the deceleration phase from Eq. 2-12b. 
� � � � � � � � � �22 21 1

0 0 2 2dec
26.39 m s 13.20s 2.0 m s 13.20s 174.1mx x v t at�  �  � �   
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The total elapsed time and distance traveled for the acceleration / deceleration phases are: 

� � � �
acc dec

0 0acc dec

23.99 s 13.20 s 37.19 s

316.5 m 174.1m 491m

t t

x x x x

�  �  

� � �  �  
 

(a) If the stations are spaced 1.80 km = 1800 m apart, then there is a total of 9000 m
5

1800 m
  inter-

station segments.  A train making the entire trip would thus have a total of 5 inter-station 
segments and 4 stops of 22 s each at the intermediate stations.  Since 491 m is traveled during 
acceleration and deceleration, 1800 m 491m 1309 m�  of each segment is traveled at an 
average speed of 26.39 m s.v    The time for that 1309 m is given by   x v t'  o'  

constant
speed

1309 m
49.60 s.

26.39 m s
x

t
v
'

'      Thus a total inter-station segment will take 37.19 s + 

49.60 s = 86.79 s.  With 5 inter-station segments of 86.79 s each, and 4 stops of 22 s each, the 
total time is given by � � � �0.8 km 5 86.79s 4 22s 522s 8.7 min .t  �    

(b) If the stations are spaced 3.0 km = 3000 m apart, then there is a total of 
9000 m

3
3000 m

  inter-

station segments.  A train making the entire trip would thus have a total of 3 inter-station 
segments and 2 stops of 22 s each at the intermediate stations.  Since 491 m is traveled during 
acceleration and deceleration, 3000 m 491m 2509 m�  of each segment is traveled at an 
average speed of 26.39 m sv  .  The time for that 2509 m is given by   d vt o  

2509 m
95.07 s.

26.39 m s
d

t
v

     Thus a total inter-station segment will take 37.19 s + 95.07 s = 

132.3 s.  With 3 inter-station segments of 132.3 s each, and 2 stops of 22 s each, the total time is  
� � � �3.0 km 3 132.3s 2 22s 441s 7.3min .t  �    

 
84. For the motion in the air, choose downward to be the positive direction, and 0 0y   to be at the  

height of the diving board.  The diver has 0 0v  (assuming the diver does not jump upward or 

downward), 29.80 m s ,a g   and 4.0 my   when reaching the surface of the water.  Find the 
diver’s speed at the water’s surface from Eq. 2-12c, with x replaced by y. 

 
� �
� � � �� �

2 2
0 0

2 2
0 0

2   

2 0 2 9.80 m s 4.0 m 8.85 m s

v v a y y x

v v a y y

 � � o

 r � �  �  
 

For the motion in the water, again choose down to be positive, but redefine 0 0y  to be at the  
surface of the water.  For this motion, 0 8.85 m sv  , 0v  , and 0 2.0 my y�  .  Find the 
acceleration from Eq. 2-12c, with x replaced by y. 

� � � �
� �
� �

22 2
2 2 2 20

0 0
0

0 8.85 m s
2     19.6 m s 20 m s

2 2 2.0 m
v v

v v a y y a
y y x

��
 � � o    � | �

�
 

 The negative sign indicates that the acceleration is directed upwards. 
 
85. Choose upward to be the positive direction, and the origin to be at the level where the ball was 

thrown.  The velocity at the top of the ball’s path will be 0,v   and the ball will have an 
acceleration of .a g �   If the maximum height that the ball reaches is ,y H  then the relationship 
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between the initial velocity and the maximum height can be found from Eq. 2-12c, with x replaced 
by y. 

� � � �2 2 2 2
0 0 0 02     0 2     2v v a y y v g H H v g � � o  � � o   

 It is given that 0  Bill 0  Joe1.5v v , so � �
� �

� �
� �

2 2
20  Bill 0  BillBill

2 2
Joe 0  Joe 0  Joe

2
1.5 2.25 2.3

2
.v g vH

H v g v
    |  

 
86. The v vs. t graph is found by taking the slope of the x vs. t graph.   

Both graphs are shown here. 
 
 
 
 
 
 
 
 
 
 
 
 

87. The car’s initial speed is � � 1m s
45km h 12.5m s

3.6 km h
.ov   

§ ·
¨ ¸
© ¹

 

Case I:  trying to stop.  The constraint is, with the braking deceleration of the car � �25.8 m s ,a  �  

can the car stop in a 28 m displacement?  The 2.0 seconds has no relation to this part of the problem.  
Using Eq. 2-12c, the distance traveled during braking is as follows. 

� � � �
� �

22 2
0

0 2

0 12.5 m s
13.5 m

2 2 5.8 m s
 v v

x x
a

��
�    

�
o  She can stop the car in time.  

 Case II:  crossing the intersection.  The constraint is, with the given acceleration of the car 

265km h 45km h 1m s
0.9259 m s

6.0 s 3.6 km h
,a

�
  

ª º§ ·§ ·
¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

 can she get through the intersection 

(travel 43 meters) in the 2.0 seconds before the light turns red?  Using Eq. 2-12b, the distance 
traveled during the 2.0 sec is as follows. 

� � � �� � � �� �22 21 1
0 0 2 212.5 m s 2.0 s 0.927 m s 2.0 s 26.9 mx x v t at�  �  �   

She should stop.  

 
88. The critical condition is that the total distance covered by the passing car and the approaching car 

must be less than 400 m so that they do not collide.  The passing car has a total displacement 
composed of several individual parts.  These are: i) the 10 m of clear room at the rear of the truck, ii) 
the 20 m length of the truck, iii) the 10 m of clear room at the front of the truck, and iv) the distance 
the truck travels.  Since the truck travels at a speed of 25 m s,v   the truck will have a 
displacement of � �truck 25 m s .x t'    Thus the total displacement of the car during passing is 

� �passing
car

40 m 25 m s .x t'  �  
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To express the motion of the car, we choose the origin to be at the location of the passing car when 
the decision to pass is made.  For the passing car, we have an initial velocity of 0 25 m sv   and an 

acceleration of 21.0 m s .a    Find passing
car

x'  from Eq. 2-12b. 

� � � �2 21 1
passing 0 0 2 2
car

25 m s 1.0 m scx x x v t at t t'  �  �  �  

Set the two expressions for passing
car

x'  equal to each other in order to find the time required to pass. 

� � � � � � � �2 2 2 21 1
pass pass pass pass2 2

2
pass

40 m 25 m s 25 m s 1.0 m s   40 m 1.0 m s  

80s 8.94 s

t t t t

t

�  � o  o

  
 

 

 Calculate the displacements of the two cars during this time. 
� �� �

� �� �

passing
car

approaching approaching
car car

40 m 25 m s 8.94 s 264 m

25 m s 8.94 s 224 m

x

x v t

'  �  

'    
 

Thus the two cars together have covered a total distance of 488 m, which is more than allowed. 
The car should not pass.  

 
89. Choose downward to be the positive direction, and 0 0y   to be at the height of the bridge.  Agent 

Bond has an initial velocity of 0 0,v   an acceleration of ,a g  and will have a displacement of 
13m 1.5m 11.5m.y  �    Find the time of fall from Eq. 2-12b with x replaced by y. 

� �21
0 0 2 2

2 11.5 m2
    1.532 s

9.80 m s
y

y y v t at t
a

 � � o     

If the truck is approaching with 25 m s ,v   then he needs to jump when the truck is a distance 
away given by � � � �25 m s 1.532 s 38.3 m.d vt     Convert this distance into “poles.” 

� � � �38.3 m 1 pole 25 m 1.53 polesd    

So he should jump when the truck is about 1.5 poles  away from the bridge. 

 
90. Take the origin to be the location where the speeder passes the police car.  The speeder’s constant 

speed is � �speeder

1m s
130 km h 36.1m s

3.6 km h
,v   

§ ·
¨ ¸
© ¹

 and the location of the speeder as a function 

of time is given by � �speeder speeder speeder speeder36.1m s .x v t t    The police car has an initial velocity of 

0 0 m sv   and a constant acceleration of police .a   The location of the police car as a function of time 

is given by Eq. 2-12b: 2 21 1
police 0 police police2 2 .x v t at a t �     

(a) The position vs. time graphs would qualitatively look  
like the graph shown here. 
 

(b) The time to overtake the speeder occurs when the speeder 
 has gone a distance of 750 m.  The time is found using the 
 speeder’s equation from above. 

x

t 1t

Speeder 

Police car 
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� � speeder speeder

750 m
750 m 36.1m s     20.8 s 21s

36.1m s
t t o   |  

(c) The police car’s acceleration can be calculated knowing that the police car also had gone a 
distance of 750 m in a time of 22.5 s. 

� � � �
� �

2 2 21
2 2

2 750 m
750 m 20.8 s     3.47 m s 3.5 m s

20.8 sp pa a o   |  

(d) The speed of the police car at the overtaking point can be found from Eq. 2-12a. 
� � � �2

0 0 3.47 m s 20.8 s 72.2 m s 72 m sv v at �  �  |  

  Note that this is exactly twice the speed of the speeder. 
 

91. The speed of the conveyor belt is given by 1.1 m
 0.44 m min

2.5 min
.d

d v t v
t

 ' o    
'

  The rate 

of burger production, assuming the spacing given is center to center, can be found as follows.  
1 burger 0.44 m burgers

2.9
0.15 m 1 min min

 § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
92. Choose downward to be the positive direction, and the origin to be at the top of the building.  The 

barometer has 0 0,y  0 0,v   and 29.8 m s .a g    Use Eq. 2-12b to find the height of the 
building, with x replaced by y. 

� �
� �� � � �� �

2 2 21 1
0 0 2 2

2 22 21 1
2.0 2.32 2

0 0 9.8 m s

9.8 m s 2.0 s 20 m          9.8 m s 2.3 s 26 mt t

y y v t at t

y y  

 � �  � �

    
 

The difference in the estimates is 6 m.  If we assume the height of the building is the average of the 

two measurements, then the % difference in the two values is   6 m
100 26%

23m
.u   

 
93. (a) The two bicycles will have the same velocity at  

any time when the instantaneous slopes of their 
x vs. t graphs are the same.  That occurs near the 
time t1 as marked on the graph. 

(b) Bicycle A has the larger acceleration, because  
its graph is concave upward, indicating a positive 
acceleration.  Bicycle B has no acceleration because 
its graph has a constant slope. 

 (c) The bicycles are passing each other at the times  
when the two graphs cross, because they both have the same position at that time.  The graph 
with the steepest slope is the faster bicycle, and so is the one that is passing at that instant.  So at 
the first crossing, bicycle B is passing bicycle A.  At the second crossing, bicycle A is passing 
bicycle B. 

(d) Bicycle B has the highest instantaneous velocity at all times until the time t1, where both graphs 
have the same slope.  For all times after t1, bicycle A has the highest instantaneous velocity.  
The largest instantaneous velocity is for bicycle A at the latest time shown on the graph. 

 (e) The bicycles appear to have the same average velocity.  If the starting point of the graph for a  
particular bicycle is connected to the ending point with a straight line, the slope of that line is 
the average velocity.  Both appear to have the same slope for that “average” line. 

 

t 
t1 

x

A
B
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94. In this problem, note that 0a �  and 0.x !   Take your starting position as 0.  Then your position is 
given by Eq. 2-12b, 21

1 2 ,Mx v t at �  and the other car’s position is given by 2 .Ax x v t �   Set the 
two positions equal to each other and solve for the time of collision.  If this time is negative or 
imaginary, then there will be no collision. 

  

� �

� � � � � �

� � � � � �

2 21 1
1 2 2 2

2 1
2

1
2

2
2 1

2

        0

4

2

No collision:  4 0    
2

M A M A

A M M A

M A
M A

x x v t at x v t at v v t x

v v v v a x
t

a

v v
v v a x x

a

 o �  � o � � �  

� r � � �
 

�
� � � � o !

�

 

 
95. The velocities were changed from km/h to m/s by multiplying the conversion factor that 1 km/hr = 

1/3.6 m/s. 
(a) The average acceleration for each interval is calculated by ,a v t ' '  and taken to be the 

acceleration at the midpoint of the time interval.  In the spreadsheet, 1
2

1

1

.n n
n

n n

v v
a

t t
�

�
�

�
 

�
  The 

accelerations are shown in the table below. 
(b) The position at the end of each interval is calculated by  � � � �1

1 1 12 .n n n n n nx x v v t t� � � � � �  
This can also be represented as 0 .x x v t � '   These are shown in the table below. 

   t  (s)   v  (km/h)    v  (m/s)    t  (s) a  (m/s2)    t  (s) x  (m)
0.0 0.0 0.0 0.0 0.00
0.5 6.0 1.7 0.25 3.33 0.5 0.42
1.0 13.2 3.7 0.75 4.00 1.0 1.75
1.5 22.3 6.2 1.25 5.06 1.5 4.22
2.0 32.2 8.9 1.75 5.50 2.0 8.00
2.5 43.0 11.9 2.25 6.00 2.5 13.22
3.0 53.5 14.9 2.75 5.83 3.0 19.92
3.5 62.6 17.4 3.25 5.06 3.5 27.99
4.0 70.6 19.6 3.75 4.44 4.0 37.24
4.5 78.4 21.8 4.25 4.33 4.5 47.58
5.0 85.1 23.6 4.75 3.72 5.0 58.94  

 

(c) The graphs are shown below.  The spreadsheet used for this problem can be found on the Media 
 Manager, with filename “PSE4_ISM_CH02.XLS,” on tab “Problem 2.95c.” 
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96. For this problem, a spreadsheet was designed.  The columns of the spreadsheet are time, 
acceleration, velocity, and displacement.  The time starts at 0 and with each interval is incremented 
by 1.00 s.  The acceleration at each time is from the data 
given in the problem.  The velocity at each time is found 
by multiplying the average of the accelerations at the 
current time and the previous time, by the time interval, 
and then adding that to the previous velocity.  Thus 

� � � �1
1 1 12 .n n n n n nv v a a t t� � � � � �   The displacement from 

the starting position at each time interval is calculated by a 
constant acceleration model, where the acceleration is as 
given above.  Thus the positions is calculated as follows.  

� � � �> @� �21 1
1 1 1 12 2n n n n n n n n nx x v t t a a t t� � � � � � � � �   

The table of values is reproduced here. 
 (a) � �17.00 30.3m sv   

 (b) � �17.00 305mx   

The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH02.XLS,” 
on tab “Problem 2.96.” 

 
97. (a) For each segment of the path,  

the time is given by the distance divided 
by the speed. 

   
� �

poolland
land pool

land pool

22

 
R S

dd
t t t

v v

D d xx
v v

 �  �

� �
 �

  

 (b) The graph is shown here.  The minimum  
time occurs at a distance along the pool of 
about 6.8m .x   

  An analytic differentiation to solve for the minimum point gives x = 6.76 m. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS,” on tab “Problem 2.97b.” 

 

  t  (s) a  (m/s2) v  (m/s)    x  (m)
0.0 1.25 0.0 0
1.0 1.58 1.4 1
2.0 1.96 3.2 3
3.0 2.40 5.4 7
4.0 2.66 7.9 14
5.0 2.70 10.6 23
6.0 2.74 13.3 35
7.0 2.72 16.0 50
8.0 2.60 18.7 67
9.0 2.30 21.1 87

10.0 2.04 23.3 109
11.0 1.76 25.2 133
12.0 1.41 26.8 159
13.0 1.09 28.0 187
14.0 0.86 29.0 215
15.0 0.51 29.7 245
16.0 0.28 30.1 275
17.0 0.10 30.3 305
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CHAPTER 3:  Kinematics in Two or Three Dimensions; Vectors 
 
Responses to Questions 
 
1. No.  Velocity is a vector quantity, with a magnitude and direction.  If two vectors have different 

directions, they cannot be equal. 
 
2. No. The car may be traveling at a constant speed of 60 km/h and going around a curve, in which case 

it would be accelerating. 
 
3. Automobile races that begin and end at the same place; a round-trip by car from New York to San 

Francisco and back; a balloon flight around the world. 
 
4. The length of the displacement vector is the straight-line distance between the beginning point and 

the ending point of the trip and therefore the shortest distance between the two points. If the path is a 
straight line, then the length of the displacement vector is the same as the length of the path. If the 
path is curved or consists of different straight line segments, then the distance from beginning to end 
will be less than the path length. Therefore, the displacement vector can never be longer than the 
length of the path traveled, but it can be shorter. 

 
5. The player and the ball have the same displacement. 
 
6. V is the magnitude of the vector V

G
; it is not necessarily larger than the magnitudes V1 and V2. For 

instance, if 1V
G

 and 2V
G

 have the same magnitude as each other and are in opposite directions, then V 
is zero. 

 
7. The maximum magnitude of the sum is 7.5 km, in the case where the vectors are parallel.  The 

minimum magnitude of the sum is 0.5 km, in the case where the vectors are antiparallel. 
 
8. No. The only way that two vectors can add up to give the zero vector is if they have the same 

magnitude and point in exactly opposite directions.  However, three vectors of unequal magnitudes 
can add up to the zero vector. As a one-dimensional example, a vector 10 units long in the positive x 
direction added to two vectors of 4 and 6 units each in the negative x direction will result in the zero 
vector. In two dimensions, consider any three vectors that when added form a triangle. 

 
9. (a) Yes.  In three dimensions, the magnitude of a vector is the square root of the sum of the squares  

  of the components.  If two of the components are zero, the magnitude of the vector is equal to 
the magnitude of the remaining component. 

 (b) No. 
 
10. Yes. A particle traveling around a curve while maintaining a constant speed is accelerating because 

its direction is changing. A particle with a constant velocity cannot be accelerating, since the velocity 
is not changing in magnitude or direction. 

 
11. The odometer and the speedometer of the car both measure scalar quantities (distance and speed, 

respectively). 
 
12. Launch the rock with a horizontal velocity from a known height over level ground. Use the equations 

for projectile motion in the y-direction to find the time the rock is in the air. (Note that the initial 
velocity has a zero y-component.) Use this time and the horizontal distance the rock travels in the 
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equation for x-direction projectile motion to find the speed in the x-direction, which is the speed the 
slingshot imparts. The meter stick is used to measure the initial height and the horizontal distance the 
rock travels.   

 
13. No. The arrow will fall toward the ground as it travels toward the target, so it should be aimed above 

the target. Generally, the farther you are from the target, the higher above the target the arrow should 
be aimed, up to a maximum launch angle of 45º. (The maximum range of a projectile that starts and 
stops at the same height occurs when the launch angle is 45º.) 

 
14. As long as air resistance is negligible, the horizontal component of the projectile’s velocity remains 

constant until it hits the ground. It is in the air longer than 2.0 s, so the value of the horizontal 
component of its velocity at 1.0 s and 2.0 s is the same. 

 
15. A projectile has the least speed at the top of its path. At that point the vertical speed is zero. The 

horizontal speed remains constant throughout the flight, if we neglect the effects of air resistance. 
 
16. If the bullet was fired from the ground, then the y-component of its velocity slowed considerably by 

the time it reached an altitude of 2.0 km, because of both acceleration due to gravity (downward) and 
air resistance. The x-component of its velocity would have slowed due to air resistance as well. 
Therefore, the bullet could have been traveling slowly enough to be caught! 

 
17. (a) Cannonball A, because it has a larger initial vertical velocity component. 
 (b) Cannonball A, same reason. 
 (c) It depends.  If șA < 45º, cannonball A will travel farther.  If șB > 45º, cannonball B will travel 

farther.  If  șA > 45º and șB < 45º, the cannonball whose angle is closest to 45º will travel 
farther. 

 
18. (a) The ball lands back in her hand. 

(b) The ball lands behind her hand. 
(c) The ball lands in front of her hand. 
(d) The ball lands beside her hand, to the outside of the curve. 
(e) The ball lands behind her hand, if air resistance is not negligible. 

  
19. This is a question of relative velocity. From the point of view of an observer on the ground, both 

trains are moving in the same direction (forward), but at different speeds. From your point of view 
on the faster train, the slower train (and the ground) will appear to be moving backward. (The 
ground will be moving backward faster than the slower train!) 

 
20. The time it takes to cross the river depends on the component of velocity in the direction straight 

across the river. Imagine a river running to the east and rowers beginning on the south bank. Let the 
still water speed of both rowers be v. Then the rower who heads due north (straight across the river) 
has a northward velocity component v.  The rower who heads upstream, though, has a northward 
velocity component of less than v. Therefore, the rower heading straight across reaches the opposite 
shore first. (However, she won’t end up straight across from where she started!)  

 
21. As you run forward, the umbrella also moves forward and stops raindrops that are at its height above 

the ground. Raindrops that have already passed the height of the umbrella continue to move toward 
the ground unimpeded. As you run, you move into the space where the raindrops are continuing to 
fall (below the umbrella). Some of them will hit your legs and you will get wet. 
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Solutions to Problems 
 
1. The resultant vector displacement of the car is given by 

R west south-
west

. �D D D
G G G

  The westward displacement is  

225 78cos 45 280.2 km� q   and the south displacement is 

78sin 45 55.2 kmq  .  The resultant displacement has a magnitude of 2 2280.2 55.2 286km .�    

The direction is 1tan 55.2 280.2 11 south of west .T �  q  

 
2. The truck has a displacement of � �28 26 2� �   blocks north and 16 blocks 

east.  The resultant has a magnitude of 2 22 16 16.1blocks 16 blocks�  |  

and a direction of 1tan 2 16 7  north of east .�  q  
 
 
 
3. Given that 7.80xV   units and 6.40yV  �  units, the magnitude of V

G
 is 

given by � �22 2 27.80 6.40 10.1units .x yV V V �  � �    The direction is 

given by 1 6.40
tan 39.4

7.80
,T � �

  � q  39.4q  below the positive x-axis. 

 
 
4. The vectors for the problem are drawn approximately to scale.  The 

resultant has a length of 17.5m  and a direction 19q  north of east. If 

calculations are done, the actual resultant should be 17 m at 23o north of 
east. 

 
 
 
 
 
5. (a) See the accompanying diagram 

(b) 24.8cos23.4 22.8 units      24.8sin 23.4 9.85 unitsx yV V � q  �  q   

 (c) � � � �2 22 2 22.8 9.85 24.8 unitsx yV V V �  � �   

1 9.85
tan 23.4 above the  axis

22.8
xT �  q �   

 
6. We see from the diagram that ˆ6.8 A i

G
 and ˆ5.5 . �B i

G
 

(a) � �ˆ ˆ ˆ6.8 5.5 1.3 . �  � �  C A B i i i
G G G

  The magnitude is  1.3 units , and the direction is +x . 

(b) � �ˆ ˆ ˆ6.8 5.5 12.3 . �  � �  C A B i i i
G G G

  The magnitude is  12.3 units , and the direction is +x . 

(c) � � ˆ ˆ ˆ5.5 6.8 12.3 . �  � �  �C B A i i i
G GG

  The magnitude is  12.3 units , and the direction is –x. 

RD
Gsouth-

west
D
G

westD
G

T

northD
G

eastD
G

southD
G

RD
G

V
G

xV
Gy

x
T

yV
G

23.4q

xV
G

V
G

yV
G

1V
G

2V
G

3V
G

R 1 2

3       

 �

�

V V V

V

G G G

G

RV
G
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7. (a) � � � �north 835 km h cos 41.5 625 km hv  q   � � � �west 835 km h sin 41.5 553 km hv  q    

(b) � � � �north north 625 km h 2.50 h 1560 kmd v t'     

� � � �west west 553 km h 2.50 h 1380 kmd v t'     
 

8. (a) 2 2 1
1 1

8.0ˆ ˆ6.0 8.0     6.0 8.0 10.0     tan 127
6.0

V T � � �  �    q
�

V i j
G

 

(b) 2 2 1
2 2

5.0ˆ ˆ4.5 5.0     4.5 5.0 6.7     tan 312
4.5

V T � �
 �  �    qV i j

G
 

(c) � � � �1 2
ˆ ˆ ˆ ˆ ˆ ˆ6.0 8.0 4.5 5.0 1.5 3.0 � � �  � �� �V V i j i j i j

G G
 

 2 2 1
1 2

3.0
1.5 3.0 3.4     tan 117

1.5
T ��    q

�
�  V V

G G
 

(d) � � � �2 1
ˆ ˆ ˆ ˆ ˆ ˆ4.5 5.0 6.0 8.0 10.5 13.0 � � �  �� �V V i j i j i j

G G
 

 2 2 1
2 1

13.0
10.5 13.0 16.7     tan 309

10.5
T � �

�    q�  V V
G G

 

 
9. (a) � � � � � �1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0 8.0 1.0 1.0 2.0 4.0 3.0 3.0� �  � � � � � �  �V V V i j i j i j i j
G G G

 

  2 2 1
1 2 3

3.0
3.0 3.0 4.2     tan 315

3.0
T � �

�    q� �  V V V
G G G

 

(b) � � � � � �1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0 8.0 1.0 1.0 2.0 4.0 1.0 5.0�  � � � � �  �� �V V V i j i j i j i j

G G G
 

  2 2 1
1 2 3

5.0
1.0 5.0 5.1     tan 280

1.0
T � �

�    q� �  V V V
G G G

 

 
10. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A q   q   

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

 � q  �  q  

 q   q  �
 

 (a) � � � �38.85 14.82 0.0 24.03 24.0
x
 � � �   A + B + C

G GG
      

� � � �20.66 21.97 31.0 11.63 11.6
y
 � � �   A + B + C

G GG
 

 (b) � � � �2 224.03 11.63 26.7 �  A + B + C
G GG

  1 11.63
tan 25.8

24.03
T �  q  

 
11. 44.0cos 28.0 38.85         44.0sin 28.0 20.66x yA A q   q   

26.5cos56.0 14.82     26.5sin 56.0 21.97x yB B � q  �  q   

(a) � � � � � �14.82 38.85 53.67        21.97 20.66 1.31
x y

�  � �  � �  �  B A B A
G GG G

 

Note that since the x component is negative and the y component is positive, the vector is in the 
2nd quadrant. 

ˆ ˆ53.7 1.31�  � �B A i j
GG
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� � � �2 2 1 1.31
53.67 1.31 53.7       tan 1.4  above  axis

53.67B A xT �
��  � �    q �

�
B A

GG
 

 (b) � � � � � �38.85 14.82 53.67        20.66 21.97 1.31
x y

�  � �  �  �  �A B A B
G GG G

 

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

� � � �2 2 1

ˆ ˆ53.7 1.31

1.31
53.67 1.31 53.7      tan 1.4  below  axis

53.7
xT �

�  �

�
�  � �    q �

A B i j

A B

G G

G G   

  Comparing the results shows that � �.�  � �B A A B
G GG G

 
 
12. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A q   q   

 31.0 cos 270 0.0            31.0sin 270 31.0x yC C q   q  �  

� � � � � �38.85 0.0 38.85        20.66 31.0 51.66

ˆ ˆ38.8 51.7

x y
�  �  �  � �  

�  �

A C A C

A C i j

G G G G

G G  

� � � �2 2 1 51.66
38.85 51.66 64.6          tan 53.1

38.85
T ��  �    qA C

G G
 

 
13. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A q   q   

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

 � q  �  q  

 q   q  �
 

(a) � � � � � � � �2 14.82 2 38.85 92.52     2 21.97 2 20.66 19.35
x y

�  � �  � �  �  �B A B A
G GG G

 

Note that since both components are negative, the vector is in the 3rd quadrant. 

� � � �2 2 1

ˆ ˆ2 92.5 19.4

19.35
2 92.52 19.35 94.5      tan 11.8 below  axis

92.52
xT �

�  � �

�
�  � � �    q �

�

B A i j

B A

GG

GG  

 (b) � � � � � � � �2 3 2 2 38.85 3 14.82 2 0.0 122.16
x

� �  � � �  A B C
G GG

 

� � � � � � � �2 3 2 2 20.66 3 21.97 2 31.0 86.59
y

� �  � � �  �A B C
G GG

 

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

� � � �2 2 1

ˆ ˆ2 3 2 122 86.6

86.59
2 3 2 122.16 86.59 150      tan 35.3 below  axis

122.16
xT �

� �  �

�
� �  � �    q �

A B C i j

A B C

G GG

G GG  

 
14. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A q   q   

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

 � q  �  q  

 q   q  �
 

 (a) � � � �38.85 14.82 0.0 53.67
x

� �  � � �  A B C
G GG
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� � � �20.66 21.97 31.0 32.31
y

� �  � � �  �A B C
G GG

 

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

� � � �2 2 1

ˆ ˆ53.7 32.3

32.31
53.67 32.31 62.6      tan 31.0 below  axis

53.67
xT �

� �  �

�
� �  � �    q �

A B C i j

A B C

G GG

G GG  

(b) � � � �38.85 14.82 0.0 24.03
x

� �  � � �  A B C
G GG

 

� � � �20.66 21.97 31.0 73.63
y

� �  � � �  A B C
G GG

 

� � � �2 2 1

ˆ ˆ24.0 73.6

73.63
24.03 73.63 77.5      tan 71.9

24.03
T �

� �  �

� �  �    q

A B C i j

A B C

G GG

G GG  

 (c) � � � �0.0 38.85 14.82 24.03
x

� �  � � �  �C A B
G G G

 

� � 31.0 20.66 21.97 73.63
y

� �  � � �  �C A B
G G G

 

Note that since both components are negative, the vector is in the 3rd quadrant. 

� � � �2 2 1

ˆ ˆ24.0 73.6

73.63
24.03 73.63 77.5      tan 71.9 below  axis

24.03
xT �

� �  � �

�
� �  � � �    q �

�

C A B i j

C A B

G G G

G G G  

  Note that the answer to (c) is the exact opposite of the answer to (b). 
 
15. The x component is negative and the y component is positive, since the summit is to the west of 

north.  The angle measured counterclockwise from the positive x axis would be 122.4o.  Thus the 
components are found to be as follows. 

� � � � � �2 2 2

4580 cos122.4 2454 m            4580sin122.4 3867 m      2450 m

ˆ ˆ ˆ2450 m 3870 m 2450 m         2454 4580 2450 5190 m

x y z q  �  q   

 � � �  � � �  r i j k rG G  

 
16. (a) Use the Pythagorean theorem to find the possible x components. 

� �22 2 290.0 55.0       5075     71.2 unitsx x x � � o  o  r  

 (b) Express each vector in component form, with V
G

 the vector to be determined. 

   

� � � �
� �

ˆ ˆ ˆ ˆ ˆ ˆ71.2 55.0 80.0 0.0   

80.0 71.2 151.2        55.0

ˆ ˆ151.2 55.0

x y

x y

V V

V V

� � �  � � o

 � �  �  

 � �

i j i j i j

V i j
G

 

 
17. Differentiate the position vector in order to determine the velocity, and differentiate the velocity in 

order to determine the acceleration. 

  � � � �2ˆ ˆ ˆˆ ˆ9.60 8.85 1.00 m    9.60 2.00 m s   
d

t t t
dt

 � � o   � o
r

r i j k v i k
G

G G  

  2ˆ2.00 m s
d
dt

  �
v

a k
GG  
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18. The average velocity is found from the displacement at the two times. 

  

� � � �

� � � �� � � � � �� �

2 1
avg

2 1

2 2ˆ ˆ ˆ ˆˆ ˆ9.60 3.00 8.85 3.00 m 9.60 1.00 8.85 1.00 m
      

2.00s

t t
t t
�

 
�

� � � � �
 
ª º ª º¬ ¼ ¬ ¼

r r
v

i j k i j k

G G
G

 

  � �ˆ ˆ      9.60 4.00 m s �i k  

 The magnitude of the instantaneous velocity is found from the velocity vector. 

  

� �
� � � � � �� � � �

� � � �2 2

ˆ ˆ9.60 2.00 m s

ˆ ˆˆ ˆ2.00 9.60 2.00 2.00 m s 9.60 4.00 m s   

9.60 4.00 m s 10.4 m s

d
t

dt

v

  �

 �  � o

 �  

r
v i k

v i k i k

G
G

G  

Note that, since the acceleration of this object is constant, the average velocity over the time interval 
is equal to the instantaneous velocity at the midpoint of the time interval. 

 
19. From the original position vector, we have 29.60 , 8.85, 1.00 .x t y z t   �   Thus 

2
2 , 8.85.

9.60
x

z ax y �  �  § ·
¨ ¸
© ¹

  This is the equation for a  parabola  in the x-z plane that has its 

vertex at coordinate (0,8.85,0) and opens downward. 
 
20. (a) Average velocity is displacement divided by elapsed time.  Since the displacement is not  

known, the  average velocity cannot be determined .  A special case exists in the case of 
constant acceleration, where the average velocity is the numeric average of the initial and final 
velocities.  But this is not specified as motion with constant acceleration, and so that special 
case cannot be assumed.  

(b) Define east as the positive x-direction, and north as the positive y-direction.  The average 
acceleration is the change in velocity divided by the elapsed time. 

  
� � 2 2

avg

ˆ ˆ27.5 m s 18.0 m s ˆ ˆ3.44 m s 2.25 m s
8.00st

� �'
   �
'

i jv
a i j

GG  

  � � � �2 22 2 2 1
avg

2.25
3.44 m s 2.25 m s 4.11m s     tan 33.2

3.44
T � �    qaG  

(c) Average speed is distance traveled divided by elapsed time.  Since the distance traveled is not 
known, the  average speed cannot be determined . 

 
21. Note that the acceleration vector is constant, and so Eqs. 3-13a and 3-13b are applicable.  Also 

0 0 vG  and 0 0. rG  

(a) � �0
ˆ ˆ4.0 3.0 m s     4.0 m s  , 3.0 m sx yt t t v t v t �  � o   v v a i jGG G  

 (b) � � � �2 22 2 4.0 m s 3.0 m s 5.0 m sx yv v v t t t �  �   

 (c) � �2 2 21
0 0 2

ˆ ˆ2.0 1.5 mt t t t � �  �r r v a i jG G GG  

 (d) � � � � � � � � � �ˆ ˆ2.0 8.0 m s  , 2.0 6.0 m s  , 2.0 10.0 m s  , 2.0 8.0 6.0 mx yv v v    �r i jG  
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22. Choose downward to be the positive y direction for this problem.  Her acceleration is directed along 
the slope. 
(a) The vertical component of her acceleration is directed downward, and its magnitude will be  

given by � �2 o 2sin 1.80 m s sin 30.0 0.900 m s .ya a T    

(b) The time to reach the bottom of the hill is calculated from Eq. 2-12b, with a y displacement of  
325 m, 0 0,yv   and 20.900 m s .ya     

� � � �
� �

� �

22 21 1
0 0 2 2

2

    325 m 0 0 0.900 m s   

2 325 m
26.9 s

0.900 m s

y yy y v t a t t

t

 � � o  � � o

  
 

 
23. The three displacements for the ant are shown in the diagram, 

along with the net displacement.  In x and y components, they are 
ˆ10.0cm ,� i  � �ˆ ˆ10.0cos30.0 10.0sin 30.0 cm,q � qi j , and 

� �ˆ ˆ10.0cos100 10.0sin100 cm.q � qi j   To find the average velocity, 

divide the net displacement by the elapsed time. 
 (a) � �ˆ ˆ10.0cm 10.0cos30.0 10.0sin 30.0 cmˆ'  � � q � qr i jiG  

� � � �
� � � �avg

ˆ ˆ ˆ ˆ          10.0cos100 10.0sin100 cm 16.92 14.85 cm

ˆ ˆ16.92 14.85 cm ˆ ˆ3.16 2.78 cm s
2.00s 1.80s 1.55st

� q � q  �

�'
   �
' � �

i j i j

i jr
v i j

G
G  

 (b) � � � �2 2
avg 3.16cm s 2.78cm s 4.21cm s �  vG      1 1 2.78

tan tan 41.3
3.16

y

x

v
v

T � �   q  

 
24. Since the acceleration vector is constant, Eqs. 3-13a and 3-13b are applicable.  The particle reaches 

its maximum x coordinate when the x velocity is 0.  Note that 0
ˆ5.0 m s v iG  and 0 0. rG  

  � �0
ˆ ˆ ˆ5.0 m s 3.0 4.5 m st t t �  � � �v v a i i jGG G  

  

� � � �

� � � � � �
� �

� � � � � �

max max 2

max

2 2 21 1
0 0 2 2

21
max 2

5.0 m s
5.0 3.0 m s     0 5.0 3.0 m s     1.67s

3.0 m s

ˆ ˆ ˆ ˆ5.0 m s 3.0 1.67 4.5 1.67 m s 7.5m s

ˆ ˆ ˆ5.0 m 3.0 4.5 m

ˆ ˆ5.0 1.67 m s 3.0 1.67

x x x x

x

x

v t v t t

t t

t t t t t

t

� �

�

�

 � o   � o   

 � � �  

 � �  � � �

 � � �

ª º¬ ¼v i i j j

r r v a i i j

r i i

G

G G GG

G � �2 ˆ ˆ ˆ4.5 1.67 m 4.2 m 6.3 m �ª º¬ ¼j i j

 

 
25. (a) Differentiate the position vector, � �2 3ˆ ˆ3.0 6.0 mt t �r i jG , with respect to time in order to find  

the velocity and the acceleration. 

   � � � �2 2ˆ ˆ ˆ ˆ6.0 18.0 m s 6.0 36.0 m s       d d
t t t

dt dt
  �   �

r v
v i j a i j

G GGG  

 
 

o30

o70
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 (b) � � � � � � � �2 3ˆ ˆ ˆ ˆ2.5s 3.0 2.5 6.0 2.5 m 19 94 m �  �ª º¬ ¼r i j i jG  

� � � � � � � �2ˆ ˆ ˆ ˆ2.5s 6.0 2.5 18.0 2.5 m s 15 110 m s �  �ª º¬ ¼v i j i jG  

 
26. The position vector can be found from Eq. 3-13b, since the acceleration vector is constant.  The time 

at which the object comes to rest is found by setting the velocity vector equal to 0.  Both components 
of the velocity must be 0 at the same time for the object to be at rest.  

� � � � � � � �0
ˆ ˆ ˆ ˆ ˆ ˆ14 7.0 m s 6.0 3.0 m s 14 6.0 7.0 3.0 m st t t t t �  � � � �  � � � � �ª º¬ ¼v v a i j i j i jGG G  

� � � � � �

� �

� �

rest

7
3rest

7
3rest

ˆ ˆ ˆ ˆ0.0 0.0 m s 14 6.0 7.0 3.0 m s   

14
0.0 14 6.0     s s

6.0
7.0

0.0 7.0 3.0     s s
3.0

x

y

t t

v t t

v t t

 �  � � � � � o

  � � o   

  � � o   

ª º¬ ¼v i j i jG

 

Since both components of velocity are 0 at 7
3 st  , the object is at rest at that time.  

  

� � � � � �
� � � �� � � � � �� �
� � � �� � � � � �� �

� � � �

2 2 21 1
0 0 2 2

2 21
2

2 21 1
2 2

7 7 7 7
3 3 3 3

7 7 7 7
3 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ0.0 0.0 m 14 7.0 m 6.0 3.0 m

ˆ ˆ ˆ ˆ  14 7.0 m 6.0 3.0 m

ˆ ˆ  14 6.0 m 7.0 3.0 m

ˆ ˆ ˆ ˆ  16.3 8.16 m 16.3 8.2 m

t t t t t t � �  � � � � � �

 � � � �

 � � � � �

 � � | � �

r r v a i j i j i j

i j i j

i j

i j i j

G G GG

 

 
27. Find the position at t = 5.0 s, and then subtract the initial point from that new location. 
  � � � � � � � �2 3ˆ ˆ ˆ ˆ5.0 5.0 5.0 6.0 5.0 m 7.0 3.0 5.0 m 175 m 368 m � � �  �ª º ª º¬ ¼ ¬ ¼r i j i jG  

  � � � �ˆ ˆ ˆ ˆ ˆ ˆ175.0 m 368.0m 0.0 m 7.0m 175 m 375m'  � � �  �r i j i j i jG  

� � � �2 2 1 375
175 m 375 m 414 m      tan 65.0

175
T � �

'  � �    � qrG  

 
28. Choose downward to be the positive y direction.  The origin will be at the point where the tiger leaps 

from the rock.  In the horizontal direction, 0 3.2 m sxv   and 0.xa    In the vertical direction, 

0 0,yv   29.80 m s ,ya   0 0,y   and the final location 7.5 m.y    The time for the tiger to reach 
the ground is found from applying Eq. 2-12b to the vertical motion. 

� � � �2 2 21 1
0 0 2 2 2

2 7.5m
    7.5m 0 0 9.80 m s     1.24 sec

9.80 m sy yy y v t a t t t � � o  � � o    

The horizontal displacement is calculated from the constant horizontal velocity. 
� � � �3.2 m s 1.24 sec 4.0 mxx v t'     

 
29. Choose downward to be the positive y direction.  The origin will be at the point where the diver 

dives from the cliff.  In the horizontal direction, 0 2.3 m sxv   and 0.xa    In the vertical direction, 

0 0,yv   29.80 m s ,ya   0 0,y   and the time of flight is 3.0 s.t    The height of the cliff is found 
from applying Eq. 2-12b to the vertical motion. 
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� � � �22 21 1
0 0 2 2      0 0 9.80 m s 3.0 s 44 my yy y v t a t y � � o  � �   

The distance from the base of the cliff to where the diver hits the water is found from the horizontal 
motion at constant velocity: 

� � � �2.3 m s 3.0 s 6.9 mxx v t'     

 

30. Apply the range formula from Example 3-10:  
2
0 0sin 2 .v

R
g

T
   If the launching speed and angle are 

held constant, the range is inversely proportional to the value of .g   The acceleration due to gravity 
on the Moon is 1/6th that on Earth. 

2 2
0 0 0 0

Earth Moon Earth Earth Moon Moon
Earth Moon

sin 2 sin 2
         

v v
R R R g R g

g g
T T

  o   

Earth
Moon Earth Earth

Moon

6
g

R R R
g

   

Thus on the Moon, the person can jump 6 times farther .  
 
31. Apply the range formula from Example 3-10.   

� � � �
� �

2
0 0

2

0 22
0

1
0 0

sin 2
   

2.5 m 9.80 m s
sin 2 0.5799

6.5 m s

2 sin 0.5799      18 ,72

v
R

g

Rg
v

T

T

T T�

 o

   

 o  q q
 
 
There are two angles because each angle gives the 
same range.  If one angle is 45T G q � , then 

45T G q �  is also a solution.  The two paths are shown in the graph. 
 
32. Choose downward to be the positive y direction.  The origin will be at the point where the ball is 

thrown from the roof of the building.  In the vertical direction, 0 0,yv   29.80 m s ,ya   0 0,y   
and the displacement is 9.0 m.  The time of flight is found from applying Eq. 2-12b to the vertical 
motion. 

� � � �2 2 21 1
0 0 2 2 2

2 9.0 m
      9.0 m 9.80 m s       1.355 sec

9.80 m sy yy y v t a t t t � � o  o    

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant 
velocity. 

     9.5 m 1.355s 7.0 m sx xx v t v x t'  o  '    

 
33. Choose the point at which the football is kicked the origin, and choose upward to be the positive y 

direction.  When the football reaches the ground again, the y displacement is 0.  For the football, 
� �0 18.0 sin 38.0 m s ,yv  q  29.80 m s ,ya  � and the final y velocity will be the opposite of the 

starting y velocity.  Use Eq. 2-12a to find the time of flight. 

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5
horizontal distance (m)

ve
rti

ca
l d

is
ta

nc
e 

(m
)



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

58 

� � � �0
0 2

18.0sin 38.0 m s 18.0sin 38.0 m s
      2.26s

9.80 m s
y y

y y

v v
v v at t

a
� � q � q

 � o    
�

 

 
34. Choose downward to be the positive y direction.  The origin is the point where the ball is thrown 

from the roof of the building.  In the vertical direction 0 0,yv   0 0,y   and 29.80 m s .ya    The 
initial horizontal velocity is 23.7 m/s and the horizontal range is 31.0 m.  The time of flight is found 
from the horizontal motion at constant velocity. 

     31.0 m 23.7 m s 1.308 sx xx v t t x v'  o  '    
The vertical displacement, which is the height of the building, is found by applying Eq. 2-12b to the 
vertical motion. 

� � � �22 21 1
0 0 2 2      0 0 9.80 m s 1.308s 8.38 my yy y v t a t y � � o  � �   

 
35. Choose the origin to be the point of release of the shot put.  Choose upward to be the positive y 

direction.  Then 0 0,y   � �0 14.4 sin 34.0 m s 8.05m s,yv  q   29.80 m s ,ya  �  and 2.10 my  �  
at the end of the motion.  Use Eq. 2-12b to find the time of flight. 

� � � � � � � � � �

2 21 1
0 0 02 2

22 1
20 0

1
2

      0   

4 8.05 8.05 2 9.80 2.10
1.872 s, 0.2290s

2 9.80

y y y y

y y y

y

y y v t a t a t v t y

v v a y
t

a

 � � o � �  o

� r � � � r � �
   �

�

 

 Choose the positive result since the time must be greater than 0.  Now calculate the  
horizontal distance traveled using the horizontal motion at constant velocity. 

� �> @� �14.4 cos 34.0 m s 1.872 s 22.3mxx v t'   q   

 
36.   Choose the origin to be the point of launch, and upwards to be the positive y direction.  The initial 

velocity of the projectile is 0 ,v  the launching angle is 0 ,T  ,ya g �  0 0,y   and 0 0 0sin .yv v T   Eq. 
2-12a is used to find the time required to reach the highest point, at which 0.yv   

0 0 0 0 0
0 up up

0 sin sin
      y y

y y

v v v v
v v at t

a g g
T T� �

 � o    
�

 

 Eq. 2-12c is used to find the height at this highest point.   

� �
2 2 2 2 2 2

02 2 0 0 0 0
0 max 0 max 0

sin sin
2       0

2 2 2
y y

y y y
y

v v v v
v v a y y y y

a g g
T T� �

 � � o  �  �  
�

 

Eq. 2-12b is used to find the time for the object to fall the other part of the path, with a starting y 

velocity of 0 and a starting height of 
2 2
0 0

0

sin
.

2
v

y
g
T

   

2 2
2 20 0 0 01 1

0 down down down2 2

sin sin
      0 0

2
    o y y

v v
y y v t a t t gt t

g g
T T

 � � o  � �  o  

 A comparison shows that up downt t . 
 
37. When shooting the gun vertically, half the time of flight is spent moving upwards.  Thus the upwards 

flight takes 2.0 s.  Choose upward as the positive y direction. Since at the top of the flight, the 
vertical velocity is zero, find the launching velocity from Eq. 2-12a. 

� � � �2
0 0      0 9.80 m s 2.0s 19.6 m sy y y yv v at v v at � o  �  � �   
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Using this initial velocity and an angle of 45o in the range formula (from Example 3-10) will give the 
maximum range for the gun. 

  � � � �22
0 0

2

19.6 m s sin 90sin 2
39 m

9.80 m s
v

R
g

T q
    

 
38. Choose the origin to be the point on the ground directly below the point where the baseball was hit.   

Choose upward to be the positive y direction.  Then 0 1.0 m,y   13.0 my  at the end of the 

motion, � �0 27.0sin 45.0 m s 19.09 m s,yv  q   and 29.80 m s .ya  �   Use Eq. 2-12b to find the 
time of flight. 

� �
� � � � � � � � � �

2 21 1
0 0 02 2

22 1
20 0

1
2

0

0

      0   

4 19.09 19.09 2 9.80 12.0

2 9.80

0.788s, 3.108s 

y y y y

y y y

y

y y v t a t a t v t y y

v v a y y
t

a

 � � o � � �  o

� r � � � r � � �
  

�

 

 

The smaller time is the time the baseball reached the building’s height on the way up, and the larger 
time is the time the baseball reached the building’s height on the way down.  We must choose the 
larger result, because the baseball cannot land on the roof on the way up.  Now calculate the 
horizontal distance traveled using the horizontal motion at constant velocity. 

� �> @� �27.0 cos 45.0 m s 3.108s 59.3mxx v t'   q   

 
39. We choose the origin at the same place.  With the new definition of the coordinate axes, we have the 

following data:  2
0 0 00,  1.00 m, 12.0 m s   16.0 m s 9.80 m s, ,  .y xy y v v a  �  � �    

� � � �
� � � � � �

2 2 21
0 0 2

2 2

    1.00 m 0 12.0 m s 4.90 m s   

4.90 m s 12.0 m s 1.00 m 0

yy y v t gt t t

t t

 � � o  � � o

� �  
 

This is the same equation as in Example 3-11, and so we know the appropriate solution is 2.53s.t    
We use that time to calculate the horizontal distance the ball travels. 

� � � �0 16.0 m s 2.53s 40.5mxx v t  �  �  
Since the x-direction is now positive to the left, the negative value means that the ball lands  40.5 m  
to the right of where it departed the punter’s foot. 

 
40. The horizontal range formula from Example 3-10 can be used to find the launching velocity of the 

grasshopper. 

  
� � � �22

0 0
0

0

1.0m 9.80 m ssin 2
    3.13m s

sin 2 sin 90
v Rg

R v
g

T
T

 o    
q

 

Since there is no time between jumps, the horizontal velocity of the grasshopper is the horizontal 
component of the launching velocity. 

  � � o
0 0cos 3.13m s cos 45 2.2 m sxv v T    

 
41. (a) Take the ground to be the y = 0 level, with upward as the positive direction.  Use Eq. 2-12b to  

solve for the time, with an initial vertical velocity of 0. 
   � �2 2 21 1

0 0 2 2    150 m 910 m 9.80 m s   y yy y v t a t t � � o  � � o  
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� �

� �2

2 150 910
12.45s 12s

9.80 m s
t

�
  |

�
 

 (b) The horizontal motion is at a constant speed, since air resistance is being ignored. 
� � � �5.0 m s 12.45s 62.25m 62 mxx v t'    |  

 
42. Consider the downward vertical component of the motion, which will occur in half the total time.  

Take the starting position to be y = 0, and the positive direction to be downward.  Use Eq. 2-12b with 
an initial vertical velocity of 0. 

2
2 2 2 2 21 1 1

0 0 down2 2 2

9.80
    0 0 1.225 1.2

2 8y y

t
y y v t a t h gt g t t t � � o  � �    |§ ·

¨ ¸
© ¹

  

 
43. Choose downward to be the positive y direction.  The origin is the point where the supplies are 

dropped.  In the vertical direction, 0 0,yv   29.80 m s ,ya   0 0,y   and the final position is 
150 m.y    The time of flight is found from applying Eq. 2-12b to the vertical motion. 

� �
� �

2 2 21 1
0 0 2 2

2

      160 m 0 0 9.80 m s    

2 150 m
5.5s

9.80 m s

y yy y v t a t t

t

 � � o  � � o

  
 

 Note that the horizontal speed of the airplane does not enter into this calculation. 
 
44. (a) Use the “level horizontal range” formula from Example 3-10 to find her takeoff speed. 

   
� � � �22

0 0
0

0

9.80 m s 8.0 msin 2
    8.854 m s 8.9 m s

sin 2 sin 90
v gR

R v
g

T
T

 o    |
q

 

 (b) Let the launch point be at the y = 0 level, and choose upward to be positive.  Use Eq. 2-12b to  
solve for the time to fall to 2.5 meters below the starting height, and then calculate the 
horizontal distance traveled. 

   � � � �2 2 21 1
0 0 2 2    2.5m 8.854 m s sin 5 9.80 m sy yy y v t a t t t � � o �  � q � �  

� � � � � �
� � � �

2

2

4.9 6.261 2.5m 0  

6.261 6.261 4 4.9 2.5 6.261 9.391
0.319s , 1.597s

2 4.9 2 4.9

t t

t

� �  o

r � � r
   �

 

  Use the positive time to find the horizontal displacement during the jump.  
   � � � �0 0 cos 45 8.854 m s cos 45 1.597s 10.0 mxx v t v t'   q  q   
  She will land exactly on the opposite bank, neither long nor short. 
 
45. Choose the origin to be the location at water level directly underneath the diver when she left the 

board.  Choose upward as the positive y direction.  For the diver, 0 5.0 m,y   the final  y position is 
0.0 my  (water level), ,ya g �  the time of flight is 1.3s,t   and the horizontal displacement is 

3.0 m.x'   
 

(a) The horizontal velocity is determined from the horizontal motion at constant velocity. 
3.0 m

      2.31m s
1.3 sx x

x
x v t v

t
'

'  o     
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 The initial y velocity is found using Eq. 2-12b. 
� � � �� �22 21 1

0 0 02 2

0

  0 m 5.0 m 1.3 s 9.80 m s 1.3 s  

2.52 m s
y y y

y

y y v t a t v

v

 � � o  � � � o

 
 

 Thus the velocity in both vector and magnitude / direction format are as follows.  

� � � � � �2 22 2
0 0

01 1

0
ˆ ˆ2.3 2.5 m s      2.31m s 2.52 m s 3.4 m s

2.52 m s
tan tan 48 above the horizontal

2.31m s

x y

y

x

v v v

v
v

T � �

 �  �  �  

   q

v i jG

  

 (b) The maximum height will be reached when the y velocity is zero.  Use Eq. 2-12c. 

� � � � � �22 2 2
0 max

max

2       0 2.52 m s 2 9.80 m s 5.0 m    

5.3m

y yv v a y y

y

 � ' o  � � � o

 
 

(c) To find the velocity when she enters the water, the horizontal velocity is the (constant) value of 
2.31m sxv  .  The vertical velocity is found from Eq. 2-12a. 

� �� �2
0 2.52 m s 9.80 m s 1.3 s 10.2 m sy yv v at �  � �  �  

The velocity is as follows. 

� �
� � � �

f

2 22 2
f

ˆ ˆ2.3 10.2 m s

2.31m s 10.2 m s 10.458 m s 10 m sx yv v v

 �

 �  � �  |

v i jG

  

� �f1 1
f

f

10.2 m s
tan tan 77 below the horizontal

2.31m s
y

x

v
v

T � � �
   � q  

 
46. Choose the origin to be at ground level, under the place where the projectile is launched, and 

upwards to be the positive y direction.  For the projectile, 0 65.0 m s ,v   0 35.0 ,T  q  ,ya g �  

0 115 m,y   and  0 0 0sin .yv v T  
 
 (a) The time taken to reach the ground is found from Eq. 2-12b, with a final height of 0. 

� �
� �

2 21 1
0 0 0 02 2

2 2 1
20 0 0 0

1
2

0

0

      0 sin    

sin sin 4
9.964 s , 2.3655s 9.96s

2

y yy y v t a t y v t gt

v v g
t

g
y

T

T T

 � � o  � � o

� r � �
  �  

�

 

  Choose the positive time since the projectile was launched at time t = 0. 
 (b) The horizontal range is found from the horizontal motion at constant velocity. 

� � � � � � � �0 0cos 65.0 m s cos 35.0 9.964 s 531mxx v t v tT'    q   

(c) At the instant just before the particle reaches the ground, the horizontal component of its  
velocity is the constant � �0 0cos 65.0 m s cos 35.0 53.2 m s .xv v T  q    The vertical 

component is found from Eq. 2-12a. 
� � � � � �2

0 0 0sin 65.0 m s sin 35.0 9.80 m s 9.964 s

60.4 m s   

y yv v at v gtT �  �  q �

 �
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(d) The magnitude of the velocity is found from the x and y components calculated in part (c)  
above.   

� � � �2 22 2 53.2 m s 60.4 m s 80.5 m sx yv v v �  � �   

(e) The direction of the velocity is 1 1 60.4
tan tan 48.6

53.2
y

x

v
v

T � � �
   � q , and so the object is  

moving 48.6  below the horizon .q  
(f) The maximum height above the cliff top reached by the projectile will occur when the y- 

velocity is 0, and is found from Eq. 2-12c. 
� �

� �
� �

2 2 2 2
0 0 0 0 max

2 22 2
0 0

max 2

2       0 sin 2

65.0 m s sin 35.0sin
70.9 m

2 2 9.80 m s

y y yv v a y y v gy

v
y

g

T

T

 � � o  �

q
   

 

 
47. Choose upward to be the positive y direction.  The origin is the point from which the football is 

kicked.  The initial speed of the football is 0 20.0 m s.v    We have 0 0 sin 37.0 12.04 m s ,yv v q   

0 0,y   and 29.80 m s .ya  �   In the horizontal direction, 0 cos 37.0 15.97 m s ,xv v q   and 
36.0 m.x'    The time of flight to reach the goalposts is found from the horizontal motion at 

constant speed. 
      36.0 m 15.97 m s 2.254 sx xx v t t x v'  o  '    

Now use this time with the vertical motion data and Eq. 2-12b to find the height of the football when 
it reaches the horizontal location of the goalposts. 

� �� � � �� �22 21 1
0 0 2 20 12.04 m s 2.254 s 9.80 m s 2.254s 2.24 my yy y v t a t � �  � � �   

Since the ball’s height is less than 3.00 m,  the football does not clear the bar  .  It is 0.76 m too low 
when it reaches the horizontal location of the goalposts. 

 

To find the distances from which a score can be made, redo the problem (with the same initial 
conditions) to find the times at which the ball is exactly 3.00 m above the ground.  Those times 
would correspond with the maximum and minimum distances for making the score.  Use Eq. 2-12b. 

 

� � � �
� � � � � �

� �

2 2 21 1
0 0 2 2

2

2

    3.00 0 12.04 m s 9.80 m s   

12.04 12.04 4 4.90 3.00
4.90 12.04 3.00 0    2.1757s, 0.2814s

2 4.90

y yy y v t a t t t

t t t

 � � o  � � � o

r �
� �  o   

 

 � � � �1 115.97 m s 0.2814 s 4.49 m ; 15.97 m s 2.1757 s 34.746 mx xx v t x v t'    '     

So the kick must be made in the range from 4.5m to 34.7 m .  

 
48. The constant acceleration of the projectile is given by 2 ˆ9.80 m s . �a jG   We use Eq. 3-13a with the  

given velocity, the acceleration, and the time to find the initial velocity. 
� � � � � � � �2

0 0
ˆ ˆ ˆ ˆ ˆ8.6 4.8 m s 9.80 m s 8.6 34.2 m s    3.0st t �  �  � � �o �  v v a v v a i j j i jG GG G G G  

The initial speed is � � � �2 2
0 8.6 m s 34.2 m s 35.26 m s,v  �   and the original launch direction is 

given by 1
0

34.2 m s
tan 75.88 .

8.6 m s
T �  q   Use this information with the horizontal range formula from 

Example 3-10 to find the range. 
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(a) � � � �22
10 0

2

35.26 m s sin151.76sin 2
6.0 10 m

9.80 m s
v

R
g g

T q
   u  

(b) We use the vertical information to find the maximum height.  The initial vertical velocity is  
34.2 m/s, and the vertical acceleration is 29.80 m s .�   The vertical velocity at the maximum 
height is 0, and the initial height is 0.  Use Eq. 2-12c. 

  

� �
� �
� �

2 2
0 max 0

22 2 2
0 0 1

max 0 2

2    

34.2 m s
59.68 m 6.0 10 m

2 2 2 9.80 m s

y y y

y y y

y y

v v a y y

v v v
y y

a a

 � � o

� � �
 �    | u

�

 

(c) From the information above and the symmetry of projectile motion, we know that the final  
speed just before the projectile hits the ground is the same as the initial speed, and the angle is 
the same as the launching angle, but below the horizontal.  So final 35m sv   and 

final 76 below the horizontal .T  q  

 
49. Choose the origin to be the location from which the balloon is 

fired, and choose upward as the positive y direction.  Assume  
the boy in the tree is a distance H up from the point at which  
the balloon is fired, and that the tree is a distance d horizontally 
from the point at which the balloon is fired.  The equations of  
motion for the balloon and boy are as follows, using constant  
acceleration relationships. 

2 21 1
Balloon 0 0 Balloon 0 0 Boy2 2cos           0 sin      x v t y v t gt y H gtT T  � �  �  

Use the horizontal motion at constant velocity to find the elapsed time after the balloon has traveled 
d to the right.   

0 0
0 0

cos           
cosD D

d
d v t t

v
T

T
 o   

Where is the balloon vertically at that time?    
2 2

21 1 1
Balloon 0 0 0 0 02 2 2

0 0 0 0 0 0

sin sin tan
cos cos cosD D

d d d
y v t gt v g g

v v v
dT T T

T T T
 �  �  �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

Where is the boy vertically at that time?  Note that tan .oH d T  
2 2

21 1 1
Boy 02 2 2

0 0 0 0

tan
cos cosD

d d
y H gt H g g

v v
d T

T T
 �  �  �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

Note that Balloon Boy ,y y  and so the boy and the balloon are at the same height and the same 
horizontal location at the same time.  Thus they collide! 

 
50. (a) Choose the origin to be the location where the car leaves the ramp, and choose upward to be the  

positive y direction.  At the end of its flight over the 8 cars, the car must be at 1.5 m.y  �   Also 
for the car, 0 0,yv   ,ya g �  0 ,xv v  and 22 m.x'    The time of flight is found from the 

horizontal motion at constant velocity:  0    .xx v t t x v'  o  '   That expression for the time 
is used in Eq. 2-12b for the vertical motion. 

� � � �221 1
0 0 02 2      0 0    y yy y v t a t y g x v � � o  � � � ' o  

H 

d 
T�

ovG

x 

y 
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� �
� �

� � � �
� �

222

0

9.80 m s 22 m
39.76 40 m s

2 2 1.5 m
m sg x

v
y

�� '
   

�
|  

(b) Again choose the origin to be the location where the car leaves the ramp, and choose upward to  
be the positive y direction.  The y displacement of the car at the end of its flight over the 8 cars 
must again be 1.5 m.y  �   For the car, 0 0 0sin ,yv v T  ,ya g �  0 0cos ,xv v T  and 

22 m.x'    The launch angle is 0 7.0 .T  q   The time of flight is found from the horizontal 
motion at constant velocity. 

0 0

      
cosx

x
x v t t

v T
'

'  o   

That expression for the time is used in Eq. 2-12b for the vertical motion. 

� �
2

21 1
0 0 0 02 2

0 0 0 0

      sin    
cos cosy y

x x
y y v t a t y v g

v v
T

T T
' '

 � � o  � � o
§ ·
¨ ¸
© ¹

 

� �
� �

� � � �
� �� �

222

0 2 2
0 0

9.80 m s 22 m
24 m s

2 tan cos 2 22 m tan 7.0 1.5 m cos 7.0
g x

v
x yT T

'
   

' � q � q
 

 
51. The angle is in the direction of the velocity, so find the components of the velocity, and use them to 

define the angle.  Let the positive y-direction be down. 

  1 1
0 0

0

          tan tany
x y y y

x

v gt
v v v v a t gt

v v
T � �  �     

 
52. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.  

The initial velocity of the projectile is 0 ,v  the launching angle is 0 ,T  ,ya g �  and 0 0 0sin .yv v T   

The range of the projectile is given by the range formula from Example 3-10, 
2
0 0sin 2

.
v

R
g

T
   The 

maximum height of the projectile will occur when its vertical speed is 0.  Apply Eq. 2-12c.   

� �
2 2

2 2 2 2 0 0
0 0 0 0 max max

sin
2       0 sin 2       

2y y y

v
v v a y y v gy y

g
T

T � � o  � o   

Now find the angle for which max .R y  
2 2 2

20 0 0 0 1
max 0 02

sin 2 sin
            sin 2 sin   

2
v v

R y
g g

T T T T o  o  o  

2 11
0 0 0 0 0 0 022 sin cos sin     4 cos sin     tan 4    tan 4 76T T T T T T T � o  o  o   q  

 
53. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.  

The initial velocity of the projectile is 0v , the launching angle is 0 ,T  ,ya g �  and 0 0 0sin .yv v T    

 (a) The maximum height is found from Eq. 2-12c, � �2 2
0 02 ,y y yv v a y y � �  with 0yv   at  

the maximum height. 
� �

� �
22 2 22 2 2 2

0 0 0 0 0
max 2

46.6 m s sin 42.2sin sin
0 50.0 m

2 2 2 2 9.80 m s
y y

y

v v v v
y

a g g
T T� q�

 �     
�
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(b) The total time in the air is found from Eq. 2-12b, with a total vertical displacement  
of 0 for the ball to reach the ground. 

� �
� �

2 21 1
0 0 0 02 2

0 0
2

      0 sin    

2 46.6 m s sin 42.22 sin
6.39 s  and 0

9.80 m s

y yy y v t a t v t gt

v
t t

g

T

T

 � � o  � o

q
    

 

  The time of 0 represents the launching of the ball. 
(c) The total horizontal distance covered is found from the horizontal motion at constant velocity. 

� � � � � � � �0 0cos 46.6 m s cos 42.2 6.39 s 221mxx v t v tT'    q   

 (d) The velocity of the projectile 1.50 s after firing is found as the vector sum of the horizontal  
and vertical velocities at that time.  The horizontal velocity is a constant 0 0cosv T    

� � � �46.6 m s cos 42.2 34.5 m s.q    The vertical velocity is found from Eq. 2-12a. 

� � � � � �2
0 0 0sin 46.6 m s sin 42.2 9.80 m s 1.50s 16.6 m sy yv v at v gtT �  �  q �   

Thus the speed of the projectile is 2 2 2 234.5 16.6 38.3m s .x yv v v �  �   

 The direction above the horizontal is given by 1 1 16.6
tan tan 25.7

34.5
.y

x

v
v

T � �   q  

 
54. (a) Use the “level horizontal range” formula from Example 3-10. 

� � � �22
0 0

0
0

7.80 m 9.80 m ssin 2
     9.72 m s

sin 2 sin 54.0
v Rg

R v
g

T
T

 o    
q

 

(b) Now increase the speed by 5.0% and calculate the new range.  The new speed would be  
� �9.72 m s 1.05 10.2 m s  and the new range would be as follows. 

� �22
0 0

2

10.2 m s sin 54sin 2
8.59 m

9.80 m s
v

R
g

T q
    

  This is an increase of  � �0.79 m 10% increase . . 

 
55. Choose the origin to be at the bottom of the hill, just where the incline starts.  The equation of the 

line describing the hill is 2 tan .y x I   The equations of the motion of the object are 
21

1 0 2 y yy v t a t �  and 0 ,xx v t  with 0 0 cosxv v T  and 0 0 sin .yv v T   Solve the horizontal 
equation for the time of flight, and insert that into the vertical projectile motion equation. 

2 2
1

1 0 2 2 2
0 0 0 0 0

sin tan
cos cos cos 2 cos

   
x

x x x x gx
t y v g x

v v v v v
T T

T T T T
   �  �

§ ·o ¨ ¸
© ¹

 

 Equate the y-expressions for the line and the parabola to find the location where the two x-
coordinates intersect. 

  
� �

2

2 2 2 2
0 0

2 2
0

tan tan     tan tan   
2 cos 2 cos

tan tan
2 cos

gx gx
x x

v v

x v
g

I T T I
T T

T I
T

 � o �  o

�
 

 

 This intersection x-coordinate is related to the desired quantity d by cos .x d I  
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  � � � �
2 2 2

20 02 cos 2
cos tan tan     sin cos tan cos

cos
v v

d d
g g

TI T I T T I T
I

 � o  �  

 To maximize the distance, set the derivative of d with respect to T  equal to 0, and solve for .T  
� � � �

� � � � � � � �> @

> @

2
20

2
0

2 2
2 20 0

11
2

2
sin cos tan cos

cos

2
        sin sin cos cos tan 2 cos sin

cos

2 2
        sin cos 2 tan cos sin cos 2 sin tan 0

cos cos

1
cos 2 sin tan 0    tan

tan

d d v d
d g d

v
g

v v
g g

T T I T
T I T

T T T T I T T
I

T T I T T T T I
I I

T T I T
I

�

 �

 � � � �

 � � �  � �  

� �  o  �

ª º¬ ¼

§
©

·
¨ ¸

¹

  

 This expression can be confusing, because it would seem that a negative sign enters the solution.  In 
order to get appropriate values, 180q  or S  radians must be added to the angle resulting from the 
inverse tangent operation, to have a positive angle.  Thus a more appropriate expression would be the 
following: 

11
2

1
 tan

tan
T S

I
� � �

ª º§ ·
¨ ¸« »© ¹¬ ¼

.  This can be shown to be equivalent to  
2 4
I ST  � , because 

� �1 1 11
tan tan cot cot cot

tan 2 2
S SI I I

I
� � ��  �  �  �§ ·
¨ ¸
© ¹

. 

 
56. See the diagram.  Solve for R, the horizontal range, which is the horizontal speed times the time of  

flight. 

� �0 0
0

cos     
cos
R

R v t t
v

T
T�

 o   

  

� � � �2 21 1
0 0 0 02 2

2 2 2 2
2 0 0 0 0

22 2 2 2 2 2
0 0 0 0 0 0

2 20 0
0 0 0 0

sin     sin 0  

2 cos tan 2 cos
0

2 cos tan 2 cos tan 2 cos
4

2
cos

   sin sin 2

h v t gt gt v t h

v hv
R R

g g

v v hv
g g g

R

v
v v gh

g

T T

T T T

T T T T T

T T T

 � o � �  o

� �  

r �
 

 r �

§ ·
¨ ¸
© ¹

ª º
¬ ¼

 

Which sign is to be used?  We know the result if h = 0 from Example 3-10.  Substituting h = 0 gives 

> @0 0
0 0 0 0

cos
sin sin .v

R v v
g
T T T r   To agree with Example 3-10, we must choose the + sign, and so 

2 20 0
0 0 0 0

cos
sin sin 2 .v

R v v gh
g
T T T �ª º�¬ ¼   We see from this result that if h > 0, the range will 

shorten, and if h < 0, the range will lengthen. 
 

h

R
0T

0v



Chapter 3  Kinematics in Two or Three Dimensions; Vectors 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

67 

57. Call the direction of the boat relative to the water the positive direction.  For the jogger moving 
towards the bow, we have the following: 

jogger jogger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ2.0 m s 8.5m s 10.5m s . �  �  v v v i i iG G G    

For the jogger moving towards the stern, we have the following. 

jogger jogger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ2.0 m s 8.5m s 6.5m s �  � �  v v v i i iG G G  

 
58. Call the direction of the flow of the river the x direction, and the 

direction of Huck walking relative to the raft the y direction. 

� �
Huck Huck raft rel.
rel. bank rel. raft bank

ˆ ˆ0.70 m s 1.50 m s

ˆ ˆ           1.50 0.70 m s

 �  �

 �

v v v j i

i j

G G G

 

2 2
Huck
rel. bank

Magnitude: 1.50 0.70 1.66 m sv  �   

1 0.70
Direction:  tan 25 relative to river

1.50
T �  q  

 
59. From the diagram in Figure 3-33, it is seen that  boat rel. boat rel.

shore water

cosv v T   

� �1.85 m s cos 40.4 1.41m s .q   

 
 
60. If each plane has a speed of 780 km/hr, then their relative speed of approach is 1560 km/hr.  If the 

planes are 12.0 km apart, then the time for evasive action is found as follows. 
12.0 km 3600 sec

      27.7 s
1560 km hr 1 hr

d
d vt t

v
'

'  o    
§ · § ·

¨ ¸¨ ¸ © ¹© ¹
 

 
61. The lifeguard will be carried downstream at the same rate as the child.  Thus only the horizontal 

motion need be considered.  To cover 45 meters horizontally at a rate of 2 m/s takes 
45m
2 m s

   

22.5s 23s|  for the lifeguard to reach the child.  During this time they would both be moving 

downstream at 1.0 m/s, and so would travel � � � �1.0 m s 22.5s 22.5m 23m |  downstream. 

 
62. Call the direction of the boat relative to the water the x direction, and upward the y direction.  Also 

see the diagram. 

� �
� �

passenger passenger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ           0.60cos 45 0.60sin 45 m s 1.70 m s

ˆ ˆ           2.12 0.42 m s

 �

 q � q �

 �

v v v

i j i

i j

G G G

    

 
 
 

Huck
rel. bank

vG

Huck
rel. raft

vG

� �

ra f t
re l.  b a n k
c u r re n t

vG
T�

boat rel.
water

vG

water rel.
shore

vG

boat rel.
shore

vG T

boat rel.
water

vG
passenger
rel. boat

vG
passenger
rel. water

vG

T
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63. (a) Call the upward direction positive for the vertical motion.  Then the velocity of the ball  
relative to a person on the ground is the vector sum of the horizontal and vertical motions.  The 
horizontal velocity is 10.0 m sxv   and the vertical velocity is 5.0 m s.yv   

� � � �2 2

1

ˆ ˆ10.0 m s 5.0 m s     10.0 m s 5.0 m s 11.2 m s

5.0 m s
tan 27 above the horizontal

10.0 m s

v

T �

 � o  �  

  q

v i jG

 

(b) The only change is the initial vertical velocity, and so 5.0 m syv  � .  

  
� � � �2 2

1

ˆ ˆ10.0 m s 5.0 m s     10.0 m s 5.0 m s 11.2 m s

5.0 m s
tan 27 below the horizontal

10.0 m s

v

T �

 � o  � �  

�
  q

v i jG

 

 
64. Call east the positive x direction and north the positive y direction.  Then the 

following vector velocity relationship exists. 
 (a) plane rel. plane air rel.

ground rel. air ground

 �v v vG G G
 

� �
� �
� � � �2 2

plane rel.
ground

1

ˆ ˆ           580 km h 90.0cos 45.0 90.0sin 45.0 km h

ˆ           63.6 516 km h

63.6 km h 516 km h 520 km h

63.6
tan 7.0 7.0  east of south

516

ˆ

ˆ

v

T �

 � � q q

 �

 � �  

  � q q
�

�

 

j j

j

i

i

  

(b) The plane is away from its intended position by the distance the air has caused 
it to move.  The wind speed is 90.0 km/h, so after 11.0 min the plane is off course by the 
following amount. 

� � � � 1h
90.0 km h 11.0 min 16.5km

60 min
.xx v t'    

§ ·
¨ ¸
© ¹

 

 
65. Call east the positive x direction and north the positive y direction.  Then the 

following vector velocity relationship exists. 

� �
� �

plane rel. plane air rel.
ground rel. air ground

plane rel.
ground

   

ˆ580sin 580cos km h

ˆ                           90.0 cos 45.0 90.0sin 45.0 km h

ˆ ˆ

ˆ

v T T

 � o

�  � �

� q � q

v v v

i

i

j j

j

G G G

 

Equate x components in the above equation. 

  1

0 580sin 90.0 cos 45.0    

90.0 cos 45.0
sin 6.3 , west of south

580

T

T �

 � � q o

q
  q

 

 
 
 

plane
rel. air

vG

air rel.
ground

vG

plane rel.
ground

vGT

plane
rel. air

vG

air rel.
ground

vG

plane rel.
ground

vG

T
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66. Call east the positive x direction and north the positive y direction.  From  
the first diagram, this relative velocity relationship is seen. 

� �
car 1 rel. car 1 rel. car 2 rel.
street car 2 street

car 1 rel. car 1 rel. car 2 rel.
car 2 street street

   

ˆ ˆ ˆ ˆ35 km h 45 km h 45 35 km h

 � o

 �  �  � �

v v v

v v v j i i j

G G G

G G G  

For the other relative velocity relationship: 

� �
car 2 rel. car 2 rel. car 1 rel.
street car 1 street

car 2 rel. car 2 rel. car 1 rel.
car 1 street street

   

ˆ ˆ ˆ ˆ45 km h 35 km h 45 35 km h

 � o

 �  �  �

v v v

v v v i j i j

G G G

G G G  

 Notice that the two relative velocities are opposites of each other: car 2 rel. car 1 rel.
car 1 car 2

. �v vG G
 

 
67. Call the direction of the flow of the river the x direction, and the direction 

straight across the river the y direction.  Call the location of the swimmer’s 
starting point the origin. 

  swimmer swimmer water rel.
rel. shore rel. water shore

ˆ ˆ0.60 m s 0.50 m s �  �v v v j iG G G  

 (a) Since the swimmer starts from the origin, the distances covered in  
the x and y directions will be exactly proportional to the speeds in 
those directions.  

0.50 m s
            46 m

55 m 0.60 m s
x x

y y

x v t v x
x

y v t v
' '

  o  o '  
'

 

 (b) The time is found from the constant velocity relationship for either the x or y directions.   
55 m

      92 s
0.60 m sy

y

y
y v t t

v
'

'  o     

 
68. (a) Call the direction of the flow of the river the x direction, and the  

direction straight across the river the y direction. 

   
water rel.
shore 1

swimmer
rel. water

0.50 m s 0.50
sin   sin 56.44 56

0.60 m s 0.60

v

v
T T �  o   q q|  

 (b) From the diagram her speed with respect to the shore is found as follows. 
� �swimmer swimmer

rel. shore rel. water

cos 0.60 m s cos 56.44 0.332 m sv v T  q   

The time to cross the river can be found from the constant velocity relationship. 

 
55 m

    170s 2.8 min
0.332 m s

x
x vt t

v
'

'  o      

 
69. The boat is traveling directly across the stream, with a heading of 19.5T  q  

upstream, and speed of boat rel.
water

3.40 m s.v   

(a) � �water rel.
shore

boat rel.
water

sin 3.40 m s sin19.5 1.13m sv v T  q    

(b) � �boat rel.
shore

boat rel.
water

cos 3.40 m s cos19.5 3.20 m sv v T  q    

car 1
rel.
street

vG
car 2 rel.
street

vG

car 1 rel.
car 2

vG T

car 1
rel.
street

v

car 2 rel.
street

vG

car 2 rel.
car 1

vG
T

swimmer
rel. water

vG

water rel.
shore

vG

swimmer
rel. shore

vGT

swimmer
rel. water

vG

water rel.
shore

vG

swimmer
rel. shore

vGT

boat rel.
water

vG

water rel.
shore

vG

boat rel.
shore

vG

T
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70. Call the direction of the flow of the river the x direction (to the left in 
the diagram), and the direction straight across the river the y direction 
(to the top in the diagram).  From the diagram, 1tan 120 m 280 mT �  

23 . q   Equate the vertical components of the velocities to find the 
speed of the boat relative to the shore. 

 
� �

boat rel. boat rel.
shore water

boat rel.
shore

cos sin 45   

sin 45
2.70 m s 2.07 m s

cos 23

v v

v

T  q o

q
  

q

 

Equate the horizontal components of the velocities. 

 

� � � �

boat rel. boat rel. water
shore water rel. shore

water boat rel. boat rel.
rel. shore water shore

sin cos 45   

cos 45 sin

          2.70 m s cos 45 2.07 m s sin 23 1.10 m s

v v v

v v v

T

T

 q � o

 q �

 q � q  

 

 
71. Call east the positive x direction and north the positive y direction.  The 

following is seen from the diagram.  Apply the law of sines to the 
triangle formed by the three vectors. 

  
plane air rel. air rel.
rel. air ground ground

plane
rel. air

      sin sin128   
sin128 sin

v v v

v
T

T
 o  q o

q
 

  
air rel.
ground 1

plane
rel. air

1 72
sin sin128 sin sin128 5.6

580 km h

v

v
T �� q q  q

§ ·
§ ·¨ ¸  ¨ ¸¨ ¸ © ¹¨ ¸

© ¹

 

 So the plane should head in a direction of 38.0 5.6 43.6 north of east .q � q  q . 
 
72. (a) For the magnitudes to add linearly, the two vectors must be parallel.  1 2V V

G G
&  

(b) For the magnitudes to add according to the Pythagorean theorem, the two vectors must be at 
right angles to each other.  1 2AV V

G G
 

 (c) The magnitude of 2V
G

vector 2 must be 0.  2 0 V
G

 

 
73. Let east be the positive x-direction, north be the positive y-direction, and up 

be the positive z-direction.  Then the plumber’s resultant displacement in 

component notation is ˆ ˆ ˆ66 m 35 m 12 m . � �D i j k
G

 Since this is a 3-

dimensional problem, it requires 2 angles to determine his location (similar 
to latitude and longitude on the surface of the Earth).  For the x-y 
(horizontal) plane, see the first figure. 

  1 1 35
tan tan 28 28  south of east

66
y

x

D
D

I � � �
   � q q    

� � � �2 22 2 66 35 74.7 m 75 mxy x yD D D �  � �  |  

water rel.
shore

vG

boat rel.
shore

vG

boat rel.
water

vG

120 m

280 m

T
o45

air rel.
ground

vG

plane rel.
air

vG

plane rel.
ground

vG

128q

38q

T 52q

I
xD

yD
xyD
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For the vertical motion, consider another right triangle, made up of xyD  as 

one leg, and the vertical displacement zD  as the other leg.  See the second 
figure, and the following calculations. 

  1 1
2

12 m
tan tan 9 9  below the horizontal

74.7 m
z

xy

D
D

T � � �
   � q  q  

  � � � � � �2 2 22 2 2 2 2 66 35 12 76 mxy z x y zD D D D D D �  � �  � � � �   

The result is that the displacement is 76m ,  at an angle of 28 south of east ,q  and 

9 below the horizontal .q  

 

74. The deceleration is along a straight line.   The starting velocity is 1m s
110 km h 30.6 m s

3.6 km h
, 

§ ·
¨ ¸
© ¹

 

and the ending velocity is 0 m/s.  The acceleration is found from Eq. 2-12a. 

� � 2
0

30.6 m s
      0 30.6 m s 7.0 s       4.37 m s

7.0 s
v v at a a � o  � o  �  �  

 The horizontal acceleration is � �2 2
horiz cos 4.37 m s cos 26 3.9 m s .a a T  � q  �  

 The vertical acceleration is � �2 2
vert sin 4.37 m s sin 26 1.9 m s .a a T  � q  �  

The horizontal acceleration is to the left in Figure 3-54, and the vertical acceleration is down. 
 
75. Call east the positive x direction and north the positive y direction.  Then this 

relative velocity relationship follows (see the accompanying diagram). 
plane rel. plane air rel.
ground rel. air ground

 �v v vG G G
 

Equate the x components of the velocity vectors.  The magnitude of plane rel.
ground

vG  

is given as 135 km/h. 
� � wind wind 135 km h cos 45 0     95.5 km hx xv vq  � o  . 

 From the y components of the above equation, we find wind .yv  

  wind wind135sin 45 185     185 135sin 45 89.5 km hy yv v� q  � � o  � q   
The magnitude of the wind velocity is  as follows. 

� � � �2 22 2
wind wind wind 95.5km h 89.5km h 131km hx yv v v �  �   

The direction of the wind is wind-y1 1

wind-x

89.5
tan tan 43.1  north of east

95.5
.

v
v

T � �   q  

 
76. The time of flight is found from the constant velocity relationship for horizontal motion. 

      8.0 m 9.1m s 0.88 sx xx v t t x v'   o  '    
The y motion is symmetric in time – it takes half the time of flight to rise, and half to fall.  Thus the 
time for the jumper to fall from his highest point to the ground is 0.44 sec.  His vertical speed is zero 
at the highest point.  From the time, the initial vertical speed, and the acceleration of gravity, the 
maximum height can be found.  Call upward the positive y direction.  The point of maximum height 

air rel.
ground

vG
plane
rel. air

vG
plane rel.
ground

vG

T

o45

T
xyD

zd

D zD
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is the starting position 0 ,y  the ending position is 0,y   the starting vertical speed is 0, and .a g �   
Use Eq. 2-12b to find the height. 

� � � �22 21 1
0 0 0 02 2    0 0 9.8 m s 0.44 s     0.95 my yy y v t a t y y � � o  � � o   

 
77. Choose upward to be the positive y direction.  The origin is the point from which the pebbles are 

released.  In the vertical direction, 29.80 m s ,ya  �  the velocity at the window is 0,yv   and the 
vertical displacement is 8.0 m.  The initial y velocity is found from Eq. 2-12c. 

� �

� � � � � �

2 2
0 0

2 2
0 0

2    

2 0 2 9.80 m s 8.0 m 12.5 m s

y y y

y y y

v v a y y

v v a y y

 � � o

 � �  � �  
 

 Find the time for the pebbles to travel to the window from Eq. 2-12a. 
0

0 2

0 12.5 m s
      1.28s

9.80 m s
y y

y y

v v
v v at t

a
� �

 � o    
�

 

Find the horizontal speed from the horizontal motion at constant velocity. 
      9.0 m 1.28 s 7.0 m sx xx v t v x t'  o  '    

 This is the speed of the pebbles when they hit the window. 
 
78. Choose the x direction to be the direction of train travel (the direction the 

passenger is facing) and choose the y direction to be up.  This relationship exists 
among the velocities: rain rel. rain rel. train rel.

ground train ground

. �v v vG G G   From the diagram, find the 

expression for the speed of the raindrops. 

 
train rel.
ground T T

rain rel.
groundrain rel. rain rel.

ground ground

tan       
tan

v
v v

v
v v

T
T

  o   

 
79. Assume that the golf ball takes off and lands at the same height, so that the range formula derived in 

Example 3-10 can be applied.  The only variable is to be the acceleration due to gravity. 

� �

2 2
Earth 0 0 Earth Moon 0 0 Moon

2
Earth 0 0 Earth Earth Moon

2
Moon 0 0 Moon Moon Earth

2 2
Moon Earth

sin 2         sin 2

sin 2 1 32 m
0.18   

sin 2 1 180 m

0.18 0.18 9.80 m s 1.8 m s

R v g R v g

R v g g g
R v g g g

g g

T T

T
T

  

     o

  |

 

 
80. (a) Choose downward to be the positive y direction.  The origin is the point where the bullet  

leaves the gun.  In the vertical direction, 0 0,yv   0 0,y   and 29.80 m s .ya    In the 

horizontal direction, 68.0 mx'   and 175 m s.xv    The time of flight is found from the 
horizontal motion at constant velocity. 

     68.0 m 175 m s 0.3886 sx xx v t t x v'  o  '    
This time can now be used in Eq. 2-12b to find the vertical drop of the bullet. 

� � � �22 21 1
0 0 2 2      0 0 9.80 m s 0.3886 s 0.740 my yy y v t a t y � � o  � �   

 
 

rain rel.
ground

vG

train rel.
ground

vG

rain rel.
train

vG T
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(b) For the bullet to hit the target at the same level, the level horizontal range formula of Example  
3-10 applies.  The range is 68.0 m, and the initial velocity is 175 m/s.  Solving for the angle of 
launch results in the following. 

� � � �
� �

22
10 0 1

0 0 2 22
0

68.0 m 9.80 m ssin 2
     sin 2     sin 0.623

175 m s
v Rg

R
g v

T T T � o  o   q  

Because of the symmetry of the range formula, there is also an answer of the complement of the 
above answer, which would be 89.4o.  That is an unreasonable answer from a practical physical 
viewpoint – it is pointing the gun almost straight up. 

 
81. Choose downward to be the positive y direction.  The origin is at the point from which the divers 

push off the cliff.  In the vertical direction, the initial velocity is 0 0,yv   the acceleration is 
29.80 m s ,ya   and the displacement is 35 m.  The time of flight is found from Eq. 2-12b. 

� � � �2 2 21 1
0 0 2 2 2

2 35 m
      35 m 0 0 9.8 m s       2.7 s

9.8 m sy yy y v t a t t t � � o  � � o    

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant 
velocity. 

     5.0 m 2.7 s 1.9 m sx xx v t v x t'  o  '    

 
82. The minimum speed will be that for which the ball just clears the  

fence; i.e., the ball has a height of 8.0 m when it is 98 m  
horizontally from home plate.  The origin is at home plate, with  
upward as the positive y direction.  For the ball, 0 1.0 m,y    

8.0 m,y  , ,ya g �  0 0 0sin ,yv v T  0 0cos ,xv v T  and 0 36 .T  q  
See the diagram (not to scale).  For the constant-velocity horizontal  

motion, 0 0cos ,xx v t v tT'    and so 
0 0cos

.x
t

v T
'

   For the vertical motion, apply Eq. 2-12b. 

� �2 21 1
0 0 0 0 02 2siny yy y v t a t y v t gtT � �  � �  

Substitute the value of the time of flight for the first occurrence only in the above equation, and then 
solve for the time. 

2 21 1
0 0 0 0 0 02 2

0 0

sin     sin   
cos

x
y y v t gt y y v gt

v
T T

T
'

 � � o  � � o  

� �0 0
2

1.0 m 8.0 m 98 m tan 36tan
2 2 3.620s

9.80 m s
y y x

t
g

T � � q� � '
   

§ ·§ ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 Finally, use the time with the horizontal range to find the initial speed. 

  
� �0 0 0

0

98 m
cos     33m s

cos 3.620s cos 36
x

x v t v
t

T
T

'
'  o    

q
 

 
83. (a) For the upstream trip, the boat will cover a distance of 2D  with a net speed of ,v u�  so the  

time is 
� �1

2
2

.D D
t

v u v u
  

� �
  For the downstream trip, the boat will cover a distance of 2D   

0 1.0 my  8.0 my  

98 mx'  

0vG

0T
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with a net speed of v u� , so the time is 
� �2

2
2

.D D
t

v u v u
  

� �
  Thus the total time for the 

round trip will be 
� � � � � �1 2 2 22 2

.D D Dv
t t t

v u v u v u
 �  �  

� � �
 

(b) For the boat to go directly across the river, it must be angled against 
the current in such a way that the net velocity is straight across the 
river, as in the picture.  This equation must be satisfied:   

boat rel. boat rel. water rel.
shore water shore

 �  �v v v v uG G G G G
. 

Thus 2 2
boat rel.
shore

,v v u �  and the time to go a distance 2D  across 

the river is 1 2 2 2 2

2

2
.D D

t
v u v u

  
� �

  The same relationship would be in effect for crossing 

back, so the time to come back is given by 2 1t t  and the total time is 1 2 2 2
.D

t t t
v u

 �  
�

   

The speed v  must be greater than the speed .u   The velocity of the boat relative to the shore when 
going upstream is .v u�   If ,v u�  the boat will not move upstream at all, and so the first part of the 
trip would be impossible.  Also, in part (b), we see that v is longer than u in the triangle, since v is the 
hypotenuse, and so we must have .v u!  

 
84. Choose the origin to be the location on the ground directly underneath the ball when served, and 

choose upward as the positive y direction.  Then for the ball, 0 2.50 m,y   0 0,yv   ,ya g �  and 
the y location when the ball just clears the net is 0.90 m.y    The time for the ball to reach the net is 
calculated from Eq. 2-12b. 

� �
� �

2 2 21 1
0 0 2 2

to 2
net

  0.90 m 2.50 m 0 9.80 m s  

2 1.60 m
0.57143 s

9.80 m s

y yy y v t a t t

t

 � � o  � � � o

�
  

�

 

 The x velocity is found from the horizontal motion at constant velocity. 
15.0 m

      26.25 26.3 m s
0.57143 sx x

x
x v t v

t
'

'  o    |  

This is the minimum speed required to clear the net. 
 

To find the full time of flight of the ball, set the final y location to be y = 0, and again use Eq. 2-12b. 
� �

� �

2 2 21 1
0 0 2 2

total 2

  0.0 m 2.50 m 9.80 m s  

2 2.50 m
0.7143 0.714s

9.80 m s

y yy y v t a t t

t

 � � o  � � o

�
  |

�

 

The horizontal position where the ball lands is found from the horizontal motion at constant velocity. 
� �� �26.25 m s 0.7143 s 18.75 18.8 mxx v t'    |  

Since this is between 15.0 and 22.0 m,  the ball lands in the “good” region . 
 

boat rel.
water

 v vG G

water rel.
shore

 v uG G

boat rel.
shore

vG
T
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85. Work in the frame of reference in which the car is at rest at ground level.  In this reference frame, the 

helicopter is moving horizontally with a speed of 
1m s

208 km h 156 km h 52 km h
3.6 km h

�  
§ ·
¨ ¸
© ¹

 

14.44 m s .  For the vertical motion, choose the level of the helicopter to be the origin, and 
downward to be positive.  Then the package’s y displacement is 78.0 m,y   0 0,yv   and .ya g   
The time for the package to fall is calculated from Eq. 2-12b. 

� � � �2 2 21 1
0 0 2 2 2

2 78.0 m
      78.0 m 9.80 m s      3.99 sec

9.80 m sy yy y v t a t t t � � o  o    

The horizontal distance that the package must move, relative to the “stationary” car, is found from 
the horizontal motion at constant velocity.  

� � � �14.44 m s 3.99 s 57.6 mxx v t'     
 Thus the angle under the horizontal for the package release will be as follows. 

1 1 78.0 m
tan tan 53.6 54

57.6 m
y
x

T � �'
   q q

'
§ · § · |¨ ¸ ¨ ¸
© ¹ © ¹

 

 
86. The proper initial speeds will be those for which the ball has  

traveled a horizontal distance somewhere between 10.78 m  
and 11.22 m while it changes height from 2.10 m to 3.05 m  
with a shooting angle of 38.0o.  Choose the origin to be at the  
shooting location of the basketball, with upward as the  
positive y direction.  Then the vertical displacement is  

0.95m,y   29.80 m s ,ya  �  0 0 0sin ,yv v T  and the (constant) x velocity is 0 0cos .xv v T   See 

the diagram (not to scale).  For the constant-velocity horizontal motion, 0 0cosxx v t v tT'    

 and so 
0 0cos

.x
t

v T
'

   For the vertical motion, apply Eq. 2-12b. 

2 21 1
0 0 02 2siny yy y v t a t v t gtT � �  �  

Substitute the expression for the time of flight and solve for the initial velocity. 

� �2 2
21 1

0 02 2 2 2
0 0 0 0 0 0

sin sin tan
cos cos 2 cos

g xx x
y v t gt v g x

v v v
T T T

T T T
'' '

 �  �  ' �
§ ·
¨ ¸
© ¹

 

� �
� �

2

0 2
02 cos tan
g x

v
y xT T
'

 
� � '

 

 For 10.78 mx'  , the shortest shot: 

� � � �
� �� �> @

22

0 2

9.80 m s 10.78 m
11.1m s

2 cos 38.0 0.95 m 10.78 m tan 38.0
.v   

q � � q
 

 For 11.22 mx'  , the longest shot: 

� � � �
� �� �> @

22

0 2

9.80 m s 11.22 m
11.3m s

2 cos 38.0 0.95 m 11.22 m tan 38.0
.v   

q � � q
 

 
 
 

0.95my  

10.78 m 11.22 mx'  �
0T
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87. The acceleration is the derivative of the velocity. 

  2 ˆ3.5m s
d
dt

  
v

a j
GG  

 Since the acceleration is constant, we can use Eq. 3-13b. 

  
� � � � � �

� � � �

2 21 1
0 0 2 2

2

ˆ ˆ ˆ ˆ1.5 3.1 2.0 3.5

ˆ ˆ 1.5 2.0 m 3.1 1.75 m

t t t t

t t

 � �  � � � �

 � � � �

r r v a i j i j

i j

G G GG

 

 The shape is  parabolic , with the parabola opening in the y-direction. 
 
88. Choose the origin to be the point from which the projectile is launched, and choose upward as the 

positive y direction.  The y displacement of the projectile is 135 m, and the horizontal range of the 
projectile is 195 m.  The acceleration in the y direction is ,ya g �  and the time of flight is 6.6 s.  
The horizontal velocity is found from the horizontal motion at constant velocity. 

195 m
      29.55 m s

6.6sx x

x
x v t v

t
'

'  o     

 Calculate the initial y velocity from the given data and Eq. 2-12b. 
� � � � � �22 21 1

0 0 0 02 2  135 m 6.6s 9.80 m s 6.6s   52.79 m sy y y yy y v t a t v v � � o  � � o   

 Thus the initial velocity and direction of the projectile are as follows.  

� � � �2 22 2
0 0

01 1

29.55m s 52.79 m s 60 m s

52.79 m s
tan tan 61

29.55m s

x y

y

x

v v v

v
v

T � �

 �  �  

   q
 

 
89. We choose to initially point the boat downstream at an angle of I  relative to straight across the 

river, because then all horizontal velocity components are in the same direction, and the algebraic 
signs might be less confusing.  If the boat should in reality be pointed upstream, the solution will 
give a negative angle.  We use BW 1.60 m sv  , the speed of the boat relative to the water (the 

rowing speed); WS 0.80 m sv  , the speed of 
the water relative to the shore (the current); 
and R 3.00 m sv  , his running speed.  The 
width of the river is w = 1200 m, and the 
length traveled along the bank is l.   The time 
spent in the water is Wt , and the time running 

is Rt .  The actual vector velocity of the boat is 

BS BW WS �v v vG G G .  That vector addition is 
illustrated on the diagram (not drawn to scale). 

 
 The distance straight across the river (w) is the velocity component across the river, times the time in 

the water.  The distance along the bank (l) is the velocity component parallel to the river, times the 
time in the water.  The distance along the bank is also his running speed times the time running.  
These three distances are expressed below. 

  � � � �BW W BW W R Rcos  ; sin  ; WSw v t v v t v tI I  �  l l  

The total time is W Rt t t � , and needs to be expressed as a function of I .  Use the distance 
relations above to write this function. 

w

l

BWvG
WSvG

I

starting point

landing pointending point



Chapter 3  Kinematics in Two or Three Dimensions; Vectors 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

77 

 

� � � �

> @ � �> @

BW W BW
W R W W W

R R R

R BW R WS BW
BW R BW R

sin sin
1

  sin sec tan
cos

WS WS

WS

v v t v v
t t t t t t

v v v

w w
v v v v v v

v v v v

I I

I I I
I

� �
 �  �  �  �

 �  � �

ª º
« »
¬ ¼

�

l

 

 To find the angle corresponding to the minimum time, we set 0
dt
dI

  and solve for the angle. 

  

� �> @

� �

� �> @

R WS BW
BW R

2
R WS BW

BW R

BW
R WS BW

R WS

sec tan

     tan sec sec 0  

tan sec sec 0    sec 0 , sin

dt d w
v v v

d d v v

w
v v v

v v

v
v v v

v v

I I
I I

I I I

I I I I I

 � �

 � �  o

� �  o   �
�

 ½
® ¾
¯ ¿

ª º¬ ¼  

 The first answer is impossible, and so we must use the second solution. 

� �1BW

R WS

1.60 m s
sin 0.421    sin 0.421 24.9

3.00 m s 0.80 m s
v

v v
I I � �  �  � o  �  � q

� �
 

To know that this is really a minimum and not a maximum, some argument must be made.  The 
maximum time would be infinity, if he pointed his point either directly upstream or downstream.  
Thus this angle should give a 
minimum.  A second derivative test 
could be done, but that would be 
algebraically challenging.  A graph of  
t vs. I  could also be examined to see 
that the angle is a minimum.  Here is a 
portion of such a graph, showing a 
minimum time of somewhat more than 
800 seconds near 25I  � q .  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH03.XLS,” on 
tab “Problem 3.89.” 
 
The time he takes in getting to the final location can be calculated from the angle. 

� � � �
� � � � � �> @� �

W
BW

BW W

R W R
R

1200 m
826.86s

cos 1.60 m s cos 24.9

sin 1.60 m s sin 24.9 0.80 m s 826.86s 104.47 m

104.47 m
34.82 s          826.86s 34.82 s 862 s

3.00 m s

WS

w
t

v

v v t

t t t t
v

I

I

   
� q

 �  � q �  

    �  �  

l

l

 

 

Thus he must point the boat 24.9q  upstream, taking 827 seconds to cross, and landing 104 m from 
the point directly across from his starting point.  Then he runs the 104 m from his landing point to 
the point directly across from his starting point, in 35 seconds, for a total elapsed time of 862 
seconds (about 14.4 minutes). 
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90. Call the direction of the flow of the river the x direction, and the direction the boat is headed (which 
is different than the direction it is moving) the y direction. 

(a) 2 2 2 2
boat rel. water rel. boat rel.
shore shore water

1.30 2.20 2.56 m sv v v �  �   

1 1.30
tan 30.6  , 90 59.4 relative to shore

2.20
T I T�  q  q �  q  

(b) The position of the boat after 3.00 seconds is given by the following. 
� � � �

� �

boat rel.
shore

ˆ1.30 2.20 m s 3.00sec

     3.90 m downstream,6.60 m across the river

d v t'   �

 

ª º¬ ¼i j
G

 

As a magnitude and direction, it would be 7.67 m away from the starting point, at an angle of 
59.4o relative to the shore. 

 
91.  First, we find the direction of the straight-line path that the boat must take 

to pass 150 m to the east of the buoy.  See the first diagram (not to scale).  
We find the net displacement of the boat in the horizontal and vertical 
directions, and then calculate the angle. 

  
� � � �

� �
� �

1

3000 m sin 22.5 150 m     3000m cos 22.5

3000 m cos 22.5
tan 64.905

3000 m sin 22.5 150 m

x y

y
x

I �

'  q � '  q

q'
   q

' q �

 

 This angle gives the direction that the boat must travel, so it is the 
direction of the velocity of the boat with respect to the shore, boat rel.

shore

vG .  So 

� �boat rel. boat rel.
shore shore

ˆ ˆcos sinv I I �v i jG
.  Then, using the second diagram (also not 

to scale), we can write the relative velocity equation relating the boat’s travel 
and the current.  The relative velocity equation gives us the following.  See 
the second diagram. 

  � � � �
boat rel. boat rel. water rel.
shore water shore

boat rel.
shore

boat rel. boat rel.
shore shore

  

ˆ ˆ ˆ ˆ ˆcos sin 2.1 cos sin 0.2   

cos 2.1cos 0.2  ;  sin 2.1sin

v

v v

I I T T

I T I T

 � o

�  � � o

 �  

v v v

i j i j i

G G G

 

 These two component equations can then be solved for boat rel.
shore

v  and .T   One technique is to isolate the 

terms with T in each equation, and then square those equations and add them.  That gives a 
quadratic equation for boat rel.

shore

,v  which is solved by boat rel.
shore

2.177 m s.v    Then the angle is found to be 

69.9  N of ET  q . 

  
92. See the sketch of the geometry.  We assume that the hill is 

sloping downward to the right.  Then if we take the point 
where the child jumps as the origin, with the x-direction 
positive to the right and the y-direction positive upwards, 
then the equation for the hill is given by tan12y x � q .  

buoy

boat path

150m

3000m

o22.5

I

boat rel.
water

vG

water rel.
shore

vG

boat rel.
shore

vG

T
I

12q
1.4 m

boat rel.
water

vG

water rel.
shore

vG

boat rel.
shore

vG

T
I
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The path of the child (shown by the dashed line) is  projectile motion.  With the same origin and 
coordinate system, the horizontal motion of the child is given by � �0 cos15x v t q , and the vertical 

motion of the child will be given by Eq. 2-12b, 21
0 2sin15y v t gt q � .  The landing point of the child 

is given by landing 1.4 cos12x  q  and landing 1.4 sin12y  � q .  Use the horizontal motion and landing 
point to find an expression for the time the child is in the air, and then use that time to find the initial 
speed. 

� �0 landing
0 0

1.4 cos12
cos15      , 

cos15 cos15
x

x v t t t
v v

q
 q o   

q q
 

 Equate the y expressions, and use the landing time.  We also use the trigonometric identity that 
� �sin12 cos15 sin15 cos12 sin 12 15 .q q � q q  q � q  

21
landing projectile 0 landing landing2

2

1
0 2

0 0

2
2 1
0 02

    1.4 sin12 sin15   

1.4 cos12 1.4 cos12
1.4 sin12 sin15   

cos15 cos15

cos 12 1.4
    3.8687 m s 3.9 m s

sin 27 cos15

y y v t gt

v g
v v

v g v

 o � q  q � o

q q
� q  q � o

q q

q
 o  |

q q

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

 
93. Find the time of flight from the vertical data, using Eq. 2-12b.  Call the floor the y = 0 location, and 

choose upwards as positive.   

  

� � � �

� � � �
� �

2 2 21 1
0 0 2 2

2

2

    3.05m 2.4 m 12 m s sin 35 9.80 m s

4.90 6.883 0.65m 0  

6.883 6.883 4 4.90 0.65
1.303s , 0.102s

2 4.90

y yy y v t a t t t

t t

t

 � � o  � q � �

� �  o

r �
  

  

 (a) Use the larger time for the time of flight.  The shorter time is the time for the ball to rise to the  
basket height on the way up, while the longer time is the time for the ball to be at the basket 
height on the way down. 

   � � � � � � � �0 cos35 12 m s cos35 1.303s 12.81m 13mxx v t v t  q  q  |  

 (b) The angle to the horizontal is determined by the components of the velocity. 

   � �
0 0

0 0 0

cos 12cos35 9.830 m s

sin 12sin 35 9.80 1.303 5.886 m/s
x

y y

v v

v v at v gt

T
T

  q  

 �  �  q �  �
 

   1 1 5.886
tan tan 30.9 31

9.830
y

x

v
v

T � � �
   � q | � q  

  The negative angle means it is below the horizontal. 
 
94. We have car rel.

ground

25m s.v    Use the diagram, illustrating  

snow rel. snow rel. car rel.
ground car ground

, �v v vG G G  to calculate the other speeds. 

car rel.
ground

snow rel.
carsnow rel.

car

25m s
cos 37     31m s

cos 37

v
v

v
q  o   

q
 

snow rel.
ground

vG

car rel.
ground

vG

snow rel.
car

vG

37q
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� �
snow rel.
ground

snow rel.
groundcar rel.

ground

tan 37     25m s tan 37 19 m s
v

v
v

q  o  q   

  
95. Let the launch point be the origin of coordinates, with right and upwards as the positive directions.  

The equation of the line representing the ground is gnd .y x �   The equations representing the 

motion of the rock are rock 0x v t  and 21
rock 2 ,y gt �  which can be combined into 21

rock rock2 2
0

.g
y x

v
 �   

Find the intersection (the landing point of the rock) by equating the two expressions for y, and so 
finding where the rock meets the ground. 

  
� �2

2 0 01
rock gnd 2 2 2

0 0

2 25m s2 2
            5.1s

9.80 m s
g v x v

y y x x x t
v g v g

 o �  � o  o      

 
96. Choose the origin to be the point at ground level directly below where the ball was hit.  Call upwards 

the positive y direction. For the ball, we have 0 28 m s ,v   0 61 ,T  q  ,ya g �  0 0.9 m,y   and  
0.0 m.y   

 (a) To find the horizontal displacement of the ball, the horizontal velocity and the time of flight are  
needed.  The (constant) horizontal velocity is given by 0 0cos .xv v T   The time of flight is 
found from Eq. 2-12b. 

� �
� �

2 21 1
0 0 0 0 02 2

2 2 1
0 0 0 0 02

1
2

      0 sin    

sin sin 4

2

y yy y v t a t y v t gt

v v g y
t

g

T

T T

 � � o  � � o

� r � �
 

�

 

� � � � � � � � � �
� � � �

2 2 21
2

21
2

28 m s sin 61 28 m s sin 61 4 9.80 m s 0.9 m
  

2 9.80 m s

  5.034 s, 0.0365 s

� q r q � �
 

�

 �

 

Choose the positive time, since the ball was hit at 0.t    The horizontal displacement of the 
ball will be found by the constant velocity relationship for horizontal motion. 

� � � � � �0 0cos 28 m s cos 61 5.034s 68.34 m 68 mxx v t v tT'    q  |  
(b) The center fielder catches the ball right at ground level.  He ran 105 m – 68.34 m = 36.66 m to  

catch the ball, so his average running speed would be as follows. 
36.66 m

7.282 m s 7.3 m s
5.034savg

d
v

t
'

   |  

 
97. Choose the origin to be the point at the top of the building from which the ball is shot, and call 

upwards the positive y direction.  The initial velocity is 0 18 m sv   at an angle of 0 42 .T  q   The 
acceleration due to gravity is .ya g �  

(a) � �0 0cos 18 m s cos 42 13.38 13m sxv v T  q  |   

� �0 0 0sin 18 m s sin 42 12.04 12 m syv v T  q  |  

 (b) Since the horizontal velocity is known and the horizontal distance is known, the time of flight  
can be found from the constant velocity equation for horizontal motion. 
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55 m
      4.111 s

13.38 m sx
x

x
x v t t

v
'

'  o     

With that time of flight, calculate the vertical position of the ball using Eq. 2-12b. 
� �� � � �� �22 21 1

0 0 2 212.04 m s 4.111 s 9.80 m s 4.111 s

  33.3 33 m

y yy y v t a t � �  � �

 �  �
 

 So the ball will strike 33 m below the top of the building. 
 
98. Since the ball is being caught at the same height from 

which it was struck, use the range formula from  
Example 3-10 to find the horizontal distance the ball  
travels. 

� � � �22
0 0

2

28 m s sin 2 55sin 2
75.175 m

9.80 m s
v

R
g

T u q
    

Then as seen from above, the location of home plate, the point where  
the ball must be caught, and the initial location of the outfielder are 
shown in the diagram.  The dark arrow shows the direction in which  
the outfielder must run.  The length of that distance is found from the 
law of cosines as applied to the triangle. 

� � � �

2 2

2 2

2 cos

  75.175 85 2 75.175 85 cos 22 32.048 m

x a b ab T � �

 � � q  
 

 The angle T  at which the outfielder should run is found from the law of sines. 
1sin 22 sin 75.175

      sin sin 22 61.49  or 118.51
32.048 m 75.175 m 32.048

T T �q
 o  q  q q§ ·

¨ ¸
© ¹

 

 Since 2 2 275.175 85 32.048 ,��  the angle must be acute, so we choose 61.49 .T  q  
 

Now assume that the outfielder’s time for running is the same as the time of flight of the ball.  The 
time of flight of the ball is found from the horizontal motion of the ball at constant velocity. 

� �0 0
0 0

75.175 m
cos       4.681s

cos 28 m s cos 55x

R
R v t v t t

v
T

T
  o    

q
 

Thus the average velocity of the outfielder must be 
32.048 m

6.8 m s
4.681savg

d
v

t
'

   at an angle of 

61q  relative to the outfielder’s line of sight to home plate. 
 
99. (a) To determine the best-fit straight line, the data was plotted in Excel and a linear trendline was  

added, giving the equation � �3.03 0.0265 m .x t �   The initial speed of the ball is the x-

component of the velocity, which from the equation has the value of 3.03m s .   The graph is 

below.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH03.XLS,” on tab “Problem 3.99a.” 

Home plate 

Location of 
catching ball 

Initial location 
of outfielder 

22o 

T�
75.175 m

85 m 

x 
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x  = 3.0347t  - 0.0265
R2 = 0.9947

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.1 0.2 0.3 0.4 0.5
t (s)

x(
m

)

 
 (b) To determine the best-fit quadratic equation, the data was plotted in Excel and a quadratic  

trendline was added, giving the equation � �20.158 0.855 6.09 m .y t t � �   Since the quadratic 

term in this relationship is 21
2 at , we have the acceleration as 212.2 m s .   The graph is below.  

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH03.XLS,” on tab “Problem 3.99b.” 

y  = 6.0919t 2 - 0.8545t  + 0.158
R2 = 0.9989

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.1 0.2 0.3 0.4 0.5t (s)

y(
m

)

 
 
100. Use the vertical motion to determine the time of flight.  Let the ground be the y = 0 level, and choose 

upwards to be the positive y-direction.  Use Eq. 2-12b. 

  

� � � �

� � � �
� �

2 2 21 1 1
0 0 0 0 0 02 2 2

2 2 2 21
20 0 0 0 0 0 0 0

1
2

    0 sin     sin 0

sin sin 4 sin sin 2
2

y yy y v t a t h v t gt gt v t h

v v g h v v gh
t

g g

T T

T T T T

 � � o  � � o � �  

r � � r �
  

 

 To get a positive value for the time of flight, the positive sign must be taken. 

  
2 2

0 0 0 0sin sin 2v v gh
t

g
T T� �

  

 To find the horizontal range, multiply the horizontal velocity by the time of flight. 

  
2 2 2

0 0 0 0 0 0 0
0 0 2 2

0 0

sin sin 2 cos sin 2
cos 1 1

sinx

v v gh v gh
R v t v

g g v
T T T TT

T
� �

   � �
ª º ª º
« » « »
« » ¬ ¼¬ ¼

 

  
2
0 0

2 2
0 0

sin 2 2
 1 1

2 sin
v gh

R
g v
T

T
 � �

ª º
« »
¬ ¼
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 As a check, if h is set to 0 in the above equation, we get 
2
0 0sin 2

,
v

R
g

T
  the level horizontal  

range formula. 
 

With the values given in the problem of 0 13.5m s ,v   2.1m,h   and 29.80 m s ,g   the following 
relationship is obtained. 

  

� �
� �

� � � �
� �

22
00 0

22 2 2
0 0 0

0 2
0

13.5 sin 2 9.80 2.1sin 2 2
1 1 1 1

2 sin 2 9.80 13.5 sin

0.226
9.30sin 1 1

sin
  

v gh
R

g v
TT

T T

T
T

�
 � �  � �

 � � �

ª ºª º
« »« »
« »¬ ¼ ¬ ¼

ª º
« »
¬ ¼

 

Here is a plot of that 
relationship.  The maximum is 
at approximately 42 .q   The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with filename  
“PSE4_ISM_CH03.XLS,” on 

tab “Problem 3.100.” 
 

As a further investigation, let us 

find 
0

dR
dT

, set it equal to 0, and 

solve for the angle. 

� �

2
0 0

2 2
0 0

1/ 22 2
00 0 0 0

2 2 2 2 2 3
0 0 0 0 0 0 0

2
0

0 02 2 2 2
0 0 0

sin 2 2
1 1

2 sin

2 2 cos2 cos 2 2 sin 2 1 2
1 1 1

2 sin 2 2 sin sin

2 2
2cos 2 1 1 sin 2 1

2 sin sin

v gh
R

g v

ghdR v gh v gh
d g v g v v

v gh gh
g v v

T
T

TT T
T T T T

T T
T

�

 � �

�
 � � � �

 � � � �

ª º
« »
¬ ¼

ª ºª º § · § ·
« »« » ¨ ¸ ¨ ¸

© ¹ © ¹« »¬ ¼ ¬ ¼

ª º
« »
¬ ¼

1/ 2

0
2 3

0 0 0

2 cos
0

sin
gh

v
T

T T

�

 
 ½ª º§ · § ·° °

« »® ¾¨ ¸ ¨ ¸
© ¹ © ¹« »° °¬ ¼¯ ¿

 

1/ 2

0
0 02 2 2 2 2 3

0 0 0 0 0 0

2 2 2 cos
2cos 2 1 1 sin 2 1

sin sin sin
gh gh gh

v v v
TT T

T T T

�

� �  �
ª ºª º § · § ·
« »« » ¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼ ¬ ¼

 

Calculate the two sides of the above equation and find where they are equal.  This again happens at 
about 42.1 .q  

 
 

0

4

8

12

16

20

24

0 15 30 45 60 75 90

Launch angle (degrees)

R
an

ge
 (m

et
er

s)



 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

84 

CHAPTER 4:  Dynamics: Newton’s Laws of Motion 
 
Responses to Questions 
 
1.  When you give the wagon a sharp pull forward, the force of friction between the wagon and the 

child acts on the child to move her forward. But the force of friction acts at the contact point between 
the child and the wagon – either the feet, if the child is standing, or her bottom, if sitting. In either 
case, the lower part of the child begins to move forward, while the upper part, following Newton’s 
first law (the law of inertia), remains almost stationary, making it seem as if the child falls backward. 

 
2.  (a) Andrea, standing on the ground beside the truck, will see the box remain motionless while the  

  truck accelerates out from under it. Since there is no friction, there is no net force on the box 
and it will not speed up. 

 (b) Jim, riding on the truck, will see the box appear to accelerate backwards with respect to his  
  frame of reference, which is not inertial. (Jim better hold on, though; if the truck bed is 

frictionless, he too will slide off if he is just standing!)   
 
3.  If the acceleration of an object is zero, the vector sum of the forces acting on the object is zero 

(Newton’s second law), so there can be forces on an object that has no acceleration. For example, a 
book resting on a table is acted on by gravity and the normal force, but it has zero acceleration, 
because the forces are equal in magnitude and opposite in direction. 

 
4.  Yes, the net force can be zero on a moving object. If the net force is zero, then the object’s 

acceleration is zero, but its velocity is not necessarily zero. [Instead of classifying objects as 
“moving” and “not moving,” Newtonian dynamics classifies them as “accelerating” and “not 
accelerating.” Both zero velocity and constant velocity fall in the “not accelerating” category.]  

 
5.  If only one force acts on an object, the object cannot have zero acceleration (Newton’s second law). 

It is possible for the object to have zero velocity, but only for an instant. For example (if we neglect 
air resistance), a ball thrown up into the air has only the force of gravity acting on it. Its speed will 
decrease while it travels upward, stop, then begin to fall back to the ground. At the instant the ball is 
at its highest point, its velocity is zero. 

 
6.  (a) Yes, there must be a force on the golf ball (Newton’s second law) to make it accelerate upward. 
 (b) The pavement exerts the force (just like a “normal force”). 
 
7.  As you take a step on the log, your foot exerts a force on the log in the direction opposite to the 

direction in which you want to move, which pushes the log “backwards.” (The log exerts an equal 
and opposite force forward on you, by Newton’s third law.) If the log had been on the ground, 
friction between the ground and the log would have kept the log from moving. However, the log is 
floating in water, which offers little resistance to the movement of the log as you push it backwards.  

 
8.  When you kick a heavy desk or a wall, your foot exerts a force on the desk or wall. The desk or wall 

exerts a force equal in magnitude on your foot (Newton’s third law). Ouch! 
 
9.  (a) The force that causes you to stop quickly is the force of friction between your shoes and the  

ground (plus the forces your muscles exert in moving your legs more slowly and bracing 
yourself). 

     (b) If we assume the top speed of a person to be around 6 m/s (equivalent to about 12 mi/h, or a 5- 
minute mile), and if we assume that it take 2 s to stop, then the maximum rate of deceleration is 
about 3 m/s². 
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10.  (a) When you first start riding a bicycle you need to exert a strong force to accelerate the bike and  
yourself. Once you are moving at a constant speed, you only need to exert a force to equal the 
opposite force of friction and air resistance. 

 (b) When the bike is moving at a constant speed, the net force on it is zero. Since friction and air  
  resistance are present, you would slow down if you didn’t pedal to keep the net force on the 

bike (and you) equal to zero. 
 
11.  The father and daughter will each have the same magnitude force acting on them as they push each 

other away (Newton’s third law). If we assume the young daughter has less mass than the father, her 
acceleration should be greater (a = F/m). Both forces, and therefore both accelerations, act over the 
same time interval (while the father and daughter are in contact), so the daughter’s final speed will 
be greater than her dad’s.  

 
12.  The carton would collapse (a). When you jump, you accelerate upward, so there must be a net 

upward force on you. This net upward force can only come from the normal force exerted by the 
carton on you and must be greater than your weight. How can you increase the normal force of a 
surface on you? According to Newton’s third law, the carton pushes up on you just as hard as you 
push down on it. That means you push down with a force greater than your weight in order to 
accelerate upwards. If the carton can just barely support you, it will collapse when you exert this 
extra force.  

 
13.  If a person gives a sharp pull on the dangling thread, the thread is likely to break below the stone. In 

the short time interval of a sharp pull, the stone barely begins to accelerate because of its great mass 
(inertia), and so does not transmit the force to the upper string quickly. The stone will not move 
much before the lower thread breaks. If a person gives a slow and steady pull on the thread, the 
thread is most likely to break above the stone because the tension in the upper thread is the applied 
force plus the weight of the stone. Since the tension in the upper thread is greater, it is likely to break 
first. 

 
14.  The force of gravity on the 2-kg rock is twice as great as the force on the 1-kg rock, but the 2-kg 

rock has twice the mass (and twice the inertia) of the 1-kg rock. Acceleration is the ratio of force to 
mass (a = F/m, Newton’s second law), so the two rocks have the same acceleration. 

 
15.  A spring responds to force, and will correctly give the force or weight in pounds, even on the Moon. 

Objects weigh much less on the Moon, so a spring calibrated in kilograms will give incorrect results 
(by a factor of 6 or so).  

 
16.  The acceleration of the box will (c) decrease. Newton’s second law is a vector equation. When you 

pull the box at an angle ș, only the horizontal component of the force, Fcosș, will accelerate the box 
horizontally across the floor.  

 
17.  The Earth actually does move as seen from an inertial reference frame. But the mass of the Earth is 

so great, the acceleration is undetectable (Newton’s second law).  
 
18.  Because the acceleration due to gravity on the Moon is less than it is on the Earth, an object with a 

mass of 10 kg will weigh less on the Moon than it does on the Earth. Therefore, it will be easier to 
lift on the Moon. (When you lift something, you exert a force to oppose its weight.) However, when 
throwing the object horizontally, the force needed to accelerate it to the desired horizontal speed is 
proportional to the object’s mass, F = ma. Therefore, you would need to exert the same force to 
throw the 2-kg object on the Moon as you would on Earth. 
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19.  A weight of 1 N corresponds to 0.225 lb. That’s about the weight of (a) an apple.  
 
20.  Newton’s third law involves forces on different objects, in this case, on the two different teams. 

Whether or not a team moves and in what direction is determined by Newton’s second law and the 
net force on the team. The net force on one team is the vector sum of the pull of the other team and 
the friction force exerted by the ground on the team. The winning team is the one that pushes hardest 
against the ground (and so has a greater force on them exerted by the ground).  

 
21.  When you stand still on the ground, two forces act on you: your weight downward, and the normal 

force exerted upward by the ground. You are at rest, so Newton’s second law tells you that the 
normal force must equal your weight, mg. You don’t rise up off the ground because the force of 
gravity acts downward, opposing the normal force.  

 
22.  The victim’s head is not really thrown backwards during the car crash. If the victim’s car was 

initially at rest, or even moving forward, the impact from the rear suddenly pushes the car, the seat, 
and the person’s body forward. The head, being attached by the somewhat flexible neck to the body, 
can momentarily remain where it was (inertia, Newton’s first law), thus lagging behind the body. 

 
23. (a) The reaction force has a magnitude of 40 N. 

(b) It points downward. 
(c) It is exerted on Mary’s hands and arms. 
(d) It is exerted by the bag of groceries.  

 
24.  No. In order to hold the backpack up, the rope must exert a vertical force equal to the backpack’s 

weight, so that the net vertical force on the backpack is zero. The force, F, exerted by the rope on 
each side of the pack is always along the length of the rope. The vertical component of this force is 
Fsinș, where ș is the angle the rope makes with the horizontal. The higher the pack goes, the smaller 
ș becomes and the larger F must be to hold the pack up there. No matter how hard you pull, the rope 
can never be horizontal because it must exert an upward (vertical) component of force to balance the 
pack’s weight. See also Example 4-16 and Figure 4-26. 

 
Solutions to Problems 
 
1. Use Newton’s second law to calculate the force. 

� � � �255 kg 1.4 m s 77 NF ma   ¦  

 
2. Use Newton’s second law to calculate the mass. 

2

265 N
    115 kg

2.30 m s
F

F ma m
a

 o    ¦¦  

 
3. In all cases, W mg , where g changes with location. 

 (a) � � � �2
Earth Earth 68 kg 9.80 m s 670 NW mg    

 (b) � � � �2
Moon Moon 68 kg 1.7 m s 120 NW mg    

 (c) � � � �2
Mars Mars 68 kg 3.7 m s 250 NW mg    

 (d) � � � �2
Space Space 68 kg 0 m s 0 NW mg    
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4. Use Newton’s second law to calculate the tension. 

� � � �2 3
T 1210 kg 1.20 m s 1452 N 1.45 10 NF F ma    | u¦  

 
5. Find the average acceleration from Eq. 2-12c, and then find the force needed from Newton’s second 

law.  We assume the train is moving in the positive direction. 

� � � �

� � � � � �
� �

2 2
0

0
0

22 2
5 6 60

0

1m s
0     120km h 33.33m s      

3.6 km h 2

0 33.33m s
3.6 10 kg 1.333 10 N 1.3 10 N

2 2 150 m

avg

avg avg

v v
v v a

x x

v v
F ma m

x x

�
    

�

��
   u  � u | � u

�

§ ·
¨ ¸
© ¹

ª º
« »
¬ ¼

 

 The negative sign indicates the direction of the force, in the opposite direction to the initial velocity. 
We compare the magnitude of this force to the weight of the train. 

 � � � �
6

5 2

1.333 10 N
0.3886

3.6 10 kg 9.80m s
avgF

mg

u
  

u
 

Thus the force is  39% of the weight  of the train. 
By Newton’s third law, the train exerts the same magnitude of force on Superman that Superman 

exerts on the train, but in the opposite direction.  So the train exerts a force of 61.3 10 Nu  in the 
forward direction on Superman. 

 
6. Find the average acceleration from Eq. 2-5.  The average force on the car is found from Newton’s 

second law.  

� � 20
0

0.278m s 0 26.4 m s
0     95km h 26.4 m s      3.30m s

1km h 8.0 savg

v v
v v a

t

� �
      �

§ ·
¨ ¸
© ¹

 

� � � �2 3950 kg 3.30 m s 3.1 10 Navg avgF ma  �  � u  

 The negative sign indicates the direction of the force, in the opposite direction to the initial velocity. 
 
7. Find the average acceleration from Eq. 2-12c, and then find the force needed from Newton’s second 

law. 

� �

� � � � � �
� �

2 2
0

0

22 2
0

0

2

13m s
7.0 kg 211.25N 210 N

2 2 2.8m

  

0

avg

avg avg

v v
a

x x

v v
F ma m

x x

�
 

�

�
    |

�

o

ª º�
« »
¬ ¼

 

 
8. The problem asks for the average force on the glove, which in a direct calculation would require 

knowledge about the mass of the glove and the acceleration of the glove.  But no information about 
the glove is given.  By Newton’s third law, the force exerted by the ball on the glove is equal and 
opposite to the force exerted by the glove on the ball.  So calculate the average force on the ball, and 
then take the opposite of that result to find the average force on the glove.  The average force on the  
ball is its mass times its average acceleration.  Use Eq. 2-12c to find the acceleration of the ball, with 

0,v   0 35.0 m s,v   and 0 0.110 m.x x�    The initial direction of the ball is the positive 
direction. 

� �
� �
� �

22 2
20

0

0 35.0 m s
5568 m s

2 2 0.110 mavg

v v
a

x x

��
   �

�
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� � � �2 20.140 kg 5568 m s 7.80 10 Navg avgF ma  �  � u  

 Thus the average force on the glove was 780 N, in the direction of the initial velocity of the ball. 
 
9. We assume that the fish line is pulling vertically on the fish, and that the fish is not jerking 

the line.  A free-body diagram for the fish is shown.  Write Newton’s second law for the fish 
in the vertical direction, assuming that up is positive.  The tension is at its maximum. 

� �T T      F F mg ma F m g a �  o  � o¦  

T
2 2

18 N
1.5kg

9.80 m s 2.5m s
F

m
g a

   
� �

 

 Thus a mass of 1.5 kg is the maximum that the fish line will support with the given  
acceleration.  Since the line broke, the fish’s mass is given by 1.5kgm !  (about 3 lbs). 

 
10. (a) The 20.0 kg box resting on the table has the free-body diagram shown.  Its weight 

is � � � �220.0 kg 9.80 m s 196 N .mg     Since the box is at rest, the net force on 

the box must be 0, and so the normal force must also be 196 N .  

(b) Free-body diagrams are shown for both boxes. 12F
G

 is the force on box 1 (the  

top box) due to box 2 (the bottom box), and is the normal force on box 1.  21F
G

 

is the force on box 2 due to box 1, and has the same magnitude as 12F
G

 by 

Newton’s third law.  N2F
G

 is the force of the table on box 2.  That is the normal 
force on box 2.  Since both boxes are at rest, the net force on each box must 
be 0.  Write Newton’s second law in the vertical direction for each box, taking 
the upward direction to be positive. 

 
� �� �

N1 11

2
N1 1 12 21

0

10.0 kg 9.80 m s 98.0 N

F F m g

F m g F F

 �  

     

¦
 

� �� �
N2 21 22

2
N2 21 2

0

98.0 N 20.0 kg 9.80 m s 294 N

F F F m g

F F m g

 � �  

 �  �  

¦
 

 
11. The average force on the pellet is its mass times its average acceleration.  The average acceleration is  

found from Eq. 2-12c. For the pellet, 0 0,v   125m s,v   and 0 0.800 m.x x�   

� �
� �

� �

22 2
20

0

125m s 0
9766 m s

2 2 0.800 mavg

v v
a

x x

��
   

�
 

� � � �3 29.20 10 kg 9766 m s 89.8 Navg avgF ma �  u   

 
12. Choose up to be the positive direction.  Write Newton’s second law for the vertical  

direction, and solve for the tension force. 
� �

� � � �
T T

2 2 4
T

  

1200 kg 9.80 m s 0.70 m s 1.3 10 N

F F mg ma F m g a

F

 �  o  �

 �  u

¦
 

 
 

Top  box (#1) 

1m gG

N1 12 F F
G G

Bottom    box  
(#2) 

2m gG

N2F
G

21F
G

mgG

TF
G

mgG

NF
G

mgG

TF
G
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mgG

TF
G13. Choose up to be the positive direction.  Write Newton’s second law for the vertical  

direction, and solve for the acceleration. 

� � � �
T

2
2T

163 N 14.0 kg 9.80 m s
1.8 m s

14.0 kg

F F mg ma

F mg
a

m

 �  

��
   

¦
 

 Since the acceleration is positive, the bucket has an  upward  acceleration. 
 
14. Use Eq. 2-12b with 0 0v   to find the acceleration. 

� � � �
� �

2 201
0 0 2 22 2

2 2 402 m 1 " "
    19.63m s 2.00 ' s

9.80 m s6.40 s
x x g

x x v t at a g
t

�
�  � o     

§ ·
¨ ¸
© ¹

 

 The accelerating force is found by Newton’s second law.   

� � � �2 4535kg 19.63m s 1.05 10 NF ma   u  

 
15. If the thief were to hang motionless on the sheets, or descend at a constant speed, the sheets 

would not support him, because they would have to support the full 75 kg.  But if he 
descends with an acceleration, the sheets will not have to support the total mass.  A free-
body diagram of the thief in descent is shown.  If the sheets can support a mass of 58 kg, 
then the tension force that the sheets can exert is � � � �2

T 58 kg 9.80 m s 568 N.F     

Assume that is the tension in the sheets.  Then write Newton’s second law for the thief, 
taking the upward direction to be positive. 

� � � �2
2T

T

568 N 75 kg 9.80 m s
    2.2 m s

75 kg
F mg

F F mg ma a
m

��
 �  o    �¦  

The negative sign shows that the acceleration is downward. 
2If the thief descends with an acceleration of 2.2 m/s  or greater, the sheets will support his descent.  

 
16. In both cases, a free-body diagram for the elevator would look like the adjacent  

diagram.  Choose up to be the positive direction.  To find the MAXIMUM tension, 
assume that the acceleration is up.  Write Newton’s second law for the elevator. 
 T   F ma F mg  � o¦  

� � � � � �� �� �2
T 0.0680 4850 kg 1.0680 9.80 m sF ma mg m a g m g g �  �  �   

4    5.08 10 N u  
To find the MINIMUM tension, assume that the acceleration is down.  Then Newton’s second law 
for the elevator becomes the following. 

� � � �
� �� �� �

T T

2 4

    0.0680

4850 kg 0.9320 9.80 m s 4.43 10 N                                            

F ma F mg F ma mg m a g m g g  � o  �  �  � �

  u

¦
 

17.  Use Eq. 2-12c to find the acceleration.  The starting speed is 
1m s

35 km h 9.72 m s.
3.6 km h

 
§ ·
¨ ¸
© ¹

 

  � � � �
� �
� �

22 2
2 2 2 20

0 0
0

0 9.72 m s
2       2779 m s 2800 m s

2 2 0.017 m
v v

v v a x x a
x x

��
 � � o    � | �

�
 

mgG

TF
G

mgG

TF
G
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  2
2

1
2779 m s 284 ' s 280 ' s

9.80 m s
g

g g |
§ ·
¨ ¸
© ¹

 

The acceleration is negative because the car is slowing down.  The required force is found by 
Newton’s second law. 

� � � �2 568 kg 2779 m s 1.9 10 NF ma   u  

 This huge acceleration would not be possible unless the car hit some very heavy, stable object. 
 
18. There will be two forces on the person – their weight, and the normal force of the 

scales pushing up on the person.  A free-body diagram for the person is shown.  
Choose up to be the positive direction, and use Newton’s second law to find the 
acceleration. 

  
� �

N

2 2

    0.75   

0.25 0.25 9.8 m s 2.5m s

F F mg ma mg mg ma

a g

 �  o �  o

 �  �  �

¦
 

Due to the sign of the result, the direction of the acceleration is  down . Thus the elevator must have 
started to move down since it had been motionless. 

 
19. (a) To calculate the time to accelerate from rest, use Eq. 2-12a. 

0
0 2

9.0 m s 0
    

1.2 m s
7.5sv v

v v at t
a

� �
 � o     

  The distance traveled during this acceleration is found from Eq. 2-12b. 
   � � � �22 21 1

0 0 2 2 1.2 m s 7.5s 33.75 mx x v t at� �     

To calculate the time to decelerate to rest, use Eq. 2-12a. 

 0
0 2

0 9.0 m s
    

1.2 m s
7.5sv v

v v at t
a

� �
 � o    

�
 

  The distance traveled during this deceleration is found from Eq. 2-12b. 
   � � � � � � � �22 21 1

0 0 2 29.0 m s 7.5s 1.2 m s 7.5s 33.75 mx x v t at�  �  � �   

To distance traveled at constant velocity is � �180 m 2 33.75 m 112.5 m.�   
To calculate the time spent at constant velocity, use Eq. 2-8. 

0
0

112.5 m s
   12.5s 13s

9.0 m s
x x

x x vt t
v

�
 � o    |  

Thus the times for each stage are: 
Accelerating: 7.5s     Constant Velocity: 13s     Decelerating: 7.5s  

(b) The normal force when at rest is mg.  From the free-body diagram, if up is the positive  
direction, we have that N .F mg ma�    Thus the change in normal force is the difference in the 
normal force and the weight of the person, or .ma      

Accelerating: 
2

2

1.2 m s
100 12%

9.80 m s
N

N

F ma a

F mg g

'
   u   

   Constant velocity: 
2

0
100 0%

9.80 m s
N

N

F ma a

F mg g

'
   u   

Decelerating: 
2

2

1.2 m s
100 12%

9.80 m s
N

N

F ma a

F mg g

' �
   u  �  

 

mgG
NF
G

mgG
NF
G
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 (c) The normal force is not equal to the weight during the accelerating and deceleration phases. 

   
7.5s 7.5s

55%
7.5s 12.5s 7.5s

�
 

� �
 

 
20. The ratio of accelerations is the same as the ratio of the force. 

  

� �

� � � �

optics optics optics optics
34

3

12

6 3
36 24

33 3

10 10 N
        1949

1.0 g 1kg 10 cm
.5 10 m 9.80 m s

1.0 cm 1000 g 1m

2000 's

 

a ma F F

g mg mg r g

ga

U S

S

�

�

   

u
  

u

|

o
§ ·
¨ ¸
© ¹

 

 
21. (a) Since the rocket is exerting a downward force on the gases, the gases will exert an  

upward force on the rocket, typically called the thrust.  The free-body diagram for the rocket 
shows two forces – the thrust and the weight.  Newton’s second law can be used to find the 
acceleration of the rocket. 

   � � � �
� �

T

7 6 2
2 2T

6

  

3.55 10 N 2.75 10 kg 9.80 m s
3.109 m s 3.1m s

2.75 10 kg

F F mg ma

F mg
a

m

 �  o

u � u�
   |

u

¦
 

 (b) The velocity can be found from Eq. 2-12a. 
   � � � �2

0 0 3.109 m s 8.0 s 24.872 m s 25 m sv v at �  �  |  

 (c) The time to reach a displacement of 9500 m can be found from Eq. 2-12b. 

   � � � �
� �

2 01
0 0 2 2

2 2 9500 m
    78s

3.109 m s
x x

x x v t at t
a

�
�  � o     

 
22. (a) There will be two forces on the skydivers – their combined weight, and the  

upward force of air resistance, A .F
G

  Choose up to be the positive direction.  Write 
Newton’s second law for the skydivers. 

� �
A

2 2

    0.25   

0.75 0.75 9.80 m s 7.35m s

F F mg ma mg mg ma

a g

 �  o �  o

 �  �  �

¦
 

  Due to the sign of the result, the direction of the acceleration is down. 
 (b) If they are descending at constant speed, then the net force on them must  

be zero, and so the force of air resistance must be equal to their weight.   

  � �� �2 3
A 132 kg 9.80 m s 1.29 10 NF mg   u  

 
23. The velocity that the person must have when losing contact with the ground is found from 

Eq. 2-12c, using the acceleration due to gravity, with the condition that their speed at the 
top of the jump is 0.  We choose up to be the positive direction. 

  
� �
� � � � � �

2 2
0 0

2 2
0 0

2    

2 0 2 9.80 m s 0.80 m 3.960 m s

v v a x x

v v a x x

 � � o

 � �  � �  
  

 

mgG

AF
G

mgG

TF
G

mgG

PF
G
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This velocity is the velocity that the jumper must have as a result of pushing with their legs.  Use that 
velocity with Eq. 2-12c again to find what acceleration the jumper must have during their push on 
the floor, given that their starting speed is 0. 

  � � � �
� �

� �

22 2
2 2 20

0 0
0

3.960 m s 0
2       39.20 m s

2 2 0.20 m
v v

v v a x x a
x x

��
 � � o    

�
 

 Finally, use this acceleration to find the pushing force against the ground. 

  
� � � � � �

P

2 2
P

  

68kg 9.80 m s 39.20 m s 3300 N

F F mg ma

F m g a

 �  o

 �  �  

¦
 

 
24. Choose UP to be the positive direction.  Write Newton’s second law for the elevator. 

  � �� �
T

2
2 2T

  

21, 750 N 2125 kg 9.80 m s
0.4353m s 0.44 m s

2125 kg

F F mg ma

F mg
a

m

 �  o

��
   |

¦
 

 
25. We break the race up into two portions.  For the acceleration phase, we call the distance 1d  and the 

time 1.t   For the constant speed phase, we call the distance 2d  and the time 2.t   We know that 

1 45m,d   2 55m,d   and 2 110.0s .t t �   Eq. 2-12b is used for the acceleration phase and Eq. 2-2 
is used for the constant speed phase.  The speed during the constant speed phase is the final speed of 
the acceleration phase, found from Eq. 2-12a. 

  � �2 21 1
0 0 1 1 2 2 1 12 2 0      ;      10.0s  ; x x v t at d at x vt d vt v t v v at�  � o  '  o   �  �  

This set of equations can be solved for the acceleration and the velocity.  

 
� � � �

� � � � � �

2 21
1 1 2 1 1 1 1 2 1 12

1 1 1
2 1 1 1 2 1 1 12 2

1 1 1

  ;  10.0s   ;      2   ;  10.0   

2 2 2
  ;  10.0 10.0     2 10.0   

d at d v t v at d at d at t

d d d
a d t t t d t d t

t t t

  �  o   � o

  �  � o  � o
 

 

� �
� �

� �
� �

� �
� �

� �

2
2 11 1 1

1 22 2
2 1 1 11

2 1

2
2 1 2 11

1
1 2 1

220.0 2 2
    

2 200s20.0
 

2

2 220.0
200 2 10.0s

d dd d d
t a

d d t dd

d d

d d d dd
v at

d d d

�
 o    

�

�

� �
   

�

ª º
« »
¬ ¼  

(a) The horizontal force is the mass of the sprinter times their acceleration. 
� �
� � � � � �

� � � �

2 2
2 1

2 2
1

2 145m
66 kg 154 N 150 N

200s 200s 45m
d d

F ma m
d

�
    |  

(b) The velocity for the second portion of the race was found above. 

  
� �2 12 145m

14.5m s
10.0s 10.0s

d d
v

�
    

 
26. (a) Use Eq. 2-12c to find the speed of the person just before striking the ground.  Take down to be  

the positive direction.  For the person, 0 0,v    0 3.9 m,y y�   and 29.80 m s .a   

� � � � � � � �2 2 2
0 0 02     2 2 9.80 m s 3.9 m 8.743 8.7 m sv v a y y v a y y�  � o  �     

mgG

TF
G
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 (b) For the deceleration, use Eq. 2-12c to find the average deceleration, choosing down to be  
positive.   

� �
� �
� �

2 2
0 0 0 0

22
20

8.743m s       0     0.70 m     2   

8.743m s
54.6 m s

2 2 0.70 m

v v y y v v a y y

v
a

y

  �  �  � o

��
   �

'

 

The average force on the torso � �TF due to the legs is found from Newton’s second 
law.  See the free-body diagram.  Down is positive. 

� � � � � �2 2 3

net T

T

  

42 kg 9.80 m s 54.6 m s 2.7 10 N

F mg F ma

F mg ma m g a

 � o

 �  �  u

 

�  �
 

 The force is upward. 
 
27. Free-body diagrams for the box and the weight are shown below.  The 

tension exerts the same magnitude of force on both objects. 
(a) If the weight of the hanging weight is less than the weight of the box, 

the objects will not move, and the tension will be the same as the 
weight of the hanging weight.  The acceleration of the box will also 
be zero, and so the sum of the forces on it will be zero.  For the box, 

N T 1 N 1 T 1 20    77.0N 30.0 N 47.0 NF F m g F m g F m g m g� �  o  �  �  �   
(b) The same analysis as for part (a) applies here.   

N 1 2 77.0 N 60.0 N 17.0 NF m g m g �  �   
(c) Since the hanging weight has more weight than the box on the table, the box on the table will be  

lifted up off the table, and normal force of the table on the box will be 0 N . 
 
28.   (a) Just before the player leaves the ground, the forces on the player are his  

weight and the floor pushing up on the player.  If the player jumps straight up, 
then the force of the floor will be straight up – a normal force.  See the first 
diagram.  In this case, while touching the floor, N .F mg!  

 

(b) While the player is in the air, the only force on the player is their weight.   
See the second diagram. 

 
29. (a) Just as the ball is being hit, ignoring air resistance, there are two main  

forces on the ball: the weight of the ball, and the force of the bat on the ball. 
 (b) As the ball flies toward the outfield, the only force on it is its weight, if  

air resistance is ignored. 
 
 
30. The two forces must be oriented so that the northerly component of the first  

force is exactly equal to the southerly component of the second force.  Thus  the 
second force must act  southwesterly .  See the diagram. 
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31. (a) We draw a free-body diagram for the piece of  
the rope that is directly above the person.   
That piece of rope should be in equilibrium.   
The person’s weight will be pulling down on that  
spot, and the rope tension will be pulling away from  
that spot towards the points of attachment.  Write Newton’s 
second law for that small piece of the rope. 

   

� � � �
� �

� �

2
1 1

T
T

72.0 kg 9.80 m s
2 sin 0    sin sin 6.988

2 2 2900 N

tan     12.5m tan 6.988 1.532 m 1.5m
12.5m

y

mg
F F mg

F

x
x

T T

T

� � �  o    q

 o  q  |

¦
 

 (b) Use the same equation to solve for the tension force with a sag of only ¼ that found above. 

   

� �

� � � �
� �

11
4

2

T

0.383m
1.532 m 0.383m  ;  tan 1.755

12.5m

72.0 kg 9.80 m s
11.5kN

2sin 2 sin1.755

x

mg
F

T

T

�    q

   
q

 

  The  rope will not break , but it exceeds the recommended tension by a factor of about 4. 
 
32. The window washer pulls down on the rope with her hands with a tension force T ,F  

so the rope pulls up on her hands with a tension force T.F   The tension in the rope is 
also applied at the other end of the rope, where it attaches to the bucket.  Thus there is 
another force TF  pulling up on the bucket.  The bucket-washer combination thus has 
a net force of T2F  upwards.  See the adjacent free-body diagram, showing only forces 
on the bucket-washer combination, not forces exerted by the combination (the pull 
down on the rope by the person) or internal forces (normal force of bucket on person). 
(a) Write Newton’s second law in the vertical direction, with up as positive.  The net  

force must be zero if the bucket and washer have a constant speed. 

� � � �
T T T

21 1
T 2 2

0  2  

72 kg 9.80 m s 352.8 N 350 N

F F F mg F mg

F mg

 � �  o  o

   |

¦
 

(b) Now the force is increased by 15%, so � �T 358.2 N 1.15 405.72 N.F     Again write Newton’s  
second law, but with a non-zero acceleration. 

� � � � � �
T T

2
2 2T

  

2 405.72 N 72 kg 9.80 m s2
1.47 m s 1.5m s

72 kg

F F F mg ma

F mg
a

m

 � �  o

��
   |

¦
 

 
33. We draw free-body diagrams for each bucket.   
 (a) Since the buckets are at rest, their acceleration is 0.  Write Newton’s  

second law for each bucket, calling UP the positive direction. 

 
� � � �

1 T1

2
T1

0  

3.2 kg 9.80 m s 31N

F F mg

F mg

 �  o

   

¦
  

mgG

TF
G

TF
G

Top (# 2) 

mgGT1F
G

T2F
G

Bottom (# 1)

mgG

T1F
G

TF
G

mgG

TF
G
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x
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� � � �

2 T2 T1

2
T2 T1

0  

2 2 3.2 kg 9.80 m s 63 N

F F F mg

F F mg mg

 � �  o

 �    

¦
 

 (b) Now repeat the analysis, but with a non-zero acceleration.  The free-body diagrams are  
unchanged. 

� � � �
1 T1

2 2
T1

2 T2 T1 T2 T1 T1

  

3.2 kg 9.80 m s 1.25m s 35.36 N 35 N

   2 71N

F F mg ma

F mg ma

F F F mg ma F F mg ma F

 �  o

 �  �  |

 � �  o  � �   

¦

¦
 

 
34. See the free-body diagram for the bottom bucket, and write Newton’s second law to find 

the tension.  Take the upward direction as positive. 

  
� � � � � �

T1 bucket bucket
bottom

2 2
T1 bucket
bottom

  

3.2 kg 9.80 m s 1.25m s 35.36 N 35 N

F F m g m a

F m g a

 �  o

 �  �  |

¦
 

 
 

Next, see the free-body for the rope between the buckets.   The mass of the cord is given by 
cord

cord .W
m

g
  

  

� � � � � �

� � � �

T1 cord T1 cord
top bottom

T1 T1 cord bucket cord
top bottom

2cord
bucket 2

  

2.0 N
     3.2 kg 11.05m s

9.80 m s

37.615 N 38 N     

F F m g F m a

F F m g a m g a m g a

W
m g a

g

 � �  o

 � �  � � �

 � �  �

 |

§ ·§ ·
¨ ¸ ¨ ¸
© ¹ © ¹

¦

 

Note that this is the same as saying that the tension at the top is accelerating the 
bucket and cord together. 

 

Now use the free-body diagram for the top bucket to find the tension at the bottom 
of the second cord. 

  � � � � � � � �

� � � � � �

T2 T1 bucket bucket
top

T2 T1 bucket bucket cord bucket
top

cord
bucket cord bucket

  

     2 2

F F F m g m a

F F m g a m g a m g a m g a

W
m m g a m g a

g

 � �  o

 � �  � � � � �

 � �  � �§ ·
¨ ¸
© ¹

¦
 

  � � � �2
2

2.0 N
    2 3.2 kg 11.05m s 72.98 N 73N

9.80 m s
 �  |
§ ·
¨ ¸
© ¹

 

Note that this is the same as saying that the tension in the top cord is accelerating the two buckets 
and the connecting cord. 
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35. Choose the y direction to be the “forward” direction for the motion of the snowcats, and the x 
direction to be to the right on the diagram in the textbook.  Since the housing unit moves in the 
forward direction on a straight line, there is no acceleration in the x direction, and so the net force in 
the x direction must be 0.  Write Newton’s second law for the x direction. 

� �
A B A B

A
B

0    sin 48 sin 32 0  

4500 N sin 48sin 48
6311N 6300 N

sin 32 sin 32

x x xF F F F F

F
F

 �  o � �  o

qq
   |

q q

q q¦
 

 Since the x components add to 0, the magnitude of the vector sum of the two forces will just be the  
sum of their y components.   

� � � �A B A Bcos48 cos32 4500 N cos48 6311N cos32

8363N 8400 N        
y y yF F F F F �  �  �

 |

q q q q¦
 

 
36. Since all forces of interest in this problem are horizontal, draw the free-body diagram showing only 

the horizontal forces.  T1F
G

 is the tension in the coupling between the locomotive and the first car, and 

it pulls to the right on the first car.  T2F
G

 is the tension in the coupling between the first car an the 

second car.  It pulls to the right on car 2, labeled T2RF
G

and to the left on car 1, labeled T2L.F
G

  Both cars 

have the same mass m and the same acceleration a.  Note that T2R T2L 2TF  F F
G G

 by Newton’s third 
law. 

 
 
 

Write a Newton’s second law expression for each car.   

1 1 2 2 2     T T TF F F ma F F ma �    ¦ ¦  
 Substitute the expression for  ma  from the second expression into the first one. 

1 2 2 T1 T2 T1 T2    2     2T T TF F ma F F F F F�   o  o   

 This can also be discussed in the sense that the tension between the locomotive and the first car is  
pulling 2 cars, while the tension between the cars is only pulling one car. 

 
37. The net force in each case is found by vector addition with components. 
 (a) Net x 1 Net y 210.2 N     16.0 NF F F F �  �  �  �  

� � � �2 2 1
Net

16.0
10.2 16.0 19.0 N      tan 57.48

10.2
F T � �

 � � �    
�

q  

  The actual angle from the x-axis is then 237.48q .  Thus the net force is 
  Net 19.0 N at 237.5F  q  

  2Net 19.0 N
1.03m s at 237.5

18.5kg
F

a
m

   q  

 

 (b) o o
Net x 1 Net y 2 1cos30 8.833 N     sin 30 10.9 NF F F F F   �   

� � � �2 2
Net

1 2Net

8.833 N 10.9 N 14.03N 14.0 N

10.9 14.03 N
tan 51.0 0.758m s  at 51.0

8.833 18.5 kg
     

F

F
a

m
T �

 �  |

  q    q
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38. Since the sprinter exerts a force of 720 N on the ground at an angle of 22o 
below the horizontal, by Newton’s third law the ground will exert a force of  
720 N on the sprinter at an angle of 22o above the horizontal.  A free-body 
diagram for the sprinter is shown. 

 (a) The horizontal acceleration will be found from the net  
horizontal force. Using Newton’s second law, we have the following. 

� �P
P

2 1 2

720 N cos 22cos 22
cos 22     

65 kg

                                                   10.27 m s 1.0 10 m s

x x x

F
F F ma a

m

qq
  o   

 | u

q¦
 

(b)  Eq. 2-12a is used to find the final speed.  The starting speed is 0.       

� �� �2
0     0 10.27 m s 0.32 s 3.286 m s 3.3m sv v at v at � o  �   |  

 

39. During the time while the force is 0 ,F  the acceleration is 0 .F
a

m
   Thus the distance traveled would 

be given by Eq. 2-12b, with a 0 starting velocity, 2 201 1
0 0 02 2 .F

x x v t at t
m

�  �    The velocity at the 

end of that time is given by Eq. 2-12a,  0
0 00 .F

v v at t
m

 �  � § ·
¨ ¸
© ¹

  During the time while the force is 

02 ,F  the acceleration is 02 .F
a

m
   The distance traveled during this time interval would again be 

given by Eq. 2-12b, with a starting velocity of 0
0.

F
t

m

§ ·
¨ ¸
© ¹

 

 2 2 20 0 01 1
0 0 0 0 0 02 2

2
2

F F F
x x v t at t t t t

m m m
�  �  �  ª º§ · § ·

¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼
 

The total distance traveled is 2 2 20 0 01
0 0 02

5
2

2
.F F F

t t t
m m m

�   

 
40. Find the net force by adding the force vectors.  Divide that net force by the mass to find the 

acceleration, and then use Eq. 3-13a to find the velocity at the given time. 

  
� � � � � � � �

� � � � � � � �0

ˆ ˆ ˆ ˆ ˆ ˆ16 12 N 10 22 N 6 34 N 3.0 kg

ˆ ˆ ˆ ˆ6 34 N 6 34 N ˆ ˆ       0 3.0s 6 34 m s
3.0 kg 3.0 kg

m

t

 � � � �  �   o

� �
  �  �  �

¦F i j i j i j a a

i j i j
a v v a i j

G G G

G GG G  

 In magnitude and direction, the velocity is 35m s  at an angle of 80q . 
 
41. For a simple ramp, the decelerating force is the component of gravity 

along the ramp.  See the free-body diagram, and use Eq. 2-12c to  
calculate the distance. 

� �
2 2 2 2

0 0 0
0

sin     sin

0
2 2 sin 2 sin

xF mg ma a g

v v v v
x x

a g g

T T

T T

 �  o  �

� �
�    

�

¦
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� �

� �

2

2
2

1m s
140 km h

3.6km h
        4.0 10 m

2 9.80m s sin11
  u

q

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

 
42. The average force can be found from the average acceleration.  Use Eq. 2-12c to find the 

acceleration. 

  

� � � �

� � � � � �
� �

2 2
2 2 0

0 0
0

22 2
0

0

2       
2

0 10.0 m s
60.0kg 120 N

2 2 25.0 m

v v
v v a x x a

x x

v v
F ma m

x x

�
 � � o  

�

��
    �

�

 

 The average retarding force is 21.20 N10u , in the direction opposite to the child’s velocity. 
 
43. From the free-body diagram, the net force along the plane on the skater is 

sin ,mg T  and so the acceleration along the plane is sin .g T   We use the 
kinematical data and Eq. 2-12b to write an equation for the acceleration, 
and then solve for the angle. 

  � � � � � �
� � � �

2 21 1
0 0 02 2

1 10
22 2

sin   

2 18 m 2 2.0 m s 3.3s2
sin sin 12

9.80 m s 3.3s

x x v t at v t gt

x v t

gt

T

T � �

�  �  � o

�' �
   q

§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

 

 
 
44. For each object, we have the free-body diagram shown, assuming that the string doesn’t 

break.  Newton’s second law is used to get an expression for the tension.  Since the string 
broke for the 2.10 kg mass, we know that the required tension to accelerate that mass was 
more than 22.2 N.  Likewise, since the string didn’t break for the 2.05 kg mass, we know 
that the required tension to accelerate that mass was less than 22.2 N.  These relationships 
can be used to get the range of accelerations. 

  

� �

� � � �

T T

T T
max max

T 2.10 T 2.05
max max 2.10 2.05

    

  ;        ;    

F F mg ma F m a g

F F

F m a g F m a g g a g a
m m

 �  o  �

� � ! � o � � � ! o

¦
 

  

T T
max max 2 2

2.10 2.05

2 2 2 2

22.2 N 22.2 N
    9.80 m s 9.80 m s   

2.10 kg 2.05kg

0.77 m s 1.03m s     0.8m s 1.0 m s

F F

g a g a
m m

a a

� � � � o � � � � o

� � o � �

 

45. We use the free-body diagram with Newton’s first law for the stationary lamp to   
find the forces in question.  The angle is found from the horizontal displacement and 
the length of the wire. 

  (a) 1 0.15m
sin 2.15

4.0 m
T �  q  

net T H H T
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� � � �

net T T
y

2
H

cos 0     
cos

sin tan 27 kg 9.80 m s tan 2.15 9.9 N
cos

mg
F F mg F

mg
F mg

T
T

T T
T

 �  o  o

   q  

 

(b) 
� � � �2

T

27 kg 9.80 m s
260 N

cos cos 2.15
mg

F
T

   
q

 

 
46. (a) In the free-body diagrams below, ABF

G
 = force on block A exerted by block B, BAF

G
 = force on  

block B exerted by block A, BCF
G

 = force on block B exerted by block C, and CBF
G

 = force on 

block C exerted by block B.  The magnitudes of BAF
G

 and ABF
G

 are equal, and the magnitudes of 

BCF
G

 and CBF
G

 are equal, by Newton’s third law. 

 

(b) All of the vertical forces on each block add up to zero, since there is no acceleration in the  
vertical direction.  Thus for each block, NF mg .  For the horizontal direction, we have the 
following. 

� �AB BA BC CB A B C
A B C

    
F

F F F F F F F m m m a a
m m m

 � � � �   � � o  
� �¦   

 (c) For each block, the net force must be ma by Newton’s second law.  Each block has the same  
acceleration since they are in contact with each other.  

A
A net

A B C

m
F F

m m m
 

� �
 B

B net
A B C

m
F F

m m m
 

� �
 C

3
A B C

net

m
F F

m m m
 

� �
 

(d) From the free-body diagram, we see that for mC, C
CB C net

A B C

.m
F F F

m m m
  

� �
  And by 

Newton’s third law, C
BC CB

A B C

.m
F F F

m m m
  

� �
  Of course, 23F

G
 and 32F

G
 are in opposite 

directions.  Also from the free-body diagram, we use the net force on mA. 
A A

AB A net AB
A B C A B C

B C
AB

A B C

    
m m

F F F F F F F
m m m m m m

m m
F F

m m m

�   o  � o
� � � �

�
 

� �

 

 By Newton’s third law, 2 3
BC AB

1 2 3

.m m
F F F

m m m

�
  

� �
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 (e) Using the given values, 2

1 2 3

96.0 N
3.20 m s

30.0 kg
.F

a
m m m

   
� �

  Since all three masses  

are the same value, the net force on each mass is � � � �2
net 10.0 kg 3.20 m s 32.0 NF ma   . 

This is also the value of CBF  and BC.F    The value of ABF  and BAF  is found as follows.  

� � � � � �2
AB BA 2 3 20.0 kg 3.20 m s 64.0 NF F m m a  �    

  To summarize: 
   A net B net C net AB BA BC CB32.0 N         64.0 N         32.0 NF F F F F F F        

The values make sense in that in order of magnitude, we should have BA CBF F F! ! , since F is the 
net force pushing the entire set of blocks, FAB is the net force pushing the right two blocks, and FBC 
is the net force pushing the right block only. 

 
47. (a) Refer to the free-body diagrams shown.  With the stipulation  

that the direction of the acceleration be in the direction of motion 
for both objects, we have C E .a a a   

   E T E T C C  ;  m g F m a F m g m a�  �   

 (b) Add the equations together to solve them. 
� � � �

� �

E T T C E C

E C E C

2 2E C

E C

  

  

1150kg 1000kg
9.80m s 0.68m s

1150kg 1000kg

m g F F m g m a m a

m g m g m a m a

m m
a g

m m

� � �  � o

�  � o

� �
   

� �

 
� � � � � � � �2E C C E

T C C
E C E C

2 1000kg 1150 kg2
9.80m s

1150kg 1000kg

    10,483N 10,500 N

m m m m
F m g a m g g g

m m m m

�
 �  �   

� � �

 |

§ ·
¨ ¸
© ¹  

 
48. (a) Consider the free-body diagram for the block on the frictionless  

surface.  There is no acceleration in the y direction.  Use Newton’s 
second law for the x direction to find the acceleration. 

 
� �2 2

sin   

sin 9.80m s sin 22.0 3.67 m s

xF mg ma

a g

T

T

  o

  q  

¦
 

 (b) Use Eq. 2-12c with 0 0v   to find the final speed. 

   � � � � � � � �2 2 2
0 0 02     2 2 3.67 m s 12.0 m 9.39 m sv v a x x v a x x�  � o  �    

 
49. (a) Consider the free-body diagram for the block on the frictionless  

surface.  There is no acceleration in the y direction.  Write Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gT T  o  ¦  

Use Eq. 2-12c with 0 4.5m sv  �  and 0 m sv   to find the distance 
that it slides before stopping.  
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T�T�
mgG
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� �

� � � �
� �

2 2
0 0

22 2
0

0 2

2   

0 4.5m s
2.758m 2.8m up the plane

2 2 9.80 m s sin 22.0

v v a x x

v v
x x

a

�  � o

� ��
�    � |

q

 

(b) The time for a round trip can be found from Eq. 2-12a.  The free-body diagram (and thus the 
acceleration) is the same whether the block is rising or falling.  For the entire trip, 0 4.5m sv  �  
and 4.5m s.v  �   

� � � �
� �

0
0 2 o

4.5m s 4.5m s
    2.452s 2.5s

9.80 m s sin 22
v v

v v at t
a

� ��
 � o    |  

 
50. Consider a free-body diagram of the object.  The car is moving to the right.  The 

acceleration of the dice is found from Eq. 2-12a. 
20

0

28 m s 0
      4.67 m s

6.0 sx x

v v
v v a t a

t

� �
 �  o     

Now write Newton’s second law for both the vertical (y) and horizontal (x) 
directions. 

T T Tcos 0          sin
cosy x x

mg
F F mg F F F maT T

T
 �  o    ¦ ¦  

Substitute the expression for the tension from the y equation into the x equation. 

T

2
1 1 o o

2

sin sin tan     tan
cos

4.67 m s
tan tan 25.48 25

9.80 m s

x x

x

mg
ma F mg a g

a

g

T T T T
T

T � �

   o  

   |
 

 
51. (a) See the free-body diagrams included. 
 

 (b) For block A, since there is no motion in the vertical direction,  
we have NA A .F m g   We write Newton’s second law for the x 

direction:  A T A A .x xF F m a  ¦   For block B, we only need to 

consider vertical forces:  B B T B B .y yF m g F m a �  ¦   Since the 
two blocks are connected, the magnitudes of their accelerations 
will be the same, and so let  A B .x ya a a    Combine the two force equations from above, and 
solve for a by substitution. 

 
T A B T B B A B             F m a m g F m a m g m a m a �  o �  o  

B A B
A B B T A

A B A B

         
m m m

m a m a m g a g F m a g
m m m m

�  o    
� �

 

 
52. (a) From Problem 51, we have the acceleration of each block.  Both blocks have the same  

acceleration. 

   � � � �
2 2 2B

A B

5.0 kg
9.80 m s 2.722 m s 2.7 m s

5.0 kg 13.0 kg
m

a g
m m

   |
� �

 

 

y 

NAF
G

Bm gG

TF
G

Am gG

 x 

TF
G

T�

mgG

TF
G
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 (b) Use Eq. 2-12b to find the time. 

   � � � �
� �

2 01
0 0 2 2

2 2 1.250 m
    0.96 s

2.722 m s
x x

x x v t at t
a

�
�  � o     

 (c) Again use the acceleration from Problem 51. 

   B B
A

A B A B

1 1
100 100        99 99 kgB

m m
a g g m m

m m m m
  o  o   

� �
 

 
53. This problem can be solved in the same way as problem 51, with the modification that we increase 

mass Am  by the mass of Al  and we increase mass Bm  by the mass of B.l   We take the result from 
problem 51 for the acceleration and make these modifications.  We assume that the cord is uniform, 
and so the mass of any segment is directly proportional to the length of that segment. 

  

B B
B B

B A B A B

A B A B CA B
A B

A B A B

    
C C

C C

m m m m
m

a g a g g
m m m m m

m m m m

� �
� �

 o   
� � �

� � �
� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l l

l l l l

l l

l l l l

 

Note that this acceleration is NOT constant, because the lengths Al  and Bl  are functions of time.  
Thus constant acceleration kinematics would not apply to this system. 

 
54. We draw a free-body diagram for each mass.  We choose UP to be the 

positive direction.  The tension force in the cord is found from analyzing 
the two hanging masses.   Notice that the same tension force is applied to 
each mass.  Write Newton’s second law for each of the masses. 

T 1 1 1 T 2 2 2     F m g m a F m g m a�  �   
Since the masses are joined together by the cord, their accelerations will 
have the same magnitude but opposite directions.  Thus 1 2.a a �   
Substitute this into the force expressions and solve for the tension force. 

1 T
T 1 1 2 T 1 1 2 2

1

1 T 1 2
T 2 2 2 2 T

1 1 2

        

2
    

m g F
F m g m a F m g m a a

m

m g F m m g
F m g m a m F

m m m

�
�  � o  � o  

�
�   o  

�
§ ·
¨ ¸
© ¹

 

Apply Newton’s second law to the stationary pulley. 
� � � � � �2

1 2
C C

1 2

4 3.2 kg 1.2 kg 9.80 m s4
2 0    2 34 N

4.4 kgT T

m m g
F F F F

m m
�  o     

�
 

 
55. If m doesn’t move on the incline, it doesn’t move in the vertical direction, and 

so has no vertical component of acceleration.  This suggests that we analyze 
the forces parallel and perpendicular to the floor.  See the force diagram for 
the small block, and use Newton’s second law to find the acceleration of the 
small block. 

  
N N

N
N

cos 0    
cos

sin sin
sin     tan

cos

y

x

mg
F F mg F

F mg
F F ma a g

m m

T
T

T TT T
T

 �  o  

  o    

¦

¦
 

m2 
1.2 kg 

m1 
3.2 kg

2m gG 1m gG

TF
G

TF
G

TF
G

TF
G

CF
G

mgG

NF
G

T

T
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Since the small block doesn’t move on the incline, the combination of both masses has the same 
horizontal acceleration of tan .g T   That can be used to find the applied force. 

� � � �applied tanF m M a m M g T �  �  

Note that this gives the correct answer for the case of 0,T  , where it would take no applied force to 
keep m stationary.  It also gives a reasonable answer for the limiting case of 90 ,T o q  where no 
force would be large enough to keep the block from falling, since there would be no upward force to 
counteract the force of gravity. 

 
56. Because the pulleys are massless, the net force on them must be 0.  

Because the cords are massless, the tension will be the same at both 
ends of the cords.  Use the free-body diagrams to write Newton’s 
second law for each mass.  We are using the same approach taken in 
problem 47, where we take the direction of acceleration to be 
positive in the direction of motion of the object.  We assume that Cm  
is falling, Bm  is falling relative to its pulley, and Am  is rising 
relative to its pulley.  Also note that if the acceleration of Am  
relative to the pulley above it is Ra , then A R C.a a a �   Then, the 
acceleration of Bm  is B R C ,a a a �  since Ca  is in the opposite 
direction of Ba . 

  

� �
� �

A TA A A A A R C

B B TA B B B R C

C C TC C C

TC TA TC TA

:   

:   

:   

pulley:  2 0    2

m F F m g m a m a a

m F m g F m a m a a

m F m g F m a

F F F F F

 �   �

 �   �

 �  

 �  o  

¦
¦
¦
¦

  

 Re-write this system as three equations in three unknowns TA R C, , .F a a  

  

� �
� �

TA A A R C TA A C A R A

B TA B R C TA B C B R B

C TA C C TA C C C

       

       

2               2             

F m g m a a F m a m a m g

m g F m a a F m a m a m g

m g F m a F m a m g

�  � o � �  

�  � o � �  

�  o �  

 

This system now needs to be solved.  One method to solve a system of linear equations is by 
determinants.  We show that for C.a  

 

� � � �
� � � �

A A

B B

C B C A B A C B
C

A A B C A B A C B

B B

C

A B A C B C A C B C A B

A B A C B C A B A C B C

1
1
2 0 2 2

1 2 2
1
2 0

4 4
   

4 4

m m

m m

m m m m m m m m
a

m m m m m m m m m

m m

m

m m m m m m m m m m m m

m m m m m m m m m m m m

g g

g g

�

� � � �
  

� � � � � �
�

� � � �
  
� � � � �

 

 
Similar manipulations give the following results. 

Cm gG

TCF
G

Cm Ca

Am gG

TAF
G

Am Aa

Bm gG

TAF
G

Bm Ba

TCF
G

TAF
G

TAF
G

Ca
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� �A C B C

R
A B A C B C

2
4

m m m m
a

m m m m m m
g

�
 

� �
  ;  A B C

TA
A B A C B C

4
4

m m m
F

m m m m m m
g 

� �
 

(a) The accelerations of the three masses are found below. 

  

� �A C B C A C B C A B
A R C

A B A C B C A B A C B C

A C B C A B

A B A C B C

2 4
4 4

3 4
    

4

m m m m m m m m m m
a a a g g

m m m m m m m m m m m m

m m m m m m
g

m m m m m m

� � �
 �  �

� � � �

� �
 

� �

 

  

� �A C B C A C B C A B
B R C

A B A C B C A B A C B C

A C B C A B

A B A C B C

2 4
4 4

3 4
   

4

m m m m m m m m m m
a a a g g

m m m m m m m m m m m m

m m m m m m
g

m m m m m m

� � �
 �  �

� � � �

� �
 

� �

 

  A C B C A B
C

A B A C B C

4
4
m m m m m m

a g
m m m m m m

� �
 

� �
 

(b) The tensions are shown below. 

  A B C A B C
TA TC TA

A B A C B C A B A C B C

4 8
2

4 4
  ;  m m m m m m

F F F
m m m m m m m m m m m m

g g   
� � � �

 

 
57. Please refer to the free-body diagrams given in the textbook for this problem.  Initially, treat the two  

boxes and the rope as a single system.  Then the only accelerating force on the system is P.F
G

  The 
mass of the system is 23.0 kg, and so using Newton’s second law, the acceleration of the system is 

2 2P 35.0 N
1.522 m s 1.52 m s

23.0 kg
.F

a
m

   |   This is the acceleration of each part of the system. 

 

Now consider Bm  alone.  The only force on it is BT ,F
G

 and it has the acceleration found above.  Thus 

BTF  can be found from Newton’s second law. 

� � � �2
BT B 12.0 kg 1.522 m s 18.26 N 18.3 NF m a   |  

 

Now consider the rope alone.  The net force on it is TA TB,�F F
G G

 and it also has the acceleration found 
above.  Thus TAF  can be found from Newton’s second law.   

� � � �2
TA TB TA TB C    18.26 N 1.0 kg 1.522 m s 19.8 NCF F m a F F m a�  o  �  �   

  
58. First, draw a free-body diagram for each mass.  Notice that the same  

tension force is applied to each mass.  Choose UP to be the positive  
direction.  Write Newton’s second law for each of the masses. 

T 2 2 2 T 1 1 1     F m g m a F m g m a�  �   
Since the masses are joined together by the cord, their accelerations will 
have the same magnitude but opposite directions.  Thus 1 2.a a �   
Substitute this into the force expressions and solve for the acceleration by 
subtracting the second equation from the first. 

m2 
2.2 kg 

m1 
3.6 kg 

2m gG 1m gG

TF
G

TF
G
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� �

T 1 1 2 T 1 1 2

T 2 2 2 1 1 2 2 2 2 1 2 1 2 2 2

2 21 2
2

1 2

    

        

3.6 kg 2.2 kg
9.80 m s 2.366 m s

3.6 kg 2.2 kg

F m g m a F m g m a

F m g m a m g m a m g m a m g m g m a m a

m m
a g

m m

�  � o  �

�  o � �  o �  �

� �
   

� �

 

The lighter block starts with a speed of 0, and moves a distance of 1.8 meters with the acceleration 
found above.  Using Eq. 2-12c, the velocity of the lighter block at the end of this accelerated motion 
can be found. 

� � � � � � � �2 2 2 2
0 0 0 02     2 0 2 2.366 m s 1.8m 2.918m sv v a y y v v a y y�  � o  � �  �   

Now the lighter block has different conditions of motion.  Once the heavier block hits the ground, 
the tension force disappears, and the lighter block is in free fall.  It has an initial speed of 2.918 m/s 
upward as found above, with an acceleration of –9.80 m/s2 due to gravity.  At its highest point, its 
speed will be 0.  Eq. 2-12c can again be used to find the height to which it rises. 

� � � � � �
� �

22 2
2 2 0

0 0 0 2

0 2.918m s
2     0.434 m

2 2 9.80 m s
v v

v v a y y y y
a

��
�  � o �    

�
 

Thus the total height above the ground is 1.8 m + 1.8 m + 0.43 m = 4.0m .  

 
59. The force F

G
 is accelerating the total mass, since it is the only force external to the 

system.  If mass Am  does not move relative to C,m  then all the blocks have the 
same horizontal acceleration, and none of the blocks have vertical acceleration.  We 
solve for the acceleration of the system and then find the magnitude of F

G
 from 

Newton’s second law.  Start with free-body diagrams for Am  and B.m  

  B T B

T B T B

:   sin  ;

         cos 0    cos
x

y

m F F m a

F F m g F m g

T

T T

  

 �  o  
¦
¦

 

 Square these two expressions and add them, to get a relationship between TF  and a. 

� � � � � �
2 2 2 2 2 2 2 2

T B T B

2 2 2 2 2 2 2 2 2 2
T B T B

sin   ;  cos   

sin cos     

F m a F m g

F m g a F m g a

T T

T T

  o

�  � o  �
 

 Now analyze A.m  
2 2 2

A T A T A N A:        0  ;  x ym F F m a F m a F F m g  o    �¦ ¦  

Equate the two expressions for 2
T ,F  solve for the acceleration and then finally the magnitude of the 

applied force. 

� � � � � �

� � � �
� �

2 2
2 2 2 2 2 2 2 B B

T B A 2 2 2 2
A B A B

A B C B
A B C 2 2

A B

          
m g m g

F m g a m a a a
m m m m

m m m m
F m m m a g

m m

 �  o  o  o
� �

� �
 � �  

�

 

 
 
 
 
 

Am gG
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60. The velocity can be found by integrating the acceleration function, and the position can be found by 
integrating the position function. 

  2 2 2 2 3

0 0

              
3

v tC dv C C C
F ma Ct a t dv t dt dv t dt v t

m dt m m m
  o   o  o  o  ³ ³   

3 3 3 4

0 0

            
3 3 3 12

x tC dx C C C
v t dx t dt dx t dt x t

m dt m m m
  o  o  o  ³ ³  

 
61. We assume that the pulley is small enough that the part of the cable that is touching 

the surface of the pulley is negligible, and so we ignore any force on the cable due to 
the pulley itself.  We also assume that the cable is uniform, so that the mass of a 
portion of the cable is proportional to the length of that portion.  We then treat the 
cable as two masses, one on each side of the pulley.  The masses are given by 

1

y
m M 

l
 and 2 .

y
m M

�
 
l

l
  Free-body diagrams for the masses are shown. 

 (a) We take downward motion of 1m  to be the positive direction for 1,m   
and upward motion of 2m  to be the positive direction for 2.m   Newton’s second 
law for the masses gives the following. 

 
� �
� �

1 2
net 1 1 T 1 net 2 T 2

1 2

 ;      

2 2
1

m m
F m g F m a F F m g a g

m m

y y
M M y y y y

a g g g g
y y y yM M

�
 �   � o  

�

�
� � � �

    �
� � ��

§ ·
¨ ¸
© ¹

l

l ll l

l l l l

l l

  

(b) Use the hint supplied with the problem to set up the equation for the velocity.  The cable starts  
with a length 0y  (assuming 1

0 2y ! l ) on the right side of the pulley, and finishes with a length 
l  on the right side of the pulley. 

  � �
f

f

0 0

2
2 201 1

02 20
0

0
0

2 2
1     1   

2
1         1   

2 1

v
v

f

y y

f

y dv dv dy dv y
a g v gdy vdv

dt dy dt dy

y y y
gdy vdv g y v gy v

y
v gy

 �    o �  o

�  o �  o �  o

 �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ ·§ · § ·
¨ ¸ ¨ ¸¨ ¸© ¹ © ¹© ¹

§ ·
¨ ¸
© ¹

³ ³
ll

l l

l l l

l

 

(c) For 2
0 3y  l , we have � �

2
30 2 2

0 3 32 1 2 1 .f

y
v gy g g �  �  § · § ·

¨ ¸ ¨ ¸
© ¹ © ¹

l
l l

l l
 

 

62.  The acceleration of a person having a 30 “g” deceleration is � �
2

29.80 m s
30" " 294 m s

" "
.a g

g
  

§ ·
¨ ¸
© ¹

   

The average force causing that acceleration is � � � �2 465 kg 294 m s 1.9 10 N .F ma   u   Since  

the person is undergoing a deceleration, the acceleration and force would both be directed opposite 
to the direction of motion.  Use Eq. 2-12c to find the distance traveled during the deceleration.  Take 

2m gG

TF
G

2m

1m

1m gG
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the initial velocity to be in the positive direction, so that the acceleration will have a negative value, 
and the final velocity will be 0. 

� �

� � � � � �
� �

0

22 2
2 2 0

0 0 0 2

1m s
95km h 26.4 m s

3.6 km h

0 26.4 m s
2     1.2 m

2 2 294 m s

v

v v
v v a x x x x

a

  

��
�  � o �    

�

§ ·
¨ ¸
© ¹

 

 
63. See the free-body diagram for the falling purse.  Assume that down is the positive  

direction, and that the air resistance force frF
G

 is constant.  Write Newton’s second law for 
the vertical direction. 

� �fr fr    F mg F ma F m g a �  o  �¦  

 Now obtain an expression for the acceleration from Eq. 2-12c with 0 0v  , and substitute 
 back into the friction force. 

� � � �
2

2 2
0 0

0

2     
2

v
v v a x x a

x x
�  � o  

�
 

� � � � � �
� �

22
2

0

27 m s
2.0 kg 9.80 m s 6.3N

2 2 55 mf

v
F m g

x x
 �  �  

�

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹
 

 
64. Each rope must support 1/6 of Tom’s weight, and so must have a vertical component of tension 

given by 1
vert 6T mg .  For the vertical ropes, their entire tension is vertical. 

 � � � �2 21 1
1 6 6 74.0 kg 9.80 m s 120.9 N 1.21 10 NT mg   | u  

For the ropes displaced 30o from the vertical, see the first diagram. 
21

2 vert 2 26

120.9 N
cos 30     1.40 10 N

6cos 30 cos 30
mg

T T mg T q  o    u
q q

 

For the ropes displaced 60o from the vertical, see the second diagram.  
21

3 vert 3 36

120.9 N
cos 60     2.42 10 N

6cos 60 cos 60
mg

T T mg T q  o    u
q q

 

The corresponding ropes on the other side of the glider will also have the same 
tensions as found here. 

 
65. Consider the free-body diagram for the soap block on the frictionless  

surface.  There is no acceleration in the y direction.  Write Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gT T  o  ¦  

Use Eq. 2-12b with 0 0v   to find the time of travel. 

� � � � � �
� � � �

21
0 0 2

0 0
2

  

2 2 2 3.0 m
2.0s

sin 9.80 m s sin 8.5

x x v t at

x x x x
t

a g T

�  � o

� �
    

q

 

Since the mass does not enter into the calculation, the  time would be the same  for the heavier bar of 
soap. 
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66. See the free-body diagram for the load.  The vertical component of the tension force must 
be equal to the weight of the load, and the horizontal component of the tension 
accelerates the load.  The angle is exaggerated in the picture. 

� �

T
net T net T
x y

2 2
T H

sin
sin       ;  cos 0  

sin
    tan 9.80 m s tan 5.0 0.86 m s

cos cos

F
F F ma a F F mg

m

mg mg
F a g

m

TT T

T T
T T

  o   �  o

 o    q  

  

 
67. (a) Draw a free-body diagram for each block.  Write  

Newton’s second law for each block.  Notice that the 
acceleration of block A in the yA direction will be zero, 
since it has no motion in the yA direction. 

A N A N Acos 0    cosyF F m g F m gT T �  o  ¦
 A A T A Asinx xF m g F m aT �  ¦  

� �B T B B B T B B    y y yF F m g m a F m g a �  o  �¦  

Since the blocks are connected by the cord, B A .y xa a a    Substitute the expression for the 
tension force from the last equation into the x direction equation for block 1, and solve for the 
acceleration. 

� �
� �
� �

A B A A B A B

A B

A B

sin     sin

sin

m g m g a m a m g m g m a m a

m m
a g

m m

T T

T

� �  o �  �

�
 

�

 

 (b) If the acceleration is to be down the plane, it must be positive. That will happen if  
� �A Bsin  down the plane .m mT !  The acceleration will be up the plane (negative) if 

� �A Bsin  up the plane .m mT �  If  A Bsin ,m mT   then the system will not accelerate.  It will 

move with a constant speed if set in motion by a push. 
 
68. (a) From problem 67, we have an expression for the acceleration. 

� �
� � � � � �> @2 2A B

A B

2

1.00 kg sin 33.0 1.00 kgsin
9.80 m s 2.23m s

2.00 kg

2.2 m s  

m m
a g

m m

T q ��
   �

�

| �

 

  The negative sign means that Am  will be accelerating UP the plane.  
 (b) If the system is at rest, then the acceleration will be 0. 

   
� �
� � � �A B

B A
A B

sin
0    sin 1.00 kg sin 33.0 0.5446 kg 0.545kg

m m
a g m m

m m

T
T

�
  o   q  |

�
 

 (c) Again from problem 68, we have � �T B .F m g a �  

   Case (a): � � � � � �2 2
T B 1.00 kg 9.80 m s 2.23m s 7.57 N 7.6 NF m g a �  �  |  

   Case (b): � � � � � �2
T B 0.5446 kg 9.80 m s 5.337 N 5.34 N0F m g a �   |�  

 

T�

mgG

TF
G

Bm gG

TF
G

Am gG

NF
GTF

G

T
T

By

Ax

Ay
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69. (a) A free-body diagram is shown for each block.   
We define the positive x-direction for Am  to be 
up its incline, and the positive x-direction for Bm  
to be down its incline.  With that definition the 
masses will both have the same acceleration.  
Write Newton’s second law for each body in the 
x direction, and combine those equations to find 
the acceleration. 

   A T A A A:   sinxm F F m g m aT �  ¦  

   
� � � �

B B B T B

B B A A
T A A B B T A B

A B

:   sin      add these two equations

sin sin
sin sin     

xm F m g F m a

m m
F m g m g F m a m a a g

m m

T

T TT T

 �  

�
� � �  � o  

�

¦
 

(b) For the system to be at rest, the acceleration must be 0. 

   
� �

B B A A
B B A A

A B

A
B A

B

sin sin
0    sin sin   

sin sin 32
5.0kg 6.8kg

sin sin 23

m m
a g m m

m m

m m

T T T T

T
T

�
  o � o

�

q
   

q

 

  The tension can be found from one of the Newton’s second law expression from part (a). 
   � � � �2

A T A A T A A:   sin 0    sin 5.0kg 9.80m s sin 32 26 Nm F m g F m gT T�  o   q   

(c) As in part (b), the acceleration will be 0 for constant velocity in either direction. 

   

B B A A
B B A A

A B

A B

B A

sin sin
0    sin sin   

sin sin 23
0.74

sin sin 32

m m
a g m m

m m

m

m

T T T T

T
T

�
  o � o

�

q
  

q
 

 

 
70. A free-body diagram for the person in the elevator is shown.  The scale reading is the 

magnitude of the normal force.  Choosing up to be the positive direction, Newton’s 
second law for the person says that � �N N    .F F mg ma F m g a �  o  �¦   The 

kg reading of the scale is the apparent weight, NF , divided by g, which gives  

� �N
N-kg .m g aF

F
g g

�
   

 (a) � � � �2
N

20    75.0 kg 9.80 m s 7.35 10 Na F mg o    u  

N-kg 75.0 kg
mg

F m
g

    

 (b) N N-kg
20    7.35 10 N 75.0 kg , a F F o  u   

 (c) N N-kg
20    7.35 10 N 75.0 kg , a F F o  u   

 (d) � � � � � �2 2 2
N 75.0 kg 9.80 m s 3.0 m s 9.60 10 NF m g a a �  �  u  

mgG
NF
G

N-AF
G TF

G

Am gG

AT BT

Bm gG

x
y

TF
G

AT
BT

N-BF
G

x

y
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  N
N-kg 2

960 N
98.0 kg

9.80 m s
F

F
g

    

(e) � � � � � �2 2 2
N 75.0 kg 9.80 m s 3.0 m s 5.1 10 NF m g a a �   u�  

  N
N-kg 2

510 N
52 kg

9.80 m s
F

F
g

    

 
71. The given data can be used to calculate the force with which the road pushes  

against the car, which in turn is equal in magnitude to the force the car 
pushes against the road.  The acceleration of the car on level ground is found 
from Eq. 2-12a.   

20
0

21m s 0
    1.68m s

12.5 s
v v

v v at a
t

� �
�  o     

The force pushing the car in order to have this acceleration is found from 
Newton’s second law. 

� � � �2
P 920 kg 1.68m s 1546 NF ma    

We assume that this is the force pushing the car on the incline as well.  Consider a free-body diagram 
for the car climbing the hill.  We assume that the car will have a constant speed on the maximum 
incline.  Write Newton’s second law for the x direction, with a net force of zero since the car is not 
accelerating. 

P
P sin 0    sin

x

F
F F mg

mg
T T �  o  ¦  

� � � �
1 1P

2

1546 N
sin sin 9.9

920 kg 9.80 m s
F

mg
T � �   q  

 
72. Consider a free-body diagram for the cyclist coasting downhill at a constant 

speed.  Since there is no acceleration, the net force in each direction must be 
zero.  Write Newton’s second law for the x direction (down the plane). 

fr frsin 0    sinxF mg F F mgT T �  o  ¦  
This establishes the size of the air friction force at 6.0 km/h, and so can be 
used in the next part. 

 

Now consider a free-body diagram for the cyclist climbing the hill.  PF  is the 
force pushing the cyclist uphill.  Again, write Newton’s second law for the x 
direction, with a net force of 0. 

fr Psin 0  xF F mg FT � �  o¦  

� � � � � �
P fr

2 2

sin 2 sin

    2 65 kg 9.80 m s sin 6.5 1.4 10 N

F F mg mgT T �  

 q  u
 

 
73. (a) The value of the constant c can be found from the free-body diagram,  

knowing that the net force is 0 when coasting downhill at the specified 
speed. 

   air airsin 0    sin   xF mg F F mg cvT T �  o   o¦  
       

T� T�

y x 

mgG

NF
G

PF
G

y 

x

T�T�
mgG

NF
G

frF
G

PF
G

y 

x 
T�

 

�
mgG

NF
G

airF
G

T�

T��
mgG

NF
G

frF
G

T�
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� � � �
� �

280.0kg 9.80m s sin5.0sin N N
40.998 41

m s m s1m s
6.0km h

3.6km h

mg
c

v

T q
   |

§ ·
¨ ¸
© ¹

 

 (b) Now consider the cyclist with an added pushing force PF
G

directed along  
the plane.  The free-body diagram changes to reflect the additional force 
the cyclist must exert.  The same axes definitions are used as in part (a).

 � �

� � � �

P air

P air

2

sin 0  

sin sin

N 1m s
    40.998 18.0 km h

m s 3.6 km h

           80.0 kg 9.80 m s sin 5.0 136.7 N 140 N

xF F mg F

F F mg cv mg

T

T T

 � �  o

 �  �

 

� q  |

§ ·§ · § ·
¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹© ¹

¦

 

 
74. Consider the free-body diagram for the watch.  Write Newton’s second law for 

both the x and y directions.  Note that the net force in the y direction is 0 because 
there is no acceleration in the y direction.  

� �

T T

T

2 2

cos 0    
cos

sin     sin
cos

         tan 9.80 m s tan 25 4.57 m s

y

x

mg
F F mg F

mg
F F ma ma

a g

T
T

T T
T

T

 �  o  

  o  

   q

¦

¦  

Use Eq. 2-12a with 0 0v   to find the final velocity (takeoff speed). 

� � � �2
0 0    0 4.57 m s 16s 73m sv v at v v at�  o  �  �   

 
75. (a) To find the minimum force, assume that the piano is moving with a constant  

velocity.  Since the piano is not accelerating, T4 .F Mg   For the lower pulley, since 
the tension in a rope is the same throughout, and since the pulley is not accelerating, 
it is seen that T1 T 2 T1 T1 T22     2.F F F Mg F F Mg�   o    

It also can be seen that since T2F F , that 2 .F Mg  

(b) Draw a free-body diagram for the upper pulley.  From that  

diagram, we see that T3 T1 T 2

3
2
Mg

F F F F � �  . 

  To summarize: 
   T1 T2 T3 T42      3 2      F F Mg F Mg F Mg     

 
 
 
 
 
 
 
 

 x 

y 
 T�

mgG

TF
G

Lower 
Pulley 

Upper 
Pulley

F
G

T1F
G

T1F
G

T2F
G

T2F
G

T3F
G

T4F
G

MgG

T4F
G

T��
mgG

NF
G

airF
G

T�
PF
G
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76. Consider a free-body diagram for a grocery cart being pushed up an  
incline.  Assuming that the cart is not accelerating, we write Newton’s 
second law for the x direction. 

  

� � � �
1 1

2

sin 0    sin

18 N
sin sin 4.2

25kg 9.80 m s

P
x P

P

F
F F mg

mg

F

mg

T T

T � �

 �  o  

   q

¦
 

 
77. The acceleration of the pilot will be the same as that of the plane, since the pilot 

is at rest with respect to the plane.  Consider first a free-body diagram of the 
pilot, showing only the net force.  By Newton’s second law, the net force MUST 
point in the direction of the acceleration, and its magnitude is ma .  That net force 
is the sum of ALL forces on the pilot.  If we assume that the force of gravity and 
the force of the cockpit seat on the pilot are the only forces on the pilot, then in 
terms of vectors, net seat .m m �  F g F a

G GG G   Solve this equation for the force of the 

seat to find seat net .m m m �  �F F g a g
G G G G G   A vector diagram of that equation is 

shown.  Solve for the force of the seat on the pilot using components. 
� � � �

� � � � � � � �

2
 seat  net

 seat  net

2 2

cos18 75kg 3.8m s cos18 271.1N

sin18

        75kg 9.80 m s 75kg 3.8m s sin18 823.2 N

x x

y y

F F ma

F mg F mg ma

  q  q  

 �  � q

 � q  

 

 The magnitude of the cockpit seat force is as follows. 

� � � �2 22 2
 seat  seat 271.1N 823.2 N 866.7 N 870 Nx yF F F �  �  |  

 The angle of the cockpit seat force is as follows. 

   seat1 1

 seat

823.2 N
tan tan 72

271.1N
y

x

F

F
T � �   q  above the horizontal 

 
78.  (a) The helicopter and frame will both have the same acceleration, and so can be 

treated as one object if no information about internal forces (like the cable 
tension) is needed.  A free-body diagram for the helicopter-frame 
combination is shown.  Write Newton’s second law for the combination, 
calling UP the positive direction. 

� � � �
� � � � � �� �

lift H F H F

2 2
lift H F

4

  

7650 kg 1250 kg 9.80 m s 0.80 m s

      9.43 10 N

F F m m g m m a

F m m g a

 � �  � o

 � �  � �

 u

¦

  

(b) Now draw a free-body diagram for the frame alone, in order to find the  
tension in the cable.  Again use Newton’s second law. 

� � � � � �
T F F

2 2 4
T F

  

1250 kg 9.80 m s 0.80 m s 1.33 10 N

F F m g m a

F m g a

 �  o

 �  �  u

¦
  

 

 (c) The tension in the cable is the same at both ends, and so the cable exerts a  

force of 41.33 10 Nu  downward on the helicopter. 

y 
x

T� T�
mgG

NF
G

PF
G

18o
netF
G

T�
mgG

netF
G

seatF
G

� �H Fm m� gG

liftF
G

Fm gG

TF
G
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79. (a) We assume that the maximum horizontal force occurs when the train is moving very slowly,  
and so the air resistance is negligible.  Thus the maximum acceleration is given by the 
following. 

5
2 2max

max 5

4 10 N
0.625m s 0.6m s

6.4 10 kg
F

a
m

u
   |

u
 

 (b) At top speed, we assume that the train is moving at constant velocity.  Therefore the net force  
on the train is 0, and so the air resistance and friction forces together must be of the same 
magnitude as the horizontal pushing force, which is 51.5 10 Nu . 

 
80. See the free-body diagram for the fish being pulled upward vertically.  From Newton’s 

second law, calling the upward direction positive, we have this relationship. 
� �T T    yF F mg ma F m g a �  o  �¦  

 (a) If the fish has a constant speed, then its acceleration is zero, and so T .F mg   Thus  

the heaviest fish that could be pulled from the water in this case is � �45 N 10 lb .  

 (b) If the fish has an acceleration of 2.0 m/s2, and TF  is at its maximum of 45 N, then  
solve the equation for the mass of the fish.   

� �� � � �

T
2 2

2

45 N
3.8 kg  

9.8 m s 2.0 m s

3.8 kg 9.8 m s 37 N 8.4 lb

F
m

g a

mg

   o
� �

  |
 

 (c) It is not possible to land a 15-lb fish using 10-lb line, if you have to lift the fish vertically.  If  
the fish were reeled in while still in the water, and then a net used to remove the fish from the 
water, it might still be caught with the 10-lb line. 

 
81. Choose downward to be positive.  The elevator’s acceleration is calculated by Eq. 2-12c. 

� � � �
� �
� �

22 2
2 2 20

0 0
0

0 3.5m s
2     2.356 m s

2 2 2.6 m
v v

v v a y y a
y y

��
�  � o    �

�
 

See the free-body diagram of the elevator/occupant combination.  Write Newton’s second 
law for the elevator. 

  
� � � � � �

T

2 2 4
T 1450 kg 9.80 m s 2.356 m s 1.76 10 N

yF mg F ma

F m g a

 �  

 �  � �  u

¦
 

 
82. (a) First calculate Karen’s speed from falling.  Let the downward direction be positive, and use Eq.  

2-12c with 0 0v  . 

� � � � � � � �2 2 2
0 0 02     0 2 2 9.8m s 2.0 m 6.26 m sv v a y y v a y y�  � o  � �    

Now calculate the average acceleration as the rope stops Karen, again using Eq. 2-12c, with 
down as positive. 

� � � �
� �
� �

22 2
2 2 20

0 0
0

0 6.26 m s
2     19.6 m s

2 2 1.0 m
v v

v v a y y a
y y

��
�  � o    �

�
 

The negative sign indicates that the acceleration is upward.  Since this is her 
acceleration, the net force on Karen is given by Newton’s second law, netF ma .  
That net force will also be upward.  Now consider the free-body diagram of Karen as 

mgG

TF
G

mgG

TF
G

mgG

ropeF
G
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she decelerates.  Call DOWN the positive direction.  Newton’s second law says that 
net rope rope    .F ma mg F F mg ma  � o  �   The ratio of this force to Karen’s weight is 

2
rope

2

19.6 m s
1.0 1.0 3.0.

9.8 m s
F mg ma a

mg g g

� �
  �  �    Thus the rope pulls upward on Karen 

with an average force of 3.0 times her weight .  
(b) A completely analogous calculation for Bill gives the same speed after the 2.0 m fall, but since 

he stops over a distance of 0.30 m, his acceleration is –65 m/s2, and the rope pulls upward on 
Bill with an average force of  7.7 times his weight .   Thus, Bill is more likely to get hurt.  

 
83. Since the climbers are on ice, the frictional force for the 

lower two climbers is negligible.  Consider the free-
body diagram as shown.  Note that all the masses are 
the same.  Write Newton’s second law in the x direction 
for the lowest climber, assuming he is at rest. 

� � � �
T2

2
T2

sin 0

sin 75kg 9.80 m s sin 31.0

     380 N

xF F mg

F mg

T

T

 �  

  q

 

¦
 

Write Newton’s second law in the x direction for the 
middle climber, assuming he is at rest. 

  T1 T2 T1 T2 T2sin 0    sin 2 sin 760 NxF F F mg F F mg F gT T T � �  o  �   ¦  

 
84. Use Newton’s second law. 

  
� � � �

� �

10 3
6

1.0 10 kg 2.0 10 m s
    8.0 10 s 93d

2.5 N
v m v

F ma m t
t F

�u u' '
  o '    u  

'
 

 
85. Use the free-body diagram to find the net force in the x direction, and then 

find the acceleration.  Then Eq. 2-12c can be used to find the final speed at 
the bottom of the ramp. 

  
� � � �
P

2

P

2

sin   

450 kg 9.80 m s sin 22 1420 Nsin
450 kg

0.516 m s  

xF mg F ma

mg F
a

m

T

T

 �  o

q ��
  

 

¦

 

� � � � � � � �2 2 2
0 0 02     2 2 0.516 m s 11.5m 3.4 m sv v a x x v a x x � � o  �    

 
 
 
 
 
 
 
 
 

y 
x 

T�
T�

T�

T�mgG

mgG

mgG

N1F
G

N2F
G

N3F
G T2F

G
T1F
G

T1F
G

T2F
G

frF
G
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x 

mgG
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G
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G
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86. (a) We use the free-body diagram to find the force needed to pull the masses at a 
constant velocity.  We choose the “up the plane” direction as the positive  
direction for both masses.  Then they both have the same acceleration  
even if it is non-zero. 

   A T A A A

b T B B B

:   sin 0

:   sin 0
x

x

m F F m g m a

m F F F m g m a

T

T

 �   

 � �   
¦
¦

 

Add the equations to eliminate the tension force and  
solve for F.      

 
� � � �

� �
T A A T B B

A A B B

sin sin 0  

sin sin

F m g F F m g

F g m m

T T

T T

� � � �  o

 �
 

� � � � � �> @2 2  9.80 m s 9.5kg sin59 11.5kg sin32 1.40 10 N q � q  u  

 (b) Since A B,T T!  if there were no connecting string, Am  would have a larger acceleration than  

B.m   If A B,T T�  there would be no tension.  But, since there is a connecting string, there will be 

tension in the string.  Use the free-body diagram from above but ignore the applied force .F
G

 
   A T A A A b T B B B:   sin    ;   :   sinx xm F F m g m a m F F m g m aT T �   � �  ¦ ¦  
  Again add the two equations to eliminate the tension force. 

   

� � � �

� � � � � �
T A A T B B A B

2A A B B

A B

2 2

sin sin   

9.5kg sin59 11.5kg sin 32sin sin
9.80m s

21.0kg

  6.644 m s 6.64 m s , down the planes

F m g F m g m a m a

m m
a g

m m

T T

T T

� � � �  � o

q � q�
 �  �

�

 � |

 

 (c) Use one of the Newton’s second law expressions from part (b) to find the string tension.  It must  
be positive if there is a tension. 

   
� � � � � � � �

T A A A

2 2
T A A

sin   

sin 9.5kg 9.80m s sin59 6.644 m s 17 N

F m g m a

F m g a

T

T

�  o

 �  q �  ª º¬ ¼
 

 
87. (a) If the 2-block system is taken as a whole system, then the net force on the system is just the  

force ,F
G

 accelerating the total mass.  Use Newton’s second law to find the force from the mass 
and acceleration.  Take the direction of motion caused by the force (left for the bottom block, 
right for the top block) as the positive direction.  Then both blocks have the same acceleration. 

   � � � � � �2
top bottom 9.0 kg 2.5m s 22.5N 23NxF F m m a  �   |¦  

(b) The tension in the connecting cord is the only force acting on the top block, and so must be 
causing its acceleration.  Again use Newton’s second law. 

   � � � �2
T top 1.5kg 2.5m s 3.75N 3.8 NxF F m a    |¦  

  This could be checked by using the bottom block. 
   � � � �2

T bottom T bottom   22.5N 7.5kg 2.5m s 3.75NxF F F m a F F m a �  o  �  �  ¦  

 
88. (a) For this scenario, find your location at a time of 4.0 sec, using Eq. 2-12b.  The acceleration is  

found from Newton’s second law. 

 forward 1200 N
  

750kg
F

a
m

 o  

N-AF
G TF

G

Am gG
AT

x
y

AT

BT

TF
G

Bm gG
BT

N-BF
G x

y

F
G
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 � � � � � �221 1
0 0 2 2

1200 N
15m s 4.0s 4.0s 72.8 m 65m

750kg
x x v t at�  �  �  !  

 Yes , you will make it through the intersection before the light turns red. 
 

(b) For this scenario, find your location when the car has been fully stopped, using Eq. 2-12c.  The  
acceleration is found from Newton’s second law. 

  

� �

� �

braking 2 2
0 0

22 2
0

0

1800 N
    2   

750kg

0 15m s
46.9 m 45m

2 1800 N
2

750kg

F
a v v a x x

m

v v
x x

a

  � o  � � o

��
�    !

�
§ ·
¨ ¸
© ¹

 

 No , you will not stop before entering the intersection. 
 
89. We take the mass of the crate as m until we insert values. A free-body  

diagram is shown. 
 (a) (i) Use Newton’s second law to find the acceleration. 

sin     sinxF mg ma a gT T  o  ¦  
  (ii) Use Eq. 2-12b to find the time for a displacement of l. 

    
� �2 21 1

0 0 2 2    sin   

2
sin

x x v t at g t

t
g

T

T

�  � o  o

 

l

l
 

  (iii) Use Eq. 2-12a to find the final velocity. 

    0

2
sin 2 sin

sin
v v at g g

g
T T

T
 �   

ª º
« »
¬ ¼

l
l  

  (iv) Use Newton’s second law to find the normal force. 
    N Ncos 0    cosyF F mg F mgT T �  o  ¦  

(b) Using the values of 1500 kgm  , 29.80m sg  , and  100 m l , the requested quantities  
become as follows.  

 
� � � �

� � � � � � � �

2

N

2 100
9.80sin m s  ; s ;

9.80sin

2 100 9.80 sin m s  ; 1500 9.80 cos

a t

v F

T
T

T T

  

  

 

  Graphs of these quantities as a function of T are given here. 
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We consider the limiting cases: at 
an angle of 0q , the crate does not 
move, and so the acceleration and 
final velocity would be 0.  The 
time to travel 100 m would be 
infinite, and the normal force 
would be equal to the weight of  

� � � �2

4

   1500 kg 9.80 m s

1.47 10 N.   

W mg 

 

 u

 

The graphs are all consistent with 
those results. 
 

 
For an angle of 90q , we would 
expect free-fall motion.  The 
acceleration should be 29.80 m s .   
The normal force would be 0.  The 
free-fall time for an object 
dropped from rest a distance of 
100 m and the final velocity after 
that distance are calculated below. 

� �

21
0 0 2

21
2

2

  

  

2 100 m2
4.5s

9.80 m s

x x v t at

gt

t
g

�  � o

 o

   

l

l

  
� �

� �

� � � �

2 2
0 0

0

2

2   

2

  2 9.80 m s 100 m

44 m s  

v v a x x

v g x x

 � � o

 �

 

 

 

 
Yes, the graphs agree with these results for the limiting cases. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH04.XLS,” on tab “Problem 4.89b.” 
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CHAPTER 5:  Using Newton’s Laws: Friction, Circular Motion, Drag Forces 
 
Responses to Questions 
 
1.  Static friction between the crate and the truck bed causes the crate to accelerate. 
 
2.  The kinetic friction force is parallel to the ramp and the block’s weight has a component parallel to 

the ramp. The parallel component of the block’s weight is directed down the ramp whether the block 
is sliding up or down. However, the frictional force is always in the direction opposite the block’s 
motion, so it will be down the ramp while the block is sliding up, but up the ramp while the block is 
sliding down. When the block is sliding up the ramp, the two forces acting on it parallel to the ramp 
are both acting in the same direction, and the magnitude of the net force is the sum of their 
magnitudes. But when the block is sliding down the ramp, the friction and the parallel component of 
the weight act in opposite directions, resulting in a smaller magnitude net force. A smaller net force 
yields a smaller (magnitude) acceleration. 

 
3.  Because the train has a larger mass. If the stopping forces on the truck and train are equal, the 

(negative) acceleration of the train will be much smaller than that of the truck, since acceleration is 
inversely proportional to mass � �.m a F

GG  The train will take longer to stop, as it has a smaller 
acceleration, and will travel a greater distance before stopping. The stopping force on the train may 
actually be greater than the stopping force on the truck, but not enough greater to compensate for the 
much greater mass of the train. 

 
4.  Yes. Refer to Table 5-1. The coefficient of static friction between rubber and many solid surfaces is 

typically between 1 and 4. The coefficient of static friction can also be greater than one if either of 
the surfaces is sticky. 

 
5. When a skier is in motion, a small coefficient of kinetic friction lets the skis move easily on the snow 

with minimum effort.  A large coefficient of static friction lets the skier rest on a slope without 
slipping and keeps the skier from sliding backward when going uphill. 

 
6.  When the wheels of a car are rolling without slipping, the force between each tire and the road is 

static friction, whereas when the wheels lock, the force is kinetic friction. The coefficient of static 
friction is greater than the coefficient of kinetic friction for a set of surfaces, so the force of friction 
between the tires and the road will be greater if the tires are rolling. Once the wheels lock, you also 
have no steering control over the car. It is better to apply the brakes slowly and use the friction 
between the brake mechanism and the wheel to stop the car while maintaining control. If the road is 
slick, the coefficients of friction between the road and the tires are reduced, and it is even more 
important to apply the brakes slowly to stay in control. 

  
7.  (b). If the car comes to a stop without skidding, the force that stops the car is the force of kinetic 

friction between the brake mechanism and the wheels. This force is designed to be large. If you slam 
on the brakes and skid to a stop, the force that stops the car will be the force of kinetic friction 
between the tires and the road. Even with a dry road, this force is likely to be less that the force of 
kinetic friction between the brake mechanism and the wheels. The car will come to a stop more 
quickly if the tires continue to roll, rather than skid. In addition, once the wheels lock, you have no 
steering control over the car.  
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8.  The forces in (a), (b), and (d) are all equal to 400 N in magnitude. 
(a) You exert a force of 400 N on the car; by Newton’s third law the force exerted by the car on you 

also has a magnitude of 400 N.  
(b) Since the car doesn’t move, the friction force exerted by the road on the car must equal 400 N, 

too. Then, by Newton’s third law, the friction force exerted by the car on the road is also 400 N. 
(c) The normal force exerted by the road on you will be equal in magnitude to your weight 

(assuming you are standing vertically and have no vertical acceleration). This force is not 
required to be 400 N. 

(d) The car is exerting a 400 N horizontal force on you, and since you are not accelerating, the 
ground must be exerting an equal and opposite horizontal force. Therefore, the magnitude of the 
friction force exerted by the road on you is 400 N. 

 
9.  On an icy surface, you need to put your foot straight down onto the sidewalk, with no component of 

velocity parallel to the surface. If you can do that, the interaction between you and the ice is through 
the static frictional force. If your foot has a component of velocity parallel to the surface of the ice, 
any resistance to motion will be caused by the kinetic frictional force, which is much smaller. You 
will be much more likely to slip. 

 
10.  Yes, the centripetal acceleration will be greater when the speed is greater since centripetal 

acceleration is proportional to the square of the speed. An object in uniform circular motion has an 
acceleration, since the direction of the velocity vector is changing even though the speed is constant. 

  
11.  No. The centripetal acceleration depends on 1/r, so a sharp curve, with a smaller radius, will generate 

a larger centripetal acceleration than a gentle curve, with a larger radius. (Note that the centripetal 
force in this case is provided by the static frictional force between the car and the road.) 

 
12.  The three main forces on the child are the downward force of gravity (weight), the normal force up 

on the child from the horse, and the static frictional force on the child from the surface of the horse. 
The frictional force provides the centripetal acceleration. If there are other forces, such as contact 
forces between the child’s hands or legs and the horse, which have a radial component, they will 
contribute to the centripetal acceleration. 

 
13.  As the child and sled come over the crest of the hill, they are moving in an arc. There must be a 

centripetal force, pointing inward toward the center of the arc. The combination of gravity (down) 
and the normal force (up) provides this centripetal force, which must be greater than or equal to zero. 
(At the top of the arc, Fy = mg – N = mv²/r � 0.) The normal force must therefore be less than the 
child’s weight. 

 
14.  No. The barrel of the dryer provides a centripetal force on the clothes to keep them moving in a 

circular path. A water droplet on the solid surface of the drum will also experience this centripetal 
force and move in a circle.  However, as soon as the water droplet is at the location of a hole in the 
drum there will be no centripetal force on it and it will therefore continue moving in a path in the 
direction of its tangential velocity, which will take it out of the drum. There is no centrifugal force 
throwing the water outward; there is rather a lack of centripetal force to keep the water moving in a 
circular path.  

 
15.  When describing a centrifuge experiment, the force acting on the object in the centrifuge should be 

specified. Stating the rpm will let you calculate the speed of the object in the centrifuge. However, to 
find the force on an object, you will also need the distance from the axis of rotation. 

 
16.  She should let go of the string at the moment that the tangential velocity vector is directed exactly at 

the target. 
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17.  The acceleration of the ball is inward, directly toward the pole, and is provided by the horizontal 
component of the tension in the string. 

 
18.  For objects (including astronauts) on the inner surface of the cylinder, the normal force provides a 

centripetal force which points inward toward the center of the cylinder. This normal force simulates 
the normal force we feel when on the surface of Earth.  
(a) Falling objects are not in contact with the floor, so when released they will continue to move 

with constant velocity until the floor reaches them. From the frame of reference of the astronaut 
inside the cylinder, it will appear that the object falls in a curve, rather than straight down. 

(b) The magnitude of the normal force on the astronaut’s feet will depend on the radius and speed 
of the cylinder.  If these are such that v²/r = g (so that mv²/r = mg for all objects), then the 
normal force will feel just like it does on the surface of Earth. 

(c) Because of the large size of Earth compared to humans, we cannot tell any difference between 
the gravitational force at our heads and at our feet. In a rotating space colony, the difference in 
the simulated gravity at different distances from the axis of rotation would be significant. 

 
19.  At the top of bucket’s arc, the gravitational force and normal forces from the bucket provide the 

centripetal force needed to keep the water moving in a circle. (If we ignore the normal forces, mg = 
mv²/r, so the bucket must be moving with speed v grt  or the water will spill out of the bucket.)  
At the top of the arc, the water has a horizontal velocity. As the bucket passes the top of the arc, the 
velocity of the water develops a vertical component. But the bucket is traveling with the water, with 
the same velocity, and contains the water as it falls through the rest of its path. 

 
20.  (a) The normal force on the car is largest at point C. In this case, the centripetal force keeping the  

car in a circular path of radius R is directed upward, so the normal force must be greater than the 
weight to provide this net upward force. 

(b) The normal force is smallest at point A, the crest of the hill. At this point the centripetal force  
must be downward (towards the center of the circle) so the normal force must be less than the 
weight. (Notice that the normal force is equal to the weight at point B.) 

(c) The driver will feel heaviest where the normal force is greatest, or at point C. 
(d) The driver will feel lightest at point A, where the normal force is the least. 
(e) At point A, the centripetal force is weight minus normal force, or mg – N = mv2/r.  The point at  

which the car just loses contact with the road corresponds to a normal force of zero. Setting  
N = 0 gives mg = mv2/r  or .v gr  

 
21. Leaning in when rounding a curve on a bicycle puts the bicycle tire at an angle with respect to the 

ground.  This increases the component of the (static) frictional force on the tire due to the road. This 
force component points inward toward the center of the curve, thereby increasing the centripetal 
force on the bicycle and making it easier to turn. 

 
22.  When an airplane is in level flight, the downward force of gravity is counteracted by the upward lift 

force, analogous to the upward normal force on a car driving on a level road. The lift on an airplane 
is perpendicular to the plane of the airplane’s wings, so when the airplane banks, the lift vector has 
both vertical and horizontal components (similar to the vertical and horizontal components of the 
normal force on a car on a banked turn). The vertical component of the lift balances the weight and 
the horizontal component of the lift provides the centripetal force. If L = the total lift and ĳ = the 
banking angle, measured from the vertical, then cosL mgM   and 2sinL mv rM   so 

� �1 2tan .v grM �  
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23. If we solve for b, we have b = –F/v.  The units for b are N·s/m = kg·m·s/(m·s²) = kg/s. 
 
24.  The force proportional to v² will dominate at high speed. 
 
 
Solutions to Problems 
 
1. A free-body diagram for the crate is shown.  The crate does not accelerate 

vertically, and so N .F mg   The crate does not accelerate horizontally, and 
so P fr .F F  

� �� �� �2
P fr N 0.30 22 kg 9.80 m s 65 Nk kF F F mgP P      

If the coefficient of kinetic friction is zero, then the horizontal force required 
is 0 N ,  since there is no friction to counteract.  Of course, it would take a force to START the crate 
moving, but once it was moving, no further horizontal force would be necessary to maintain the 
motion. 

 
2. A free-body diagram for the box is shown.  Since the box does not accelerate 

vertically, N .F mg  
(a) To start the box moving, the pulling force must just overcome the  

force of static friction, and that means the force of static friction will 
reach its maximum value of  fr N .sF FP   Thus we have for the starting 
motion,  

� � � �

P fr

P
P fr N 2

0  

35.0 N
    0.60

6.0 kg 9.80 m s

x

s s s

F F F

F
F F F mg

mg
P P P

 �  o

   o    

¦
 

 (b) The same force diagram applies, but now the friction is kinetic friction, and the pulling force is  
NOT equal to the frictional force, since the box is accelerating to the right. 

� �� �
� � � �

P fr P N P

2

P
2

          

35.0 N 6.0 kg 0.60 m s
0.53

6.0 kg 9.80 m s

k k

k

F F F ma F F ma F mg ma

F ma

mg

P P

P

 �  o �  o �  o

��
   

¦
 

 
3. A free-body diagram for you as you stand on the train is shown.  You do not  

accelerate vertically, and so N .F mg   The maximum static frictional force is ,s NFP  
and that must be greater than or equal to the force needed to accelerate you in order 
for you not to slip. 

fr N            0.20 0.20s s sF ma F ma mg ma a g g gP P Pt o t o t o t    
 The static coefficient of friction must be at least 0.20 for you to not slide. 
 
4. See the included free-body diagram.  To find the maximum angle, assume 

that the car is just ready to slide, so that the force of static friction is a 
maximum.  Write Newton’s second law for both directions.  Note that for 
both directions, the net force must be zero since the car is not accelerating. 

N Ncos 0    cos
y

F F mg F mgT T �  o  ¦  

mgG

NF
G

frF
G

PF
G

mgG

NF
G

frF
G
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G
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G

frF
G
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y x 
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G
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fr fr N

1

sin 0    sin cos

sin
tan 0.90    tan 0.90 42

cos

s sx

s

F mg F mg F F mg

mg

mg

T T P P T

TP T T
T

�

 �  o    

   o   qq

¦
 

 
5. A free-body diagram for the accelerating car is shown.  The car does not  

accelerate vertically, and so N .F mg   The static frictional force is the 
accelerating force, and so fr .F ma   If we assume the maximum acceleration, 
then we need the maximum force, and so the static frictional force would be its 
maximum value of N.sFP   Thus we have 

� �
fr N

2 2

          

0.90 9.80 m s 8.8 m s

s s

s

F ma F ma mg ma

a g

P P

P

 o  o  o

   
  

 
6. (a) Here is a free-body diagram for the box at rest on the plane.  The   

force of friction is a STATIC frictional force, since the box is at rest. 
 (b) If the box were sliding down the plane, the only change is that 

the force of friction would be a KINETIC frictional force. 
(c) If the box were sliding up the plane, the force of friction would  

be a KINETIC frictional force, and it would point down the  
plane, in the opposite direction to that shown in the diagram. 

 Notice that the angle is not used in this solution. 
 
7. Start with a free-body diagram.  Write Newton’s second law for each 

direction. 

fr

N

sin

cos 0
x x

y y

F mg F ma

F F mg ma

T

T

 �  

 �   
¦
¦

 

 Notice that the sum in the y direction is 0, since there is no motion 
(and hence no acceleration) in the y direction.  Solve for the force of 
friction. 

� � � �� �
fr

2 2 2
fr

sin   

sin 25.0 kg 9.80 m s sin 27 0.30 m s 103.7 N 1.0 10 N

x

x

mg F ma

F mg ma

T

T

�  o

 �  q �  | uª º¬ ¼
 

Now solve for the coefficient of kinetic friction.  Note that the expression for the normal force comes  
from the y direction force equation above.  

� �� �� �
fr

fr N 2

103.7 N
cos     0.48

cos 25.0 kg 9.80 m s cos 27k k k

F
F F mg

mg
P P T P

T
  o    

q
  

 
8. The direction of travel for the car is to the right, and that is also the positive  

horizontal direction.  Using the free-body diagram, write Newton’s second law in 
the x direction for the car on the level road.  We assume that the car is just on the 
verge of skidding, so that the magnitude of the friction force is fr N .sF FP  

2

fr fr s 2

3.80 m s
            0.3878

9.80 m sx s

a
F F ma F ma mg

g
P P �   �  � o    ¦
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T�
T�

y
x 

mgG

NF
G

frF
G

Now put the car on an inclined plane.  Newton’s second law in the x-direction 
for the car on the plane is used to find the acceleration.  We again assume  
the car is on the verge of slipping, so the static frictional force is at its  
maximum. 

� �

� �� �

fr

sfr
s

2 2

sin   

cos sinsin
cos sin

  9.80 m s 0.3878cos9.3 sin 9.3 5.3m s

xF F mg ma

mg mgF mg
a g

m m

T

P T TT
P T T

 � �  o

� �� �
   � �

 � q � q  �

¦
 

 
9. Since the skier is moving at a constant speed, the net force on the skier must 

be 0.  See the free-body diagram, and write Newton’s second law for both 
the x and y directions. 

fr Nsin cos   

tan tan 27 0.51
s s

s

mg F F mgT P P T

P T

   o

  q  
 

 
 
 
10. A free-body diagram for the bar of soap is shown.  There is no motion in 

the y direction and thus no acceleration in the y direction.  Write Newton’s 
second law for both directions, and use those expressions to find the 
acceleration of the soap. 

� �

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

x

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T
T P T

 �  o  

 �  

 �  �

 �

¦
¦   

Now use Eq. 2-12b, with an initial velocity of 0, to find the final velocity. 

� �
� �

� � � �� �

21
0 0 2

2

  

2 9.0 m2 2
4.8s

sin cos 9.80 m s sin 8.0 0.060 cos8.0k

x x v t at

x x
t

a g T P T

 � � o

    
� q� q

 

 
11. A free-body diagram for the box is shown, assuming that it is moving to the  

right.  The “push” is not shown on the free-body diagram because as soon as the 
box moves away from the source of the pushing force, the push is no longer 
applied to the box.  It is apparent from the diagram that NF mg  for the vertical 
direction.  We write Newton’s second law for the horizontal direction, with 
positive to the right, to find the acceleration of the box. 

� �
fr N

2 2

      

0.15 9.80 m s 1.47 m s

x k k

k

F F ma ma F mg

a g

P P

P

 �  o  �  � o

 �  �  �

¦
 

Eq. 2-12c can be used to find the distance that the box moves before stopping.  The initial speed is 
4.0 m/s, and the final speed will be 0. 

� � � �
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12. (a) A free-body diagram for the car is shown, assuming that it is moving to the  
right.  It is apparent from the diagram that FN = mg for the vertical direction.  
Write Newton’s second law for the horizontal direction, with positive to the 
right, to find the acceleration of the car.  Since the car is assumed to NOT be 
sliding, use the maximum force of static friction. 

fr N        x s s sF F ma ma F mg a gP P P �  o  �  � o  �¦  
Eq. 2-12c can be used to find the distance that the car moves before stopping.  The initial speed 
is given as v, and the final speed will be 0. 

� � � � � �
2 2 2 2

2 2 0
0 0 0

0
2     

2 2 2s s

v v v v
v v a x x x x

a g gP P
� �

�  � o �    
�

 

 (b) Using the given values:   

� � � � � �
� � � �

22

0 2

26.38m s1m s
95km h 26.38m s       55m

3.6 km h 2 2 0.65 9.80 m ss

v
v x x

gP
  �    

§ ·
¨ ¸
© ¹

 

 (c) From part (a), we see that the distance is inversely proportional to g, and so if g is reduced by a  
factor of 6, the distance is increased by a factor of 6 to 330 m .  

 
13. We draw three free-body diagrams – one for the car, one for the trailer, and 

then “add” them for the combination of car and trailer.  Note that since the 
car pushes against the ground, the ground will push against the car with an 
equal but oppositely directed force.  CGF

G
 is the force on the car due to the 

ground, TCF
G

 is the force on the trailer due to the car, and CTF
G

 is the force on 

the car due to the trailer.  Note that by Newton’s rhird law, CT TC . F F
G G

 
 

From consideration of the vertical forces in the individual free-body 
diagrams, it is apparent that the normal force on each object is equal to its 
weight.  This leads to the conclusion that  fr N T Tk kF F m gP P    

� � � � � �20.15 350 kg 9.80 m s 514.5 N . 

Now consider the combined free-body diagram.  Write 
Newton’s second law for the horizontal direction,  This allows 
the calculation of the acceleration of the system. 

� �CG fr C T

2CG fr

C T

  

3600 N 514.5 N
1.893m s

1630 kg

F F F m m a

F F
a

m m

 �  � o

� �
   

�

¦
 

Finally, consider the free-body diagram for the trailer alone.  Again write Newton’s second law for 
the horizontal direction, and solve for TC.F  

� � � �
TC fr T

2
TC fr T

  

514.5 N 350 kg 1.893m s 1177 N 1200 N

F F F m a

F F m a

 �  o

 �  �  |

¦
 

 
14. Assume that kinetic friction is the net force causing the deceleration.  See the 

free-body diagram for the car, assuming that the right is the positive direction, 
and the direction of motion of the skidding car.  There is no acceleration in the 
vertical direction, and so NF mg .  Applying Newton’s second law to the x 

mgG

NF
G

frF
G

mgG

NF
G

frF
G

� �C Tm m� gGNT NC�F F
G G

CGF
G

frF
G

Tm gG
NTF
G

frF
G

TCF
G

Cm gG

NCF
G

CGF
G

CTF
G



Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces                             
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

125 

direction gives the following. 
          f k N k kF F ma F mg ma a gP P P �  o �  �  o  �¦  

Use Eq. 2-12c to determine the initial speed of the car, with the final speed of the car being zero. 

  
� �
� � � � � � � � � � � �

2 2
0 0

2 2
0 0 0

2   

2 0 2 2 0.80 9.80 m s 72 m 34 m sk

v v a x x

v v a x x g x xP

�  � o

 � �  � � �   
 

 
15. (a) Consider the free-body diagram for the snow on the roof.  If the snow  

is just ready to slip, then the static frictional force is at its maximum 
value, fr N .sF FP   Write Newton’s second law in both directions, 
with the net force equal to zero since the snow is not accelerating. 

N N

fr

cos 0    cos

sin 0  
y

x

F F mg F mg

F mg F

T T

T

 �  o  

 �  o
¦
¦

   

fr Nsin cos     tan tan 34 0.67s s smg F F mgT P P T P T   o    q  
If 0.67sP ! , then the snow would not be on the verge of slipping. 

(b) The same free-body diagram applies for the sliding snow.  But now the force of friction is  
kinetic, so fr N ,kF FP  and the net force in the x direction is not zero.  Write Newton’s second 
law for the x direction again, and solve for the acceleration. 

� �

fr

fr

sin

sin cossin
sin cos

x

k
k

F mg F ma

mg mgmg F
a g

m m

T

T P TT T P T

 �  

��
   �

¦
 

Use Eq. 2-12c with 0iv   to find the speed at the end of the roof. 

� �
� � � � � �

� � � �� � � �

2 2
0 0

0 0 0

2

2

2 2 sin cos

  2 9.80 m s sin 34 0.20 cos34 6.0 m 6.802 m s 6.8m s

k

v v a x x

v v a x x g x xT P T

�  �

 � �  � �

 q � q  |

 

(c) Now the problem becomes a projectile motion problem.  The projectile 
has an initial speed of 6.802 m/s, directed at an angle of 34o below the 
horizontal.  The horizontal component of the speed, (6.802 m/s) cos 34o  
= 5.64 m/s,  will stay constant.  The vertical component will change due 
to gravity.  Define the positive direction to be downward.  Then the 
starting vertical velocity is (6.802 m/s) sin 34o =3.804 m/s, the vertical acceleration is 9.80 m/s2, 
and the vertical displacement is 10.0 m.  Use Eq. 2-12c to find the final vertical speed. 

� �

� � � � � � � �

2 2
0 0

22 2
0 0

2

2 3.804 m s 2 9.80 m s 10.0 m 14.5 m/s

y y y

y y

v v a y y

v v a y y

�  �

 � �  �  
 

To find the speed when it hits the ground, the horizontal and vertical components of velocity 
must again be combined, according to the Pythagorean theorem. 

   � � � �2 22 2 5.64 m s 14.5 m/s 15.6 16m sm sx yv v v �  �  |  

 
 
 

34o 

y 
x 

T�T�

mgG

NF
G

frF
G
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16. Consider a free-body diagram for the box, showing force on the box.  When 
P 23N,F   the block does not move.  Thus in that case, the force of friction 

is static friction, and must be at its maximum value, given by fr N .sF FP   
Write Newton’s second law in both the x and y directions.  The net force in 
each case must be 0, since the block is at rest. 

P N N P

fr P fr P

N P P P

cos 0    cos

sin 0    sin

sin     cos sin

x

y

s s

F F F F F

F F F mg F F mg

F F mg F F mg

T T

T T

P T P T T

 �  o  

 � �  o �  

�  o �  

¦
¦

 � � � �o oP
2

23 N
cos sin 0.40cos 28 sin 28 1.9 kg

9.80 m ss

F
m

g
P T T �  �   

 
17. (a) Since the two blocks are in contact, they can be treated as a  

single object as long as no information is needed about internal 
forces (like the force of one block pushing on the other block).   
Since there is no motion in the vertical direction, it is apparent that  

� �N 1 2 ,F m m g �  and so � �fr N 1 2 .k kF F m m gP P  �   Write 
Newton’s second law for the horizontal direction. 

� �P fr 1 2  xF F F m m a �  � o¦  

� � � � � � � �2

P 1 2P fr

1 2 1 2

2 2

650 N 0.18 190 kg 9.80 m s

190 kg

1.657 m s 1.7 m s  

kF m m gF F
a

m m m m

P �� ��
   

� �

 |

  

(b) To solve for the contact forces between the blocks, an individual block 
must be analyzed.  Look at the free-body diagram for the second block.  

21F
G

 is the force of the first block pushing on the second block.  Again, it 
is apparent that N 2 2F m g  and so fr2 N2 2 .k kF F m gP P   Write Newton’s 
second law for the horizontal direction. 

� � � � � � � � � �
21 fr2 2

2 2
21 2 2

  

0.18 125kg 9.80 m s 125kg 1.657 m s 430 N

x

k

F F F m a

F m g m aP

 �  o

 �  �  

¦
 

By Newton’s third law, there will also be a 430 N force to the left on block # 1 due to block # 2. 
 (c) If the crates are reversed, the acceleration of the system will remain  

the same – the analysis from part (a) still applies.  We can also repeat the 
analysis from part (b) to find the force of one block on the other, if we 
simply change m1 to m2 in the free-body diagram and the resulting 
equations.  

2
12 fr1 11.7 m s     ;  xa F F F m a  �  o¦

 � � � � � � � � � �2 2
12 1 1 0.18 65 kg 9.80 m s 65 kg 1.657 m s 220 NkF m g m aP �  �   

 
 
 
 
 
 

��R�
mgG NF

G

frF
G

PF
G

m1 + 
   m2 

� �1 2m m� gG
NF
GfrF

G

PF
G

 m2 

2m gG
N2F
G

21F
G

fr2F
G

 m1 

1m gG
N1F
G

12F
G

fr1F
G
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18. (a) Consider the free-body diagram for the crate on the surface.  There is  
no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions. 

� �

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T
T P T

 �  o  

 �  

 �  �

 �

¦
¦

 � � � �2 2 2  9.80 m s sin 25.0 0.19 cos 25.0 2.454 m s 2.5m s q � q  |  

(b) Now use Eq. 2-12c, with an initial velocity of 0, to find the final velocity. 

� � � � � � � �2 2 2
0 0 02     2 2 2.454 m s 8.15m 6.3m sv v a x x v a x x�  � o  �    

 
19. (a) Consider the free-body diagram for the crate on the surface.  There is  

no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions, and find the 
acceleration. 

� �

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T
T P T

 �  o  

 �  

 �  �

 �

¦
¦  

Now use Eq. 2-12c, with an initial velocity of 3.0 m s�  and a final velocity of 0 to find the 
distance the crate travels up the plane. 

� �
� �

� � � �

2 2
0 0

22
0

0 2

2   

3.0m s
0.796m

2 2 9.80m s sin 25.0 0.17cos 25.0

v v a x x

v
x x

a

�  � o

� ��
�    �

q � q

 

  The crate travels 0.80 m  up the plane. 

(b) We use the acceleration found above with the initial velocity in Eq. 2-12a to find the time for 
the crate to travel up the plane. 

� �
� � � �2

0
0 up

3.0m s
0.5308s

9.80m s sin 25.0 0.17cos25.0
    

up

v v
v

at t
a

�
  

q � q
� o  �  �  

The total time is NOT just twice the time to travel up the plane, because 
the acceleration of the block is different for the two parts of the motion.   
The second free-body diagram applies to the block sliding down the 
plane.  A similar analysis will give the acceleration, and then Eq. 2-12b 
with an initial velocity of 0 is used to find the time to move down the 
plane. 

 

� �

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T
T P T

 �  o  

 �  

 �  �

 �

¦
¦  

y

x 
T�T�

mgG

NF
G

frF
G

mgG

NF
G

frF
G

TT

x

y

NF
G

x

y

mgG

frF
G

TT
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 � � � �
� � � �

21
0 0 2

0
down 2

down

up down

  

2 2 0.796m
0.7778s

9.80m s sin 25.0 0.17cos25.0

0.5308s 0.7778s 1.3s

x x v t at

x x
t

a

t t t

�  � o

�
   

q � q

 �  �  

 

It is worth noting that the final speed is about 2.0 m/s, significantly less than the 3.0 m/s original 
speed. 

 
20. Since the upper block has a higher coefficient of friction, that 

block will “drag behind” the lower block.  Thus there will be 
tension in the cord, and the blocks will have the same 
acceleration.  From the free-body diagrams for each block, we 
write Newton’s second law for both the x and y directions for 
each block, and then combine those equations to find the 
acceleration and tension.  

 (a) Block A: 

A NA A NA A

A A frA T A

cos 0    cos

sin
y

x

F F m g F m g

F m g F F m a

T T

T

 �  o  

 � �  

¦
¦

 A A A NA T A A A Tsin sin cosm a m g F F m g m g FT P T P T � �  � �  
Block B: 

NB B NB B

A frA T B

B B B NB T B B B T

cos 0    cos

sin

sin sin cos

yB

xB

F F m g F m g

F m g F F m a

m a m g F F m g m g F

T T

T

T P T P T

 �  o  

 �  

 �  � �

�
�

¦
¦  

  Add the final equations together from both analyses and solve for the acceleration. 

   A A A A T B B B B T

A B A A A T B B B T

sin cos   ;  sin cos

sin cos sin cos   

m a m g m g F m a m g m g F

m a m a m g m g F m g m g F

T P T T P T
T P T T P T

 � �  � �

�  � � � � � o
 

   

� � � �
� �

� � � � � � � � � �
� �

A A B B

A B

2

2 2

sin cos sin cos

5.0 kg sin 32 0.20cos32 5.0 kg sin 32 0.30cos32
  9.80 m s

10.0 kg

  3.1155m s 3.1m s

m m
a g

m m

T P T T P T� � �
 

�

q � q � q � q
 

 |

ª º
« »
¬ ¼

ª º
« »
¬ ¼

 

 (b) Solve one of the equations for the tension force. 

   � �
� � � � � �

A A A A T

T A A

2 2

sin cos   

sin cos

5.0 kg 9.80 m s sin 32 0.20cos32 3.1155m s 2.1N   

m a m g m g F

F m g g a

T P T
T P T

 � � o

 � �

 q � q �  ª º¬ ¼

 

 
 
 
 
 
 

Am gG
T

Bm gG

T

T
NAF
G

frAF
G

NBF
G

TF
G

TF
G

frBF
G

x

y
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21. (a) If A B,P P�  the untethered acceleration of Am  would be greater than that of B.m   If there were  
no cord connecting the masses, Am  would “run away” from B.m   So if they are joined together, 

Am would be restrained by the tension in the cord, Bm  would be pulled forward by the tension 
in the cord, and the two masses would have the same acceleration.  This is exactly the situation 
for Problem 20. 

(b) If A B,P P!  the untethered acceleration of Am  would be less than that of B.m   So even if there 
is a cord between them, Bm  will move ever closer to A ,m  and there will be no tension in the 
cord.  If the incline were long enough, eventually Bm  would catch up to Am  and begin to push 
it down the plane. 

(c) For A B ,P P�  the analysis will be exactly like Problem 20.  Refer to that free-body diagram and 
analysis.  The acceleration and tension are as follows, taken from the Problem 20 analysis. 

   � � � �
� �

A A B B

A B

sin cos sin cosm m
a g

m m

T P T T P T� � �
 

�
ª º
« »
¬ ¼

 

   
� � � �

� �

� � � �

A A A A T

T A A A A

A A B B
A A A A

A B

A B
B A

A B

sin cos   

sin cos

sin cos sin cos
    sin cos

cos
    

m a m g m g F

F m g m g m a

m m
m g m g m g

m m

m m g

m m

T P T
T P T

T P T T P T
T P T

T P P

 � � o

 � �

� � �
 � �

�

 �
�

ª º
« »
¬ ¼

 

For  A B,P P!  we can follow the analysis of Problem 20 but not include the tension forces.  
Each block will have its own acceleration.  Refer to the free-body diagram for Problem 20. 
Block A: 

A NA A NA A

A A frA A A

cos 0    cos

sin
y

x

F F m g F m g

F m g F m a

T T

T

 �  o  

 �  

¦
¦

 
� �

A A A A NA A A A

A A

sin sin cos   

sin cos

m a m g F m g m g

a g

T P T P T

T P T

 �  � o

 �
 

Block B: 

� �

NB B NB B

A frA B B

B B B B NB B B B

B B

cos 0    cos

sin

sin sin cos   

sin cos

yB

xB

F F m g F m g

F m g F m a

m a m g F m g m g

a g

T T

T

T P T P T

T P T

 �  o  

 �  

 �  � o

 �

¦
¦

 

Note that since A B,P P!  A Ba a!  as mentioned above.  And T 0 .F   

 
22. The force of static friction is what decelerates the crate if it is not sliding on the 

truck bed.  If the crate is not to slide, but the maximum deceleration is desired, 
then the maximum static frictional force must be exerted, and so fr N.sF FP   
The direction of travel is to the right.  It is apparent that NF mg  since there is 
no acceleration in the y direction.  Write Newton’s second law for the truck in 

mgG

NF
G

frF
G
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the horizontal direction. 

� � � �2 2
fr         0.75 9.80 m s 7.4 m sx s sF F ma mg ma a gP P �  o �  o  �  �  �¦   

 The negative sign indicates the direction of the acceleration – opposite to the direction of motion. 
 
23. (a) For Bm  to not move, the tension must be equal to B ,m g  and so B T.m g F   For Am  to not  

move, the tension must be equal to the force of static friction, and so S T.F F   Note that the 
normal force on Am  is equal to its weight.  Use these relationships to solve for A.m  

B
B T s A A A

2.0 kg
    5.0 kg    5.0 kg

0.40s

s

m
m g F F m g m mP

P
  d o t   o t  

(b) For Bm  to move with constant velocity, the tension must be equal to Bm g .  For Am  to move 
with constant velocity, the tension must be equal to the force of kinetic friction.  Note that the 
normal force on Am  is equal to its weight.  Use these relationships to solve for Am . 

B
B k A A

k

2.0 kg
    6.7 kg

0.30k

m
m g F m g mP

P
  o     

 
24. We define f to be the fraction of the cord that 

is handing down, between Bm  and the pulley.  
Thus the mass of that piece of cord is C.fm   
We assume that the system is moving to the 
right as well.  We take the tension in the cord 
to be TF  at the pulley.  We treat the hanging 
mass and hanging fraction of the cord as one 
mass, and the sliding mass and horizontal part 
of the cord as another mass.  See the free-body 
diagrams.  We write Newton’s second law for each object. 

  

� �� �
� �� �

� � � �

A N A C

A T fr T k N A C

B B C T B C

1 0

1
y

x

x

F F m f m g

F F F F F m f m a

F m fm g F m fm a

P

 � � �  

 �  �  � �

 � �  �

¦
¦
¦

 

 Combine the relationships to solve for the acceleration.  In particular, add the two equations for the 
x-direction, and then substitute the normal force. 

  
� �� �B C k A C

A B C

1m fm m f m
a g

m m m

P� � � �
 

� �
ª º
« »
¬ ¼

 

 
25. (a) Consider the free-body diagram for the block on the surface.  There is  

no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions, and find the 
acceleration. 

� �

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T
T P T

 �  o  

 �  

 �  �

 �

¦
¦  mgG

NF
G

frF
G

TT

x

y

B Cm fm�g gG G

TF
GNF

G

frF
G

Am gG
� � C1 f m� gG

TF
G

y 
x 

x 
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Now use Eq. 2-12c, with an initial velocity of 0v , a final velocity of 0, and a displacement of 
d�  to find the coefficient of kinetic friction. 

� � � � � �2 2 2
0 0 0

2
0

2     0 2 sin cos   

tan
2 cos

k

k

v v a x x v g d

v

gd

T P T

P T
T

�  � o �  � � o

 �
 

 (b) Now consider the free-body diagram for the block at the top of its  
motion.  We use a similar force analysis, but now the magnitude of the 
friction force is given by fr s N ,F FPd  and the acceleration is 0. 

   
N N

fr fr

fr s N s s

cos 0    cos

sin 0    sin

    sin cos     tan

y

x

F F mg F mg

F mg F ma F mg

F F mg mg

T T

T T

P T P T P T

 �  o  

 �   o  

d o d o t

¦
¦  

 
26. First consider the free-body diagram for the snowboarder on the incline.  

Write Newton’s second law for both directions, and find the acceleration. 

  

� � � � � �

N N

fr

1 N 1

2
slope 1

2 2

cos 0    cos

sin

sin sin cos

sin cos 9.80 m s sin 28 0.18cos 28

3.043m s 3.0 m s      

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

T T

T

T P T P T

T P T

 �  o  

 �  

 �  �

 �  q � q

 |

¦
¦

 

Now consider the free-body diagram for the snowboarder on the flat surface.  
Again use Newton’s second law to find the acceleration.  Note that the normal 
force and the frictional force are different in this part of the problem, even 
though the same symbol is used. 

  N N fr

flat fr 2 N 1

0         

  
y x

k k

F F mg F mg F F ma

ma F F mgP P

 �  o   �  

 �  �  � o
¦ ¦  

  � � � �2 2 2
flat 2 0.15 9.80 m s 1.47 m s 1.5m ska gP �  �  � | �  

Use Eq. 2-12c to find the speed at the bottom of the slope.  This is the speed at the start of the flat 
section.  Eq. 2-12c can be used again to find the distance x. 

  � �2 2
0 02   v v a x x�  � o   

  

� � � � � � � �

� �

� � � �
� �

22 2
end of 0 slope 0
slope

2 2
0 0

22 2
0

0 2
flat

2 5.0 m s 2 3.043m s 110 m 26.35m s

2   

0 26.35m s
236 m 240 m

2 2 1.47 m s

v v a x x

v v a x x

v v
x x

a

 � �  �  

�  � o

��
�    |

�

 

 
27. The belt is sliding underneath the box (to the right), so there will be a force of 

kinetic friction on the box, until the box reaches a speed of 1.5 m/s.  Use the free-
body diagram to calculate the acceleration of the box. 

 (a) fr k N k k    xF F ma F mg a gP P P    o  ¦  

NF
G

x

y

mgG

frF
G

TT

mgG

NF
G

frF
G

mgG

NF
G

frF
G

TT
x

y

NF
G

frF
G

mgG
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� � � �

fr k N k k

0
0 2

k

    

0 1.5m s
    0.22s

0.70 9.80 m s

xF F ma F mg a g

v v v
v v at t

a g

P P P

P

    o  

� �
 � o     

¦
 

 (b) 
� �

� � � �2
k

22 2 2
0

0 0.16m
2 0.70 9.80m s

1.5m s
2 2

v
x x

g

v v
a P

�   
�   

 
28. We define the positive x direction to be the direction  

of motion for each block.  See the free-body diagrams.  
Write Newton’s second law in both dimensions for 
both objects.  Add the two x-equations to find the 
acceleration. 
Block A: 

A NA A NA A

A A frA A

A A

T

cos 0  cos

sin
y

x

F F m g F m g

F F m g F m a

T T

T

 �  o  

 �  �
¦
¦

Block B: 

NB B NB B

B frB T B

B Bcos 0    cos

sin
yB

xB

F F m g F m g

F m g F F m a

T T

T

 �  o  

 �  �
¦
¦

 

Add the final equations together from both analyses and solve for the acceleration, noting that in 
both cases the friction force is found as fr N.F FP  

� � � �
� �

A T A A A A A B B B B B B T

A B T A A A A A B B B B B T

A A A A B B

A B

sin cos    ;   sin cos

sin cos sin cos   

sin cos sin cos

m a F m g m g m a m g m g F

m a m a F m g m g m g m g F

m m
a g

m m

T P T T P T
T P T T P T

T P T T P T

 � �  � �

�  � � � � � o

� � � �
 

�
ª º
« »
¬ ¼

 

� � � � � � � � � �
� �

2

2

2.0 kg sin 51 0.30cos51 5.0 kg sin 21 0.30cos 21
  9.80 m s

7.0 kg

  2.2 m s

� q � q � q � q
 

 �

ª º
« »
¬ ¼  

 
29.  We assume that the child starts from rest at the top of the slide, and then slides  

a distance 0x x�  along the slide.  A force diagram is shown for the child on 
the slide.  First, ignore the frictional force and so consider the no-friction case.  
All of the motion is in the x direction, so we will only consider Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gT T  o  ¦  
Use Eq. 2-12c to calculate the speed at the bottom of the slide. 

� � � � � � � �2 2 2
0 0 0 0 0No friction2     2 2 sinv v a x x v v a x x g x xT�  � o  � �  �  

Now include kinetic friction.  We must consider Newton’s second law in both the x and y directions 
now.  The net force in the y direction must be 0 since there is no acceleration in the y direction. 

N Ncos 0    cosyF F mg F mgT T �  o  ¦  

fr Nsin sin sin cosx k kF ma mg F mg F mg mgT T P T P T  �  �  �¦  

y 

x 
T�T�

mgG

NF
G

frF
G

Am gG
AT

AT

NAF
G

frAF
G

TF
G x

y
NBF
G

y

x 
BTBT

Bm gG

TF
G

frBF
G
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� �sin cos
sin cosk

k

mg mg
a g

m

T P T
T P T

�
  �  

 With this acceleration, we can again use Eq. 2-12c to find the speed after sliding a certain distance. 

� � � � � � � � � �2 2 2
0 0 0 0 0friction2     2 2 sin coskv v a x x v v a x x g x xT P T�  � o  � �  � �  

Now let the speed with friction be half the speed without friction, and solve for the coefficient of 
friction.  Square the resulting equation and divide by cosg T  to get the result. 

� � � � � � � � � � � �
� � � � � � � �

1 1
0 0friction No friction2 2

1
0 04

3 3
4 4

    2 sin cos 2 sin

2 sin cos 2 sin

tan tan 34 0.51

k

k

k

v v g x x g x x

g x x g x x

T P T T

T P T T

P T

 o � �  �

� �  �

   q

 

 
30. (a) Given that Bm  is moving down, Am  must be moving  

up the incline, and so the force of kinetic friction on 
Am  will be directed down the incline.  Since the 

blocks are tied together, they will both have the 
same acceleration, and so B A .y xa a a   Write 
Newton’s second law for each mass. 

B B T B T B B

A T A fr A

A N A N A

    

sin

cos 0    cos

y

x

y

F m g F m a F m g m a

F F m g F m a

F F m g F m g

T

T T

 �  o  �

 � �  

 �  o  

¦
¦
¦

Take the information from the two y equations and substitute into the x equation to solve for the 
acceleration. 

B B A A Asin cos    km g m a m g m g m aT P T� � �  o  

� � � �

� � � �

B A A 1
2

A B

2 21
2

sin cos
1 sin cos

 9.80 m s 1 sin 34 0.15cos34 1.6 m s

k
k

m g m g m g g
a g g

m m

T P T T P T� �
  � �

�

 � q � q  

 

 
 
 
 (b) To have an acceleration of zero, the expression for the acceleration must be zero. 

   
� �1

2 1 sin cos 0    1 sin cos 0  

1 sin 1 sin 34
0.53

cos cos34

k k

k

a g T P T T P T
TP

T

 � �  o � �  o

� � q
   

q

 

 
31. Draw a free-body diagram for each block. 

Block A (top) 
Am gG

NAF
G

fr ABF
GTF

G

Block  B (bottom) 
Bm gG

NBF
G

fr AB�F
G

TF
G

NA�F
G

F
G

fr BF
G

yB 
Bm gG

TF
G

yAxA

Am gG

NF
GTF

G

T
T

Bm gG
frF
G
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fr ABF
G

 is the force of friction between the two blocks, NAF
G

 is the normal force of contact between the 
two blocks, fr BF

G
 is the force of friction between the bottom block and the floor, and NBF

G
 is the 

normal force of contact between the bottom block and the floor. 
 

Neither block is accelerating vertically, and so the net vertical force on each block is zero. 

� �
NA A NA A

NB NA B NB NA B A B

top:        0      

bottom:  0    

F m g F m g

F F m g F F m g m m g

�  o  

� �  o  �  �
 

 Take the positive horizontal direction to be the direction of motion of each block.  Thus for the  
bottom block, positive is to the right, and for the top block, positive is to the left.  Then, since the 
blocks are constrained to move together by the connecting string, both blocks will have the same 
acceleration.  Write Newton’s second law for the horizontal direction for each block. 
 T fr AB A T fr AB fr B Btop:       bottom: F F m a F F F F m a�  � � �   
(a) If the two blocks are just to move, then the force of static friction will be at its maximum, and so  

the frictions forces are as follows. 
   � �fr AB s NA s A fr B s NB s A B   ;   F F m g F F m m gP P P P    �  
  Substitute into Newton’s second law for the horizontal direction with 0a   and solve for F . 

   
� �
� � � �

� � � � � � � �

T s A T s A

T s A s A B

T s A s A B s A s A s A B

2
s A B

top: 0    

bottom: 0  

            

                3 0.60 14 kg 9.80m s 82.32 N 82 N

F m g F m g

F F m g m m g

F F m g m m g m g m g m m g

m m g

P P
P P

P P P P P

P

�  o  

� � � �  o

 � � �  � � �

 �   |

 

(b) Multiply the force by 1.1 so that � �1.1 82.32 N 90.55N.F     Again use Newton’s second law 
for the horizontal direction, but with 0a z  and using the coefficient of kinetic friction. 

   � �
� � � �

T k A A

T k A k A B B

k A k A k A B A B

top:          

bottom:   

sum:          

F m g m a

F F m g m m g m a

F m g m g m m g m m a

P
P P

P P P

�  

� � � �  

� � � �  � o

 

   

� �
� �

� �
� �

� � � � � �
� �

k A k A k A B k A B

A B A B

2
2 2

3
             

90.55N 0.40 14.0kg 9.80m s
               4.459 m s 4.5m s

8.0kg

F m g m g m m g F m m g
a

m m m m

P P P P� � � � � �
  

� �

�
  |

 

 
32. Free-body diagrams are shown for both blocks.  There is a force of friction 

between the two blocks, which acts to the right on the top block, and to the left 
on the bottom block.  They are a Newton’s third law pair of forces. 

 (a) If the 4.0 kg block does not slide off, then it must have the same  
acceleration as the 12.0 kg block.  That acceleration is caused by the force 
of static friction between the two blocks.  To find the minimum coefficient, 
we use the maximum force of static friction. 

   
2

fr top N top 2
top top

5.2 m s
   0.5306 0.53

9.80m s
a

F m a F m g
g

P P P   o    |

 (b) If the coefficient of friction only has half the value, then the blocks will be  
sliding with respect to one another, and so the friction will be kinetic. 
 � �1

fr top N top2
top top

0.5306 0.2653  ;    F m a F m gP P P     o  

topm gG

N
top

F
G

fr
top

F
G

bottomm gG

N
bottom

F
G

fr
bottom

F
G PF

G
N
top

�F
G
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 � � � �2 20.2653 9.80m s 2.6 m sa gP    

 (c) The bottom block is still accelerating to the right at 25.2 m s .   Since the top block has a smaller  
acceleration than that, it has a negative acceleration relative to the bottom block.   
 2 2 2

top rel top rel ground rel top rel bottom rel
bottom ground bottom ground ground

ˆ ˆ ˆ2.6m s 5.2 m s 2.6 m s �  �  �  �a a a a a i i iG G G G G   

  The top block has an acceleration of 22.6 m s to the left  relative to the bottom block. 

 (d) No sliding: 

� �

� � � �

P fr bottom bottom
bottom bottom
net

P fr bottom bottom fr bottom bottom top top bottom bottom top bottom
bottom top

2

  

    16.0kg 5.2 m s 83N

xF F F m a

F F m a F m a m a m a m m a

 �  o

 �  �  �  �

  

 

This is the same as simply assuming that the external force is accelerating the total mass.  The 
internal friction need not be considered if the blocks are not moving relative to each other. 

  

  Sliding: 

   

� � � � � � � �

P fr bottom bottom
bottom bottom
net

P fr bottom bottom fr bottom bottom top top bottom bottom
bottom top

2 2

  

4.0kg 2.6m s 12.0kg 5.2 m s 73N   

xF F F m a

F F m a F m a m a m a

 �  o

 �  �  �

 �  

 

Again this can be interpreted as the external force providing the acceleration for each block.  
The internal friction need not be considered. 

 
33. To find the limiting value, we assume that the blocks are NOT slipping, 

but that the force of static friction on the smaller block is at its 
maximum value, so that fr N.F FP   For the two-block system, there is 

no friction on the system, and so � �F M m a �  describes the  
horizontal motion of the system.  Thus the upper block has a vertical 

acceleration of 0 and a horizontal acceleration of 
� �

.F

M m�
  Write 

Newton’s second law for the upper block, using the force diagram, and solve for the applied force F.  
Note that the static friction force will be DOWN the plane, since the block is on the verge of sliding 
UP the plane. 

  

� � � �

� �

� � � � � �

N fr N N

N fr N

N

cos sin cos sin 0    
cos sin

sin cos sin cos   

sin cos sin cos
cos sin

y

x

mg
F F F mg F mg F

F
F F F F ma m

M m
M m mg M m

F F
m m

T T T P T
T P T

T T T P T

T P T T P T
T P T

 � �  � �  o  
�

 �  �   o
�

� �
 �  �

�

¦

¦  

  � � � �
� �
sin cos
cos sin

  M m g
T P T
T P T
�

 �
�

 

mgG

NF
G

frF
G

T

x

y
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34. A free-body diagram for the car at one instant of time is shown.  In the diagram, the 
car is coming out of the paper at the reader, and the center of the circular path is to 
the right of the car, in the plane of the paper.  If the car has its maximum speed, it 
would be on the verge of slipping, and the force of static friction would be at its 
maximum value.  The vertical forces (gravity and normal force) are of the same 
magnitude, because the car is not accelerating vertically.  We assume that the force 
of friction is the force causing the circular motion.  

� � � � � �

2
R fr N

2

      

0.65 80.0 m 9.80 m s 22.57 23m sm s

s s

s

F F m v r F mg

v rg

P P

P

 o   o

   |
 

Notice that the result is  independent of the car’s mass . 
 
35. (a) Find the centripetal acceleration from Eq. 5-1. 

� �22 2
R

21.30 m s 1.20 m 1.408 1.41m sm sa v r   |  

 (b) The net horizontal force is causing the centripetal motion, and so will be the centripetal force.    
   � � � �2

R R 22.5 kg 1.408 m s 31.68N 31.7 NF ma   |  

 
36. Find the centripetal acceleration from Eq. 5-1. 

� � � �
2

2 2
3 2

525m s 1 
57.42 m s 5.86 's

4.80 10 m 9.80 m sR

g
a v r g    

u
§ ·
¨ ¸
© ¹

 

 
37. We assume the water is rotating in a vertical circle of radius r.  When the bucket 

is at the top of its motion, there would be two forces on the water (considering 
the water as a single mass).  The weight of the water would be directed down, 
and the normal force of the bottom of the bucket pushing on the water would 
also be down.  See the free-body diagram.  If the water is moving in a circle, 
then the net downward force would be a centripetal force. 

  � �2 2
N N    F F mg ma m v r F m v r g �   o  �¦  

The limiting condition of the water falling out of the bucket means that the water loses contact with 
the bucket, and so the normal force becomes 0. 

  � � � �2 2
N critical critical    0    F m v r g m v r g v rg � o �  o   

From this, we see that  yes , it is possible to whirl the bucket of water fast enough.  The minimum 

speed is .rg  

 
38.  The centripetal acceleration of a rotating object is given by 2

Ra v r . 

� � � � � � � �5 5 2 2
R

21.25 10 1.25 10 9.80m s 8.00 10 m 3.13 10 m sv a r g r �  u  u u  u . 

� � � �
2 4

2

1 rev 60 s
3.13 10 m s 3.74 10 rpm

2 8.00 10 m 1 minS �
u  u

u

§ ·§ ·
¨ ¸¨ ¸¨ ¸© ¹© ¹

 

 
39. For an unbanked curve, the centripetal force to move the car in a circular path must 

be provided by the static frictional force.  Also, since the roadway is level, the 
normal force on the car is equal to its weight.  Assume the static frictional force is 
at its maximum value, and use the force relationships to calculate the radius of the 

mgG

frF
GNF

G

mgG

frF
GNF

G

mgGNF
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curve.  See the free-body diagram, which assumes the center of the curve is to the right in the 
diagram. 

  � �

� � � �

2
R fr N

2

2
2

      

1m s
30 km h

3.6 km h
28 m 30 m

0.7 9.80 m s

s s

s

F F m v r F mg

r v g

P P

P

 o   o

   |

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 
40. At the top of a circle, a free-body diagram for the passengers would be as 

shown, assuming the passengers are upside down.  Then the car’s normal 
force would be pushing DOWN on the passengers, as shown in the diagram.  
We assume no safety devices are present.  Choose the positive direction to 
be down, and write Newton’s second law for the passengers. 

  � �2 2
N N    F F mg ma m v r F m v r g �   o  �¦  

We see from this expression that for a high speed, the normal force is positive, meaning the 
passengers are in contact with the car.  But as the speed decreases, the normal force also decreases. If 
the normal force becomes 0, the passengers are no longer in contact with the car – they are in free 
fall.  The limiting condition is as follows. 

 � � � �2 2
min min0    9.80 m s 7.6 m 8.6 m sv r g v rg�  o     

 
41. A free-body diagram for the car is shown.  Write Newton’s second law for the car 

in the vertical direction, assuming that up is positive.  The normal force is twice 
the weight. 

� � � �
N

2

2    2   

95m 9.80 m s 30.51m s 31m s

F F mg ma mg mg m

v rg

v r �  o �  o

   |

¦
 

 
42. In the free-body diagram, the car is coming out of the paper at the reader, and the 

center of the circular path is to the right of the car, in the plane of the paper.  The 
vertical forces (gravity and normal force) are of the same magnitude, because the 
car is not accelerating vertically.  We assume that the force of friction is the force 
causing the circular motion.  If the car has its maximum speed, it would be on the 
verge of slipping, and the force of static friction would be at its maximum value. 

� �

� � � �

2

2
2

fr N 2

 1m s
95km hr

3.6 km hr
        0.84

85 m 9.80 m sR s s s

v
F F m v r F mg

rg
P P P o   o    

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

 Notice that the result is independent of the car’s mass. 
 
43. The orbit radius will be the sum of the Earth’s radius plus the 400 km orbit height.  The orbital 

period is about 90 minutes.  Find the centripetal acceleration from these data. 

� �
� �

� �

6

2 62
2

R 22 2

60 sec
6380 km 400 km 6780 km 6.78 10 m         90 min 5400 sec

1 min

4 6.78 10 m4 1 
9.18 m s 0.937 0.9 's

9.80 m s5400 sec

r T

r g
a g

T

SS

 �   u   

u
    |

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

mgGNF
G

mgG
frF
GNF

G

mgGNF
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Notice how close this is to g, because the shuttle is not very far above the surface of the Earth, 
relative to the radius of the Earth. 

 
44. (a) At the bottom of the motion, a free-body diagram of the bucket would be as  

shown.  Since the bucket is moving in a circle, there must be a net force on it  
towards the center of the circle, and a centripetal acceleration.  Write   
Newton’s second law for the bucket, with up as the positive direction. 

� � � � � � � �

2
R T

2

T

  

1.10 m 25.0 N 2.00 kg 9.80 m s
1.723 1.7 m s

2.00 kg

F F mg ma m v r

r F mg
v

m

 �   o

��
   |

ª º¬ ¼

¦
 

(b) A free-body diagram of the bucket at the top of the motion is shown.  Since the 
bucket is moving in a circle, there must be a net force on it towards the center 
of the circle, and a centripetal acceleration.  Write Newton’s second law for the 
bucket, with down as the positive direction. 

   
� �2 T

R T     
r F mg

F F mg ma m v r v
m

�
 �   o  ¦  

If the tension is to be zero, then  
� � � �� �20

1.10 m 9.80 m s 3.28 m s
r mg

v rg
m

�
     

  The bucket must move faster than 3.28 m/s in order for the rope not to go slack. 
 
45. The free-body diagram for passengers at the top of a Ferris wheel is as shown. 

FN is the normal force of the seat pushing up on the passenger.  The sum of the 
forces on the passenger is producing the centripetal motion, and so must be a  
centripetal force.  Call the downward direction positive, and write Newton’s  
second law for the passenger. 

  2
R NF mg F ma m v r �   ¦  

Since the passenger is to feel “weightless,” they must lose contact with their seat, and so the normal 
force will be 0.  The diameter is 22 m, so the radius is 11 m. 

� � � �2 2    9.80 m s 11m 10.38m smg m v r v gr o     

  � � � �
1 rev 60s

10.38m s 9.0 rpm
2 11m 1minS

 
§ ·§ ·
¨ ¸¨ ¸

© ¹© ¹
 

 
46. To describe the motion in a circle, two independent quantities are needed.  The radius of the circle 

and the speed of the object are independent of each other, so we choose those two quantities.  The 
radius has dimensions of > @L  and the speed has dimensions of > @L T .   These two dimensions need 

to be combined to get dimensions of 2L T .ª º¬ ¼   The speed must be squared, which gives 2 2L T ,ª º¬ ¼  

and then dividing by the radius gives 2L T .ª º¬ ¼   So 2
Ra v r  is a possible form for the centripetal 

acceleration.  Note that we are unable to get numerical factors, like S  or 1
2 , from dimensional 

analysis. 
 
 
 

mgGTF

mgGNF
G

mgG

TF
G
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47. (a) See the free-body diagram for the pilot in the jet at the bottom of the  
loop.  We have 2

R 6a v r g  . 

� �

� �

2

2
2

2

1m s
1200 km h

3.6 km h
6.0     1900 m

6.0 6.0 9.80m s
v

v r g r
g

 o    

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

(b) The net force must be centripetal, to make the pilot go in a circle.  Write Newton’s second  
law for the vertical direction, with up as positive.  The normal force is the apparent weight. 

2
R NF F mg m v r �  ¦  

The centripetal acceleration is to be 2 6.0 .v r g   

  � � � �2 2
N 7 7 78 kg 9.80 m s 5350 N 5400 NF mg m v r mg �      

(c)  See the free-body diagram for the pilot at the top of the loop.  Notice that  
the normal force is down, because the pilot is upside down.  Write Newton’s 
second law in the vertical direction, with down as positive. 

2
R N N6     5 3800 NF F mg m v r mg F mg �   o   ¦  

 
48. To experience a gravity-type force, objects must be on the inside of the outer  

wall of the tube, so that there can be a centripetal force to move the objects in 
a circle.  See the free-body diagram for an object on the inside of the outer  
wall, and a portion of the tube.  The normal force of contact between the  
object and the wall must be maintaining the circular motion.  Write  
Newton’s second law for the radial direction. 

2
R NF F ma m v r   ¦  

If this is to have the same effect as Earth gravity, then we must also have that  
N .F mg   Equate the two expressions for normal force and solve for the speed.   

� � � �2 2
N     9.80 m s 550 m 73.42 m sF m v r mg v gr  o     

� � � �
31 rev 86,400 s

73.42 m s 1836 rev d 1.8 10 rev d
2 550 m 1 dS

 | u
§ ·§ ·

¨ ¸¨ ¸© ¹© ¹
 

 
49. The radius of either skater’s motion is 0.80 m, and the period is 2.5 sec.  Thus their speed is given by 

� �2 0.80 m
2 2.0 m s

2.5 s
.v r T

S
S     Since each skater is moving in a circle, the net radial force on 

each one is given by Eq. 5-3. 
� �� �2

2 2
R

60.0 kg 2.0 m s
3.0 10 N

0.80 m
F m v r   u . 

 
50. A free-body diagram for the ball is shown.  The tension in the 

suspending cord must not only hold the ball up, but also provide the 
centripetal force needed to make the ball move in a circle.  Write 
Newton’s second law for the vertical direction, noting that the ball is 
not accelerating vertically.  

T Tsin 0    
siny

mg
F F mg FT

T
 �  o  ¦  

T�

mgG
TF
G

mgG

NF
G

mgG
NF
G

NF
G
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The force moving the ball in a circle is the horizontal portion of the tension.  Write Newton’s second 
law for that radial motion. 

2

R T RcosF F ma m v rT   ¦  
Substitute the expression for the tension from the first equation into the second equation, and solve 
for the angle.  Also substitute in the fact that for a rotating object, 2 .v r TS   Finally we recognize 
that if the string is of length ,l  then the radius of the circle is cos .r T l  

� �� �
� �

2 2 2

T 2 2

222 2
1 1

2 2 2

4 4 cos
cos cos   

sin
9.80 m s 0.500 s

sin     sin sin 5.94
4 4 4 0.600 m

mg mv mr m
F

r T T

gT gT

S S TT T
T

T T
S S S

� �

    o

 o    q

l

l l

 

The tension is then given by 
� � � �2

T

0.150 kg 9.80 m s
14.2 N

sin sin 5.94
mg

F
T

   
q

 

 
51. The force of static friction is causing the circular motion – it is the centripetal  

force.  The coin slides off when the static frictional force is not large enough to 
move the coin in a circle.  The maximum static frictional force is the coefficient 
of static friction times the normal force, and the normal force is equal to the 
weight of the coin as seen in the free-body diagram, since there is no vertical 
acceleration.  In the free-body diagram, the coin is coming out of the paper and 
the center of the circle is to the right of the coin, in the plane of the paper. 

 

 The rotational speed must be changed into a linear speed. 

  

� �

� �
� � � �

22
2

R fr N 2

2 0.120 mrev  1 min
35.0 0.4398m s

min 60 s 1 rev

0.4398 m s
        0.164

0.120 m 9.80 m ss s s

v

v
F F m v r F mg

rg

S

P P P

  

 o   o    

§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹

 

 
52. For the car to stay on the road, the normal force must be greater 

than 0.  See the free-body diagram, write the net radial force, and 
solve for the radius. 

  
2 2

R N
N

cos     
cos

mv mv
F mg F r

r mg F
T

T
 �  o  

�
 

For the car to be on the verge of leaving the road, the normal force 

would be 0, and so 
2 2

critical cos cos
.mv v

r
mg gT T

    This expression 

gets larger as the angle increases, and so we must evaluate at the 
largest angle to find a radius that is good for all angles in the range. 

 � �

2

2

critical 2
maximum max

1m s
95km h

3.6 km h
77 m

cos 9.80 m s cos 22
v

r
g T

   
q

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

 
 
 
 

mgG
frF
G

NF
G

Initial 
Road

Final 
Road

mgG

NF
G

TT
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53. (a) A free-body diagram of the car at the instant it is on the top of the hill is  
shown.  Since the car is moving in a circular path, there must be a net  
centripetal force downward.  Write Newton’s second law for the car, with  
down as the positive direction. 

   
� � � � � �

2
R N

2
2 2

N

  

12.0 m s
975kg 9.80 m s 7960 N

88.0 m

F mg F ma m v r

F m g v r

 �   o

 �  �  
§ ·
¨ ¸
© ¹

¦
 

(b) The free-body diagram for the passengers would be the same as the one for the car, leading to  
the same equation for the normal force on the passengers.  

� � � � � �2
2 2

N

12.0 m s
72.0 kg 9.80 m s 588 N

88.0 m
F m g v r �  �  

§ ·
¨ ¸
© ¹

 

Notice that this is significantly less than the 700-N weight of the passenger.  Thus the passenger 
will feel “light” as they drive over the hill. 

(c) For the normal force to be zero, we must have the following. 

� � � � � �2 2 2
N 0        9.80 m s 88.0 m 29.4 m sF m g v r g v r v gr �  o  o     

 
54. If the masses are in line and both have the same frequency of 

rotation, then they will always stay in line.  Consider a free-
body diagram for both masses, from a side view, at the 
instant that they are to the left of the post.  Note that the same 
tension that pulls inward on mass 2 pulls outward on mass 1, 
by Newton’s third law.  Also notice that since there is no 
vertical acceleration, the normal force on each mass is equal 
to its weight.  Write Newton’s second law for the horizontal 
direction for both masses, noting that they are in uniform circular motion. 

  2 2
RA TA TB A A A A A RB TB B B B B B      F F F m a m v r F F m a m v r �      ¦ ¦  

The speeds can be expressed in terms of the frequency as follows:   
rev 2

2 .
sec 1 rev

r
v f rf

S S  § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

� �

� � � �

22 2 2
TB B B B B B B B B

22 2 2 2
TA TB A A A B B A A A A A B B

2 4

4 2 4

F m v r m r f r m r f

F F m v r m r f m r f r f m r m r

S S

S S S

   

 �  �  �
 

 
55. A free-body diagram of Tarzan at the bottom of his swing is shown.  The upward  

tension force is created by his pulling down on the vine.  Write Newton’s second law  
in the vertical direction.  Since he is moving in a circle, his acceleration will be  
centripetal, and points upward when he is at the bottom. 

� �2 T
T     

F mg r
F F mg ma m v r v

m

�
 �   o  ¦  

 The maximum speed will be obtained with the maximum tension. 

� � � � � �� �2
T max

max

1350 N 78kg 9.80 m s 5.2 m
6.2 m s

78 kg

mg r
v

m

��
   

F
G

 

 

mgG
NF
G

mA mB 

Am gGBm gG

TBF
G

TBF
G

TAF
GNBF

G
NAF
G

mgG

TF
G
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56. The fact that the pilot can withstand 9.0 g’s without blacking out, along with the 
speed of the aircraft, will determine the radius of the circle that he must fly as he 
pulls out of the dive.  To just avoid crashing into the sea, he must begin to form 
that circle (pull out of the dive) at a height equal to the radius of that circle. 

  
� �
� �

22
2 3

R 2

310 m s
9.0     1.1 10 m

9.0 9.0 9.80 m s
v

a v r g r
g

  o    u  

 
57. (a) We are given that � � � �2.0 m cos 3.0 rad sx t  and � � � �2.0 m sin 3.0 rad sy t .  Square both  

components and add them together. 

   
� � � �> @ � � � �> @
� � � � � � � �

2 22 2

2 22 2

2.0 m cos 3.0 rad s 2.0 m sin 3.0 rad s

2.0 m cos 3.0 rad s sin 3.0 rad s 2.0 m          

x y t t

t t

�  �

 �  ª º¬ ¼
 

  This is the equation of a circle, 2 2 2x y r�  , with a radius of 2.0 m. 

 (b) � � � � � � � �ˆ ˆ6.0m s sin 3.0 rad s 6.0m s cos 3.0 rad st t � �v i jG  

  � � � � � � � �2 2ˆ ˆ18m s cos 3.0 rad s 18m s sin 3.0 rad st t � � �a i jG  

 (c) � � � �> @ � � � �> @2 22 2 6.0 m s sin 3.0 rad s 6.0 m s 3.0 rad s 6.0 m scosx yv t tv v ��  �   

  � � � � � � � �2 22 2 2 2 218m s cos 3.0 rad s 18m s sin 3.0 rad s 18m sx ya a a t t �  � � �  ª º ª º¬ ¼ ¬ ¼  

 (d) � �22
26.0 m s

18m s
2.0 m

v
a

r
    

 (e) � � � � � � � �2 2ˆ ˆ18m s cos 3.0 rad s 18 m s sin 3.0 rad st t � � �a i jG   

  � � � � � � � � � �2 2ˆ ˆ9.0 s 2.0 m cos 3.0 rad s 2.0 msin 3.0 rad s 9.0 s  t t� �ª º  �¬ ¼i j rG  

 We see that the acceleration vector is directed oppositely of the position vector.  Since the 
position vector points outward from the center of the circle, the acceleration vector points 
toward the center of the circle. 

 
58. Since the curve is designed for 65 km/h, traveling at a higher speed with the same radius means that 

more centripetal force will be required.  That extra centripetal force will be supplied by a force of 
static friction, downward along the incline.  See the free-body diagram for the car on the incline.  
Note that from Example 5-15 in the textbook, the no-friction banking angle is given by the 
following. 

  
� �

� � � �

2

2
1 1

2

1.0 m s
65km h

3.6 km h
tan tan 21.4

85m 9.80 m s
v

rg
T � �   

ª º§ ·
¨ ¸« »
© ¹¬ ¼ q  

Write Newton’s second law in both the x and y directions.  The car will have no acceleration in the y 
direction, and centripetal acceleration in the x direction.  We also assume that the car is on the verge 
of skidding, so that the static frictional force has its maximum value of fr N .sF FP   Solve each 
equation for the normal force. 

N fr N Ncos sin 0    cos sin   y sF F mg F F F mgT T T P T � �  o �  o¦  
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� �N cos sins

mg
F

T P T
 

�
 

� �

2 2
N fr R N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F mv r F F mv r

mv r
F

T T T P T

T P T

 �   o �  o

 
�

¦
 

Equate the two expressions for NF , and solve for the coefficient of friction.  The speed of rounding  

the curve is given by � � 1.0 m s
95km h 26.39 m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

 

� � � �
2

 
cos sin sin coss s

mg mv r

T P T T P T
 o

� �
 

� � � �
� �

22 2
2

2 2 2
2

26.39 m s
9.80 m s tan 21.4cos sin tan

85m
0.33

26.39 m scos sin tan 9.80 m s tan 21.4
85 m

s

v v
g g

r r

v v
g g

r r

T T T
P

T T T

� q� �
    

� � � q

§ ·§ · § ·
¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹ © ¹
§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

 
59. Since the curve is designed for a speed of 85 km/h, traveling at that speed 

would mean no friction is needed to round the curve.  From Example 5-
15 in the textbook, the no-friction banking angle is given by  

� �

� � � �

2

2
1 1

2

1m s
85km h

3.6 km h
tan tan 39.91

68 m 9.80 m s
v

rg
T � �   q

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

Driving at a higher speed with the same radius means that more centripetal force will be required 
than is present by the normal force alone.  That extra centripetal force will be supplied by a force of 
static friction, downward along the incline, as shown in the first free-body diagram for the car on the 
incline.  Write Newton’s second law in both the x and y directions.  The car will have no acceleration 
in the y direction, and centripetal acceleration in the x direction.  We also assume that the car is on 
the verge of skidding, so that the static frictional force has its maximum value of fr N .sF FP  

� �

N fr N N

N

cos sin 0    cos sin   

cos sin

y s

s

F F mg F F F mg

mg
F

T T T P T

T P T

 � �  o �  o

 
�

¦
 

� �

2 2
N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F m v r F F m v r

mv r
F

T T T P T

T P T

 �  o �  o

 
�

¦
 

Equate the two expressions for the normal force, and solve for the speed. 

� � � �
� �
� � � � � � � �

� �

2

2

  
sin cos cos sin

sin cos sin 39.91 0.30cos39.91
  68m 9.80 m s 32 m s

cos sin cos39.91 0.30sin 39.91

s s

s

s

mv r mg

v rg

T P T T P T

T P T
T P T

 o
� �

� q � q
   

� q � q

 

 

T�

T�y 
x 

T�
mgG
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Now for the slowest possible speed.  Driving at a slower speed with 
the same radius means that less centripetal force will be required than 
that supplied by the normal force.  That decline in centripetal force 
will be supplied by a force of static friction, upward along the incline, 
as shown in the second free-body diagram for the car on the incline.  
Write Newton’s second law in both the x and y directions.  The car 
will have no acceleration in the y direction, and centripetal 
acceleration in the x direction.  We also assume that the car is on the 
verge of skidding, so that the static frictional force has its maximum value of fr N .sF FP  

� �

N fr

N N N

cos sin 0  

cos sin      
cos sin

y

s

s

F F mg F

mg
F F mg F

T T

T P T
T P T

 � �  o

�  o  
�

¦
 

� �

2 2
N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F m v r F F m v r

mv r
F

T T T P T

T P T

 �  o �  o

 
�

¦
 

Equate the two expressions for the normal force, and solve for the speed. 

� � � �
� �
� � � � � � � �

� �

2

2

  
sin cos cos sin

sin cos sin 39.91 0.30cos39.91
  68m 9.80 m s 17 m s

cos sin cos39.91 0.30sin 39.91

s s

s

s

mv r mg

v rg

T P T T P T

T P T
T P T

 o
� �

� q � q
   

� q � q

 

Thus the range is 17 m s 32 m s ,vd d  which is 61km h 115km h .vd d  

 
60. (a) The object has a uniformly increasing speed, which means the tangential acceleration is  

constant, and so constant acceleration relationships can be used for the tangential motion.  The 
object is moving in a circle of radius 2.0 meters. 

   
� �> @ � �tan 0 1

tan 4tan
tan tan 0

tan

2 2 2.0 m2
    m s

2 2.0s

v v
rx

x t v v
t t

S S
S

�
'

'  o  �     

 (b) The initial location of the object is at ˆ2.0 mj , and the final location is ˆ2.0 m .i  

   � �0
avg

ˆ ˆ2.0 m 2.0 m ˆ ˆ1.0 m s
2.0st

� �
   �

r r i j
v i j

G G
G  

 (c) The velocity at the end of the 2.0 seconds is pointing in the ˆ�j  direction.   

   � � � �20
avg

ˆm s ˆ2 m s
2.0st

S
S

��
   �

jv v
a j

G GG  

 
61. Apply uniform acceleration relationships to the tangential motion to find the tangential acceleration.  

Use Eq. 2-12b. 

  
� �> @ � �

� �
� �

1
2 24tan1

tan 0 tan tan2 22 2
tan

2 2 2.0 m2
    2 m s

2.0s

rx
x v t a t a

t t

S S
S'

'  � o      

 The tangential acceleration is constant.  The radial acceleration is found from � �22
tantan

rad .a tv
a

r r
   

y 
x 

T�

T�

T�

mgG

NF
GfrF

G
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 (a) � � � � � � � � 222
2 tan

tan rad

2 m s 0s
2 m s ,  0

2.0 m
a t

a a
r

S
S    

ª º¬ ¼  

 (b) � � � � � � � � � �
222

2 2 2tan
tan rad

2 m s 1.0s
2 m s ,  8 m s

2.0 m
a t

a a
r

S
S S    

ª º¬ ¼  

 (c) � � � � � � � � � �
222

2 2 2tan
tan rad

2 m s 2.0s
2 m s ,  2 m s

2.0 m
a t

a a
r

S
S S    

ª º¬ ¼  

 
62. (a) The tangential acceleration is the time derivative of the speed. 

   
� � � � � �

2
2tan

tan tan

3.6 1.5
3.0     3.0s 3.0 3.0 9.0 m s

d tdv
a t a

dt dt

�
   o    

 (b) The radial acceleration is given by Eq. 5-1. 

   
� � � �

� �� �22 222
2tan

rad rad

3.6 1.5 3.03.6 1.5
   3.0s 13m s

22 m

tv
a a

r r

��
  o    

 
63. We show a top view of the particle in circular motion, traveling clockwise.  

Because the particle is in circular motion, there must be a radially-inward 
component of the acceleration. 
(a) 2

R sin   a a v rT  o  

� � � �2 osin 1.15 m s 3.80 m sin 38.0 1.64 m sv ar T    

(b)  The particle’s speed change comes from the tangential acceleration,  
which is given by tan cos .a a T   If the tangential acceleration is 

 constant, then using Eq. 2-12a,  

  � � � � � �
tan 0 tan tan

2
tan 0  tan tan

  

1.64 m s 1.15m s cos38.0 2.00 s 3.45m s

v v a t

v v a t

�  o

 �  � q  
 

 
64. The tangential force is simply the mass times the tangential acceleration. 

� �2 2    T T Ta b ct F ma m b ct � o   �  

To find the radial force, we need the tangential velocity, which is the anti-derivative of the tangential 
acceleration.  We evaluate the constant of integration so that 0v v  at 0.t   

  
� �

� �

2 3 31 1
0 03 3

2
231

0 3

        0     T T T

T
R

a b ct v c bt ct v c v v v bt ct

mv m
F v bt ct

r r

 � o  � � o   o  � �

  � �
 

 
65. The time constant W must have dimensions of > @T .   The units of m are > @M .   Since the expression 

bv  is a force, we must have the dimensions of b  as force units divided by speed units.  So the 

 dimensions of b  are as follows:  
> @

> @

2M L TForce units M
speed units L T T

.  
ª º ª º¬ ¼

« »¬ ¼
  Thus to get dimensions of  

> @T , we must have .m bW   

T�
aG

RaG

tanaG
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66. (a) The terminal velocity is given by Eq. 5-9.  This can be used to find the value of .b  
� � � �

� �

5 2
5 5

T
T

3 10 kg 9.80 m s
    3.27 10 kg s 3 10 kg s

9 m s
mg mg

v b
b v

�
� �

u
 o    u | u  

(b) From Example 5-17, the time required for the velocity to reach 63% of terminal velocity is the 
time constant, .m bW   

5

5

3 10 kg
0.917s 1s

3.27 10 kg s
m

b
W

�

�

u
   |

u
 

 
67. (a) We choose downward as the positive direction.  Then the force of gravity is in the positive  

direction, and the resistive force is upwards.  We follow the analysis given in Example 5-17. 

   
00

net

0

0

0 0

      

        ln   

ln         1

vv t

vv

b b b
t t t

m m m

dv b b mg
F mg bv ma a g v v

dt m m b

dv b dv b mg b
dt dt v t

mg mgm m b mv v
b b

mg mg
v vb mgb bt e v e v e

mg mgm bv v
b b

� � �

 �  o   �  � � o

 � o  � o �  � o
� �

� �
 � o  o  � �

� �

§ ·
¨ ¸
© ¹

ª º
« »¬ ¼

ª º
§ ·« »
¨ ¸« »
© ¹« »

¬ ¼

³ ³  

  Note that this motion has a terminal velocity of terminalv mg b . 
 (b) We choose upwards as the positive direction.  Then both the force of gravity and the resistive  

force are in the negative direction. 

   net       
dv b b mg

F mg bv ma a g v v
dt m m b

 � �  o   � �  � � o§ ·
¨ ¸
© ¹

 

   

00 0

0

0 0

        ln   

ln         1

vv t

vv

b b b
t t t

m m m

dv b dv b mg b
dt dt v t

mg mgm m b mv v
b b

mg mg
v vb mgb bt e v e v e

mg mgm bv v
b b

� � �

 � o  � o �  � o
� �

� �
 � o  o  � �
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ª º
« »¬ ¼

ª º
§ ·« »
¨ ¸« »
© ¹« »

¬ ¼

³ ³

 

After the object reaches its maximum height 0
rise ln 1 ,m bv

t
b mg

 �
ª º§ ·

¨ ¸« »© ¹¬ ¼
 at which point the speed 

will be 0, it will then start to fall.  The equation from part (a) will then describe its falling 
motion. 

 
68. The net force on the falling object, taking downward as positive, will be 2 .F mg bv ma �  ¦  
 (a) The terminal velocity occurs when the acceleration is 0. 

   2 2
T T    0    mg bv ma mg bv v mg b�  o �  o   

 (b) 
� � � �

� �

2

T 22
T

75kg 9.80 m s
    0.2 kg m

60 m s
mg mg

v b
b v

 o     
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 (c) The curve would be qualitatively like Fig. 5-27, because the speed would increase from 0 to the  
terminal velocity, asymptotically.  But this curve would be ABOVE the one in Fig. 5-27, 
because the friction force increases more rapidly.  For Fig. 5-27, if the speed doubles, the 
friction force doubles.  But in this case, if the speed doubles, the friction force would increase 
by a factor of 4, bringing the friction force closer to the weight of the object in a shorter period 
of time. 

 
69. (a) See the free-body diagram for the coasting.  Since the bicyclist has a  

constant velocity, the net force on the bicycle must be 0.  Use this to 
find the value of the constant c. 

   
 
 
 
 
 
 
 
 

(b) Now another force, P ,F
G

 must be added down the plane to represent  
the additional force needed to descend at the higher speed.  The 
velocity is still constant.  See the new free-body diagram. 

  
2

P D P

2
P

sin sin 0  

sin
xF mg F F mg F cv

F cv mg

T T

T

 � �  � �  o

 �

¦  

� � � � � �
2

21m s
    13.72 kg m 25km h 80.0kg 9.80 m s sin 7.0 570 N

3.6 km h
 � q  

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 
70. (a) The rolling drag force is given as D1 4.0 N.F |   The air resistance drag force is proportional to  

2 ,v  and so D2
2.F bv   Use the data to find the proportionality constant, and then sum the two 

drag forces to find the total drag force. 

   
� �

� �

� �

22
D2 2

2
D D1 D2

1.0 N
    1.0 N 2.2 m s     0.2066 kg m

2.2 m s

4.0 0.21 N

F bv b b

F F F v

 o  o   

 �  �

   

(b) See the free-body diagram for the coasting bicycle and rider.  Take 
the positive direction to be down the plane, parallel to the plane.  
The net force in that direction must be 0 for the bicycle to coast at a 
constant speed. 

� �

� � � �� �
� � � �

D D

2
1 1D

2

1
2

sin 0    sin   

4.0 0.2066
sin sin

4.0N 0.2066 kg m 8.0 m s
sin 1.3

78kg 9.80 m s
 

x
F mg F mg F

vF

mg mg

T T

T � �

�

 �  o  o

�
  

�
  q

¦
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mgG
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G
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G
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y

x 

T��
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G
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y

x 
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NF
G

DF
G
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y

x 
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G

� � � �
2

D

2

22

sin sin 0  

80.0kg 9.80 m s sin 7.0sin
13.72 kg m

1m s
9.5km h

3.6 km h

 14 kg m

xF mg F mg cv

mg
c

v

T T

T

 �  �  o

q
   

|
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¨ ¸« »
© ¹¬ ¼
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71. From Example 5-17, we have that 1 .
b

t
m

mg
e

b
v

�
 �

§ ·
¨ ¸
© ¹

  We use this expression to find the position 

and acceleration expressions. 

  
b b

t t
m m

dv mg b
a e ge

dt b m

� �
  � �  

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

 

  
0 0 0

2

2
0

        1   

1

bx t t
t

m

tb b
t t

m m

dx mg
v dx vdt dx v dt e dt

dt b

mg mg m mg m g
x t e t e

b b b b b

�

� �

 o  o   � o

 �  � �

§ ·
¨ ¸
© ¹

ª º § ·
¨ ¸« »

¬ ¼ © ¹

³ ³ ³
 

 
72. We solve this problem by integrating the acceleration to find the velocity, and integrating the 

velocity to find the position. 

  

1 1
2 2

1
2

1 1 1
2 2 2

1
2

0

net

2

0 0
0

          

             2 2     
2

v t

v

dv dv b dv b
F bv ma m v dt

dt dt m mv

dv b b bt
dt v v t v v

m m mv

 �   o  � o  � o

 � o �  � o  �§ ·
¨ ¸
© ¹³ ³

  

  

1 1 1
2 2 2

3 31 1
2 2 2 2

2 2 2

0 0 0
0 0

3 3

0 0 0 0

          
2 2 2

2 2
3 2 3 2

x tdx bt bt bt
v dx v dt dx v dt

dt m m m

m bt m bt
x v v v v

b m b m

 � o  � o  � o

 � � �  � �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

ª º ª º§ · § ·
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3 3 3 31 1
2 2 2 2 2 2

1
2

2 2 3 3 2 2 3 3

0 0 0 0 0 0 0 02 3 2 3

2
2 30

0 2

2 2
3 3 3 3

3 2 4 8 3 2 4 8

2 12

  

  

m bt b t b t m bt b t b t
v v v v v v v v

b m m m b m m m

v b b
v t t t

m m
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© ¹

 

 

73. From problem 72, we have that 
1
2

2

0 2
bt

v v
m

 �§ ·
¨ ¸
© ¹

 and 
1
2 2

2 30
0 22 12

.v b b
x v t t t

m m
 � �
§ ·
¨ ¸¨ ¸
© ¹

  The maximum 

distance will occur at the time when the velocity is 0.  From the equation for the velocity, we see that 

happens at 
1
2

0
max

2 .mv
t

b
   Use this time in the expression for distance to find the maximum distance.

 � �
3 3 3 31 1 1 1

2 2 2 2 2 2 2 2

2 3
2

0 0 0 0 0 0 0 0
max 0 2

2 2 2 2 2 2 2
2 12 3 3

mv v b mv b mv mv mv mv mv
x t t v

b m b m b b b b b
  � �  � �  

§ · § ·
¨ ¸ ¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹

 

 
74. The net force is the force of gravity downward, and the drag force upwards.  Let the downward 

direction be positive.  Represent the value of 41.00 10 kg su  by the symbol b, as in Eq. 5-6. 

  d      
dv dv b

F mg F mg bv ma m g v
dt dt m

 �  �   o  � o¦  
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0

0
0

        ln ln
v t

v

dv b dv b mg mg b
dt dt v v t

mg mgm m b b mv v
b b

 � o  � o � � �  �
� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹³ ³  

 Solve for t, and evaluate at 00.02 .v v  

  
� � � � � � � � � � � �

� � � �

0 0

2 2

4 4

4

2 2

ln 0.02 ln

75kg 9.80 m s 75kg 9.80 m s
ln 0.02 5.0 m s ln 5.0 m s

1.00 10 kg s 1.00 10 kg s
 

1.00 10 kg s 75kg

3.919 10 s 3.9 10 s 

mg mg
v v

b bt
b m

� �

� � �
 

�

� � �
u u

 
� u

 u | u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹  

 
75. The only force accelerating the boat is the drag force, and so Newton’s second law becomes 

.F bv ma �  ¦   Use this to solve for the velocity and position expressions, and then find the 
distance traveled under the given conditions. 

  0 0 0

0

            ln   
v t

v

b
t

m

dv dv b dv b b
F bv ma m v dt t

dt dt m v m m

v
v

v v e
�

 �   o  � o  � o  � o

 

¦ ³ ³
 

 Note that this velocity never changes sign.  It asymptotically approaches 0 as time approaches 
infinity.  Apply the condition that at t = 3.0 s the speed is 1

02 .v v  

  � �
� �3.0

1
0 02

ln 2
3.0     

3.0s

b

m
b

v t v e v
m

�
   o   

 Now solve for the position expression.  The object will reach its maximum position when it stops, 
which is after an infinite time. 

  

� � � �

0 0 0
0 0

0 0 0

          

3.0s
1 1     2.4 m s 10.39 m 10 m

ln 2

b b bx t
t t t

m m m

b b
t t

m m

dx
v v e dx v e dt dx v e dt

dt

m m m
x v e v e x t v

b b b

� � �

� �

  o  o  o

 � �  � o  f    |
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

³ ³
 

 
76. A free-body diagram for the coffee cup is shown.  Assume that the car is moving to 

the right, and so the acceleration of the car (and cup) will be to the left.  The  
deceleration of the cup is caused by friction between the cup and the dashboard.  For 
the cup to not slide on the dash, and to have the minimum deceleration time means 
the largest possible static frictional force is acting, so fr N .sF FP   The normal force 
on the cup is equal to its weight, since there is no vertical acceleration.  The 
horizontal acceleration of the cup is found from Eq. 2-12a, with a final velocity of zero. 

� �0

20
0

1m s
45 km h 12.5 m s

3.6 km h

0 12.5 m s
    3.57 m s

3.5 s

v

v v
v v at a

t

  

� �
�  o    �

§ ·
¨ ¸
© ¹  

mgG

NF
G

frF
G
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Write Newton’s second law for the horizontal forces, considering to the right to be positive. 
� �2

fr N 2

3.57 m s
        0.36

9.80 m sx s s s

a
F F ma ma F mg

g
P P P

�
 �  o  �  � o  �  �  ¦  

 
77. Since the drawer moves with the applied force of 9.0 N, we assume that the maximum static 

frictional force is essentially 9.0 N.  This force is equal to the coefficient of static friction times the 
normal force.  The normal force is assumed to be equal to the weight, since the drawer is horizontal. 

  
� � � �

fr
fr N 2

9.0 N
    0.46

2.0 kg 9.80 m ss s s

F
F F mg

mg
P P P  o      

 
78. See the free-body diagram for the descending roller coaster.  It starts its 

descent with � �0

1m s
6.0 km h 1.667 m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  The total 

displacement in the x direction is 0 45.0 m.x x�    Write Newton’s second 
law for both the x and y directions. 

N Ncos 0    cosyF F mg F mgT T �  o  ¦  

� �

fr Nsin sin sin cos

sin cos
          sin cos

x k k

k
k

F ma mg F mg F mg mg

mg mg
a g

m

T T P T P T

T P T
T P T

  �  �  �

�
  �

¦
 

Now use Eq. 2-12c to solve for the final velocity. 
� �
� � � � � �

� � � � � �> @� �

2 2
0 0

2 2
0 0 0 0

2 2

2   

2 2 sin cos

  1.667 m s 2 9.80 m s sin45 0.12 cos45 45.0 m

  23.49 m s 23m s 85km h

k

v v a x x

v v a x x v g x xT P T

�  � o

 � �  � � �

 � q � q

 | |

 

 
79. Consider a free-body diagram of the box.  Write Newton’s second law for 

both directions.  The net force in the y direction is 0 because there is no 
acceleration in the y direction. 

N N

fr

cos 0    cos

sin
y

x

F F mg F mg

F mg F ma

T T

T

 �  o  

 �  

¦
¦

 

Now solve for the force of friction and the coefficient of friction. 

N N

fr

cos 0    cos

sin
y

x

F F mg F mg

F mg F ma

T T

T

 �  o  

 �  

¦
¦

  

� � � � � � � �2 o 2
fr sin sin 18.0 kg 9.80 m s sin 37.0 0.220 m s

    102.2 N 102 N

F mg ma m g aT T �  �  �

 |

ª º¬ ¼
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F F mg
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P P T P
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80. Since mass m is dangling, the tension in the cord must be equal to the weight of mass m, and so  
T .F mg   That same tension is in the other end of the cord, maintaining the circular motion of mass 

M, and so  2
T R R .F F Ma M v r     Equate the expressions for tension and solve for the velocity. 

2     M v r mg v mgR M o   

 
81. Consider the free-body diagram for the cyclist in the sand, assuming that the 

cyclist is traveling to the right.  It is apparent that NF mg  since there is no 
vertical acceleration.  Write Newton’s second law for the horizontal direction, 
positive to the right. 

fr         x k kF F ma mg ma a gP P �  o �  o  �¦  
Use Eq. 2-12c to determine the distance the cyclist could travel in the sand 
before coming to rest.   

� � � � � �
� � � �

22 2 2
2 2 0 0

0 0 0 2

20.0 m s
2     29 m

2 2 2 0.70 9.80 m sk

v v v
v v a x x x x

a gP
� �

�  � o �     
�

 

Since there is only 15 m of sand, the cyclist will emerge from the sand .  The speed upon emerging is 
found from Eq. 2-12c. 

� �2 2
0 02   v v a x x�  � o  

� � � � � � � � � � � �22 2 2
0 0 02 2 20.0 m s 2 0.70 9.80 m s 15m

  14 m s

i kv v a x x v g x xP � �  � �  �

 
 

 
82.  Consider the free-body diagram for a person in the “Rotor-ride.”  NF

G
 is the  

normal force of contact between the rider and the wall, and frF
G

 is the static 
frictional force between the back of the rider and the wall.  Write Newton’s 
second law for the vertical forces, noting that there is no vertical acceleration.   

fr fr0    yF F mg F mg �  o  ¦  
If we assume that the static friction force is a maximum, then  

fr N N    s sF F mg F m gP P  o  . 
 But the normal force must be the force causing the centripetal motion – it is the  

only force pointing to the center of rotation.  Thus 2
R N .F F m v r    Using 2 ,v r TS  we have 

2

2

4 .N

mr
F

T

S
   Equate the two expressions for the normal force and solve for the coefficient of 

friction.  Note that since there are 0.50 rev per sec, the period is 2.0 sec. 

� � � �
� �

222 2

2 2 2

9.80 m s 2.0s4
    0.18

4 4 5.5mN s

s

mr mg gT
F

T r

S P
P S S

  o     

Any larger value of the coefficient of friction would mean that the normal force could be smaller to 
achieve the same frictional force, and so the period could be longer or the cylinder radius smaller. 

 

There is no force pushing outward on the riders.  Rather, the wall pushes against the riders, so by 
Newton’s third law, the riders push against the wall.  This gives the sensation of being pressed into 
the wall.  
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83. The force is a centripetal force, and is of magnitude 7.45 .mg   Use Eq. 5-3 for centripetal force. 

  
� � � �

� � � �

2
27.45     7.45 7.45 11.0 m 9.80 m s 28.34 m s 28.3m s

1rev
28.34 m s 0.410 rev s

2 11.0 m

v
F m mg v rg

r

S

  o    |

u  
 

 
84. The car moves in a horizontal circle, and so there must be a net horizontal  

centripetal force.  The car is not accelerating vertically.  Write Newton’s 
second law for both the x and y directions. 

N N

R N

cos 0    
cos

sin

y

x x

mg
F F mg F

F F F ma

T
T

T

 �  o  

   

¦
¦ ¦

 

 The amount of centripetal force needed for the car to round the curve is as follows. 

� �
� �

2

2 3
R

1.0 m s
85km h

3.6 km h
1250 kg 9.679 10 N

72 m
F m v r   u

ª º§ ·
¨ ¸« »
© ¹¬ ¼  

The actual horizontal force available from the normal force is as follows. 

� � � �2 3
N sin sin tan 1250 kg 9.80 m s tan14 3.054 10 N

cos
mg

F mgT T T
T

    uq  

Thus more force is necessary for the car to round the curve than can be 
supplied by the normal force.  That extra force will have to have a 
horizontal component to the right in order to provide the extra centripetal 
force.  Accordingly, we add a frictional force pointed down the plane.  
That corresponds to the car not being able to make the curve without 
friction. 

 

 Again write Newton’s second law for both directions, and again the y  
acceleration is zero. 

fr
N fr N

2
N fr

sin
cos sin 0    

cos
sin cos

y

x

mg F
F F mg F F

F F F m v r

T
T T

T
T T

�
 � �  o  

 �  

¦

¦
 

Substitute the expression for the normal force from the y equation into the x equation, and solve for 
the friction force. 

� �

� � � � � �

2
2 2fr

fr fr fr

2
3 2

fr

3

sin
sin cos     sin sin cos cos

cos

cos sin 9.679 10 N cos14 1250 kg 9.80 m s sin14

    6.428 10 N

mg F v
F m v r mg F F m

r

v
F m mg

r

T T T T T T T
T

T T

�
�  o � �  

 �  u q � q

 u

 

So a frictional force of 36.4 10 N down the planeu is needed to provide the necessary centripetal 
force to round the curve at the specified speed. 
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85. The radial force is given by Eq. 5-3. 

  � � � �22

R

27 m s
1150 kg 1863N 1900 N

450 m s
v

F m
r

   |  

The tangential force is the mass times the tangential acceleration.  The tangential acceleration is the 
change in tangential speed divided by the elapsed time. 

  � � � �
� �

T
T T

27 m s
1150 kg 3450 N 3500 N

9.0s
v

F ma m
t

'
    |

'
 

 
86. Since the walls are vertical, the normal forces are horizontal, away 

from the wall faces.  We assume that the frictional forces are at 
their maximum values, so fr NsF FP  applies at each wall.  We 
assume that the rope in the diagram is not under any tension and 
so does not exert any forces.  Consider the free-body diagram for 
the climber.  NRF  is the normal force on the climber from the right 
wall, and NLF  is the normal force on the climber from the left wall.  The static frictional forces are 

frL L NLsF FP  and frR R NRsF FP .  Write Newton’s second law for both the x and y directions.  The 
net force in each direction must be zero if the climber is stationary. 

  NL NR NL NR frL frR0            0x yF F F F F F F F mg �  o   � �  ¦ ¦  
Substitute the information from the x equation into the y equation. 

� �

� �
� � � �

frL frR L NL R NR L R NL

2
2

NL
L R

        

70.0 kg 9.80 m s
4.90 10 N

1.40

s s s s

s s

F F mg F F mg F mg

mg
F

P P P P

P P

�  o �  o �  

   u
�

 

And so 2
NL NR 4.90 10 N .F F  u   These normal forces arise as Newton’s third law reaction forces 

to the climber pushing on the walls.  Thus the climber must exert a force of at least 490 N against 
each wall. 

 
87. The mass would start sliding when the static frictional force was not 

large enough to counteract the component of gravity that will be 
pulling the mass along the curved surface.  See the free-body diagram, 
and assume that the static frictional force is a maximum.  We also 
assume the block has no speed, so the radial force must be 0. 

  

radial N N

tangential fr fr

fr s N s s

1 1

cos     cos

sin     sin

cos sin     tan   

tan tan 0.70 35s

F F mg F mg

F mg F F mg

F F mg mg

I I

I I

P P I I P I

I P� �

 � o  

 � o  

   o  o

   q

¦
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88. (a) Consider the free-body diagrams for both objects, initially stationary.  As sand is added, the  

tension will increase, and the force of static friction on the block will increase until it reaches its 
maximum of fr N.sF FP   Then the system will start to move.  Write Newton’s second law for 
each object, when the static frictional force is at its maximum, but the objects are still 
stationary. 

climber 

y 
x 

mgG
NRF
G

NLF
G
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 bucket 1 T T 1

 block N 2 N 2

 block T fr T fr

0    

0    

0    

y

y

x

F m g F F m g

F F m g F m g

F F F F F

 �  o  

 �  o  

 �  o  

¦
¦
¦

 

Equate the two expressions for tension, and substitute in the expression for 
the normal force to find the masses.  

� � � �
1 fr 1 N 2

1 2

      

0.45 28.0 kg 12.6 kg
s s

s

m g F m g F m g

m m

P P
P
 o   o

   
 

Thus 12.6 kg 2.00 kg 10.6 kg 11kg�  |  of sand was added. 

(b) The same free-body diagrams can be used, but now the objects will 
accelerate.  Since they are tied together, 1 2 .y xa a a    The frictional force is 

now kinetic friction, given by fr N 2 .k kF F m gP P    Write Newton’s second 
laws for the objects in the direction of their acceleration. 

 bucket 1 T 1 T 1 1

 block T fr 2 T fr 2

    

    
y

x

F m g F m a F m g m a

F F F m a F F m a

 �  o  �

 �  o  �

¦
¦

 

Equate the two expressions for tension, and solve for the acceleration. 

� �
� � � � � � � �� �

� �

1 1 2 2

2 21 2

1 2

12.6 kg 0.32 28.0 kg
9.80 m s 0.88m s

12.6 kg 28.0kg

  k

k

m g m a m g m a

m m
a g

m m

P

P

�  �

��
   

� �

o
 

 
89. The acceleration that static friction can provide can be found from the minimum stopping distance, 

assuming that the car is just on the verge of sliding.  Use Eq. 2-12c.  Then, assuming an unbanked 
curve, the same static frictional force is used to provide the centripetal acceleration needed to make 
the curve.  The acceleration from the stopping distance is negative, and so the centripetal 
acceleration is the opposite of that expression. 

  � � � � � � � �
2 2 2

2 2 0 0
0 0

2
0

stopping R
0 0 0

2     
2 2

    
2

v v v
v v a x x a

v
a

x x x x x x
� �

�  � o   o  
� � �

 

 Equate the above expression to the typical expression for centripetal acceleration.     

  
� � � �

2 2
0

R 0
0

    2 132 m
2

v v
a r x x

r x x
  o  �  

�
 

 Notice that we didn’t need to know the mass of the car, the initial speed, or the coefficient of friction. 
 
90. The radial acceleration is given by 2 .Ra v r   Substitute in the speed of the tip of the sweep hand, 

given by 2 ,v r TS  to get 
2

2

4 .R

r
a

T

S
   For the tip of the sweep hand, r = 0.015 m, and T = 60 sec. 

� �
� �

22
4 2

22

4 0.015 m4
1.6 10 m s

60 s
R

r
a

T

SS �   u  

 
 
 
 
 

x2 

y2 

 
y1 

1m gG

2m gG

TF
G

TF
G

NF
G

frF
G



Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces                             
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

155 

91. (a) The horizontal component of the lift force will produce a centripetal  
acceleration.  Write Newton’s second law for both the horizontal and 
vertical directions, and combine those equations to solve for the time 
needed to reverse course (a half-period of the circular motion).  Note that 

2 .r
T

v

S
  

   
2

vertical lift horizontal liftcos   ;  sin
v

F F mg F F m
r

T T    ¦ ¦  

  Divide these two equations. 

   
� �

� �

2 2 2
lift

lift

2

sin 2
    tan   

cos
2

1.0 m s
480 km h

3.6 km h
55s

2 tan 9.80 m s tan 38

F mv v v v
TvF rmg rg gTg

T v

g

T ST
T

S

S
S

T

 o    o

   
q

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 (b) The passengers will feel a change in the normal force that their seat exerts on them.  Prior to the  
banking, the normal force was equal to their weight.  During banking, the normal force will 

increase, so that normal
banking

1.27 .
cos
mg

F mg
T

    Thus they will feel “pressed down” into their seats, 

with about a 25% increase in their apparent weight.  If the plane is banking to the left, they will 
feel pushed to the right by that extra 25% in their apparent weight. 

 

92. From Example 5-15 in the textbook, the no-friction banking angle is given by 
2

1 0tan .v

Rg
T �   The 

centripetal force in this case is provided by a component of the normal 
force.  Driving at a higher speed with the same radius requires more 
centripetal force than that provided by the normal force alone.  The 
additional centripetal force is supplied by a force of static friction, 
downward along the incline.  See the free-body diagram for the car on 
the incline.  The center of the circle of the car’s motion is to the right of 
the car in the diagram.  Write Newton’s second law in both the x and y 
directions.  The car will have no acceleration in the y direction, and 
centripetal acceleration in the x direction.  Assume that the car is on the verge of skidding, so that the 
static frictional force has its maximum value of fr NsF FP . 

� �

N fr N N

N

cos sin 0    cos sin   

cos sin

y s

s

F F mg F F F mg

mg
F

T T T P T

T P T

 � �  o �  o

 
�

¦
 

� �

2 2
R N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F m v R F F m v R

mv R
F

T T T P T

T P T

  �  o �  o

 
�

¦
 

Equate the two expressions for the normal force, and solve for the speed, which is the maximum 
speed that the car can have. 
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� � � �

� �
� �

� �
� �

2

2
0

max 0 2
0

  
sin cos cos sin

11 tansin
cos 1 tan 1

s s

ss

s s

mv R mg

Rg v
v Rg v

v Rg

T P T T P T

PP TT
T P T P

 o
� �

��
  

� �

 

Driving at a slower speed with the same radius requires less 
centripetal force than that provided by the normal force alone.  The 
decrease in centripetal force is supplied by a force of static friction, 
upward along the incline.  See the free-body diagram for the car on 
the incline.  Write Newton’s second law in both the x and y directions.  
The car will have no acceleration in the y direction, and centripetal 
acceleration in the x direction.  Assume that the car is on the verge of 
skidding, so that the static frictional force is given by fr NsF FP . 

N frcos sin 0  yF F mg FT T � �  o¦  

� �N N Ncos sin      
cos sins

s

mg
F F mg FT P T

T P T
�  o  

�
 

� �

2 2
R N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F m v R F F m v R

mv R
F

T T T P T

T P T

  �  o �  o

 
�

¦
 

Equate the two expressions for the normal force, and solve for the speed. 

� � � �

� �
� �

� �
� �

2

2
0

min 0 2
0

  
sin cos cos sin

11 tansin
cos 1 tan 1

s s

ss

s s

mv R mg

Rg v
v Rg v

v Rg

T P T T P T

PP TT
T P T P

 o
� �

��
  

� �

 

Thus 
� �
� �

2
0

min 0 2
0

1

1
s

s

Rg v
v v

v Rg

P

P

�
 

�
 and 

� �
� �

2
0

max 0 2
0

1

1
s

s

Rg v
v v

v Rg

P

P

�
 

�
. 

 
93. (a) Because there is no friction between the bead and the hoop, the  

hoop can only exert a normal force on the bead.  See the free-body 
diagram for the bead at the instant shown in the textbook figure.  Note 
that the bead moves in a horizontal circle, parallel to the floor.  Thus 
the centripetal force is horizontal, and the net vertical force must be 0.  
Write Newton’s second law for both the horizontal and vertical 
directions, and use those equations to determine the angle .T   We also 
use the fact that the speed and the frequency are related to each other, 
by 2 sin .v frS T  

   
vertical N N

2 2 2 2 2

radial N

cos 0    
cos

4 sin
sin

sin sin

mg
F F mg F

v f r
F F m m

r r

T
T

S TT
T T

 �  o  

   

¦

¦
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2 2 2 2
1

N 2 2

4 sin
sin sin     cos

cos sin 4
mg f r g

F m
r f r

S TT T T
T T S

�  o   

 (b) 
� � � �

2
1 1

22 2 2

9.80 m s
cos cos 73.6

4 4 2.00 Hz 0.220 m
g

f r
T

S S
� �   q  

 (c) No , the bead cannot ride as high as the center of the circle.  If the bead were located there, the  
normal force of the wire on the bead would point horizontally.  There would be no force to 
counteract the bead’s weight, and so it would have to slip back down below the horizontal to 

balance the force of gravity.  From a mathematical standpoint, the expression 
2 24
g

f rS
 would 

have to be equal to 0 and that could only happen if the frequency or the radius were infinitely 
large.  

 
94. An object at the Earth’s equator is rotating in a circle with a radius equal to the radius of the Earth, 

and a period equal to one day.  Use that data to find the centripetal acceleration and then compare it 
to g. 

  

� �
� �
� �

2 62

22 2
R

R 2 2

4 6.38 10 m2
86,400s4 3

    0.00344
9.80 m s 1000

r
v r aTa
r r T g

SS
S

u

   o   |

§ ·
¨ ¸
© ¹   

So, for example, if we were to calculate the normal force on an object at the Earth’s equator, we 
could not say N 0.F F mg �  ¦   Instead, we would have the following. 

2 2

N N    
v v

F F mg m F mg m
r r

 �  � o  �¦  

If we then assumed that 
2

N eff ,v
F mg mg m

r
  �  then we see that the effective value of g is 

2

eff 0.003 0.997 .
v

g g g g g
r

 �  �   

 
95. A free-body diagram for the sinker weight is shown.  L is the 

length of the string actually swinging the sinker.  The radius of 
the circle of motion is moving is sin .r L T   Write Newton’s 
second law for the vertical direction, noting that the sinker is 
not accelerating vertically.  Take up to be positive. 

T Tcos 0    
cosy

mg
F F mg FT

T
 �  o  ¦  

The radial force is the horizontal portion of the tension.  Write 
Newton’s second law for the radial motion. 

2
R T RsinF F ma m v rT   ¦  

Substitute the tension from the vertical equation, and the relationships sinr L T  and 2 .v r TS  
2 2

2
T 2 2

4 sin
sin     sin     cos

cos 4
mg mL gT

F m v r
T L

S TT T T
T S

 o  o   

� � � �
� �

222
1 1

2 2

9.80 m s 0.50 s
cos cos 82

4 4 0.45 m
gT

L
T

S S
� �   q  

r = L sin T 
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96. The speed of the train is � � 1m s
160 km h 44.44 m s

3.6 km h
. 

§ ·
¨ ¸
© ¹

 

(a) If there is no tilt, then the friction force must supply the entire centripetal force on the  
passenger. 

   
� � � �

� �

2
2 2

R

75kg 44.44 m s
259.9 N 2.6 10 N

570 m
F m v R   | u  

 (b) For the banked case, the normal force will contribute to the radial force 
needed.  Write Newton’s second law for both the x and y directions.  The y 
acceleration is zero, and the x acceleration is radial.  

fr
N fr N

2
N fr

sin
cos sin 0    

cos
sin cos

y

x

mg F
F F mg F F

F F F m v r

TT T
T

T T

�
 � �  o  

 �  

¦

¦
 

Substitute the expression for the normal force from the y equation into the 
x equation, and solve for the friction force. 

� �

2fr
fr

2
2

fr fr

sin
sin cos   

cos

sin sin cos cos   

mg F
F m v r

v
mg F F m

r

T T T
T

T T T T

�
�  o

� �  o
 

� � � � � �

2

fr

2
o 2 o 2

cos sin

44.44 m s
    75 kg cos8.0 9.80 m s sin8.0 155 N 1.6 10 N

570 m

v
F m g

r
T T �

 �  | u

§ ·
¨ ¸
© ¹

ª º
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¬ ¼

 

 
97. We include friction from the start, and then for the no-friction result, set the 

coefficient of friction equal to 0.  Consider a free-body diagram for the car on 
the hill.  Write Newton’s second law for both directions.  Note that the net 
force on the y direction will be zero, since there is no acceleration in the y 
direction. 

� �

N N

fr

fr

cos 0    cos

sin   

cos
sin sin sin cos

y

x

k
k

F F mg F mg

F mg F ma

mgF
a g g g

m m

T T

T

P T
T T T P T

 �  o  

 �  o

 �  �  �

¦
¦   

Use Eq. 2-12c to determine the final velocity, assuming that the car starts from rest. 
� � � � � �� �2 2

0 0 0 02     0 2 2 sin coskv v a x x v a x x g x x T P T�  � o  � �  � �  

The angle is given by 1 osin 1 4     sin 0.25 14.5T T � o    

  (a)  � � � � � �2 o
00    2 sin 2 9.80m s 55 m sin14.5 16m sk v g x x xP T o  �    

  (b)  � � � � � �2 o o0.10    2 9.80m s 55 m sin14.5 0.10cos14.5 13m sk vP  o  �   
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98. The two positions on the cone correspond to two opposite directions of the 
force of static friction.  In one case, the frictional force points UP the cone’s 
surface, and in the other case, it points DOWN the cone’s surface.  In each 
case the net vertical force is 0, and force of static friction is assumed to be its 
maximum value.  The net horizontal force is producing centripetal motion. 

� � � �

� �

vertical N fr N s N

N
s

horizontal N fr N s N

22
2 2

N s

2 2

N
s

sin cos sin cos 0  

sin cos

cos sin cos sin

2
                cos sin 4
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F F F mg F F mg
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F F F F F
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F m m rmf

r r
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I P I

I I I P I

S
I P I S
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¦

¦  

Equate the two expressions for the normal force, and solve for the radius. 

  
� �

� �
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2 2
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N max 2 2
s s s

cos sin4
    

sin cos cos sin 4 sin cos
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 A similar analysis will lead to the minimum radius. 
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cos sin4
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99. (a) See the free-body diagram for the skier when the tow rope is horizontal.   

Use Newton’s second law for both the vertical and horizontal directions  
in order to find the acceleration. 

� � � � � �
� �

N N

T fr T k N T k

2
2T k

0    

240 N 0.25 72 kg 9.80 m s
0.88m s

72 kg

y

x

F F mg F mg

F F F F F F mg ma

F mg
a

m

P P

P

 �  o  

 �  �  �  

��
   

¦
¦  

 (b) Now see the free-body diagram for the skier when the tow rope has  
an upward component. 
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� �

N T N T

T fr T k N

T k T

sin 0    sin

cos cos

        cos sin

y

x

F F F mg F mg F

F F F F F

F mg F ma

T T

T T P

T P T

 � �  o  �

 �  �

 � �  

¦
¦  

� �T k kcos sinF mg
a

m

T P T P� �
 

 
� � � � � � � �

� �

2
2

240 N cos12 0.25sin12 0.25 72 kg 9.80 m s
0.98m s

72 kg
  

q � q �
   

 (c) The acceleration is greater in part (b) because the upward tilt of the tow rope reduces the normal  
force, which then reduces the friction.  The reduction in friction is greater than the reduction in 
horizontal applied force, and so the horizontal acceleration increases. 

 

100. The radial acceleration is 
2

R ,v
a

r
  and so � �22

2
R

6.0 m s
45m s

0.80 m
.v

a
r

    

The tension force has no tangential component, and so the tangential force is seen from the diagram 
to be tang cos .F mg T  

  � �2 2
tang tang tangcos     cos 9.80 m s cos30 8.5m sF mg ma a gT T  o   q   

 The tension force can be found from the net radial force. 
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2

R T

2
2 2

T

sin   

sin 1.0 kg 9.80 m s sin 30 45m s 50 N

v
F F mg m

r

v
F m g

r
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T

 �  o

 �  q �  
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 Note that the answer has 2 significant figures. 
 
101. (a) The acceleration has a magnitude given by 2 .a v r  

   
� � � �

� � � �

2
2 22 2 2

2

15.7 m s 23.2 m s 28.01m s   
63.5m

28.01m s 63.5m 42.17 m s 42.2 m s

v
a

v

 � � �   o

  |

  

 

(b) Since the acceleration points radially in and the position vector points radially out, the 
components of the position vector are in the same proportion as the components of the 
acceleration vector, but of opposite sign. 

   � � � �
2 2

2 2

15.7 m s 23.2 m s
63.5m 35.6 m           63.5m 52.6 m

28.01m s 28.01m s
yx

aa
x r y r

a a
       

 
102. (a) We find the acceleration as a function of velocity, and then use numeric integration with a  

constant acceleration approximation to estimate the speed and position of the rocket at later 
times.  We take the downward direction to be positive, and the starting position to be y = 0.   

   2 2    F mg kv a g
k

ma v
m

 �  � o  

For t = 0, � � 00 0y y  , � � 00 0v v  , and � � 2 2
00 9.80 m s .k

a a g v
m

  �    Assume this  
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acceleration is constant over the next interval, and so � �21
1 0 0 02 ,y y v t a t � ' � '  1 0 0 ,v v a t � '  

and 2
1 1 .k

a g v
m

 � �   This continues for each successive interval.  We apply this method first for 

a time interval of 1 s, and get the speed and position at t = 15.0 s.  Then we reduce the interval 
to 0.5 s and again find the speed and position at t = 15.0 s.  We compare the results from the 
smaller time interval with those of the larger time interval to see if they agree within 2%.  If not, 
a smaller interval is used, and the process repeated.  For this problem, the results for position 
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%, but to get two successive 
acceleration values to agree to 2%, intervals of 0.05 s and 0.02 s are used.  Here are the results 
for various intervals. 

   1s:t'    � �15s 648mx    � �15s 57.5m sv    � � 215s 0.109 m sa   

   0.5s:t'   � �15s 641mx    � �15s 57.3m sv    � � 215s 0.169 m sa   

   0.2s:t'   � �15s 636 mx    � �15s 57.2 m sv    � � 215s 0.210 m sa   

   0.1s:t'   � �15s 634.4 mx    � �15s 57.13m sv   � � 215s 0.225m sa   

   0.05s:t'   � �15s 633.6 mx    � �15s 57.11m sv   � � 215s 0.232 m sa   

   0.02s:t'   � �15s 633.1mx    � �15s 57.10 m sv   � � 215s 0.236 m sa   
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab “Problem 102a.” 

 (b) The terminal velocity is the velocity that produces an acceleration of 0.  Use the acceleration 
equation from above. 

   
� � � �2

2
terminal

75kg 9.80 m s
    58m s

0.22 kg m
k mg

a g v v
m k k

 � o      

At this velocity, the drag force is equal in magnitude to the force of gravity, so the skydiver no 
longer accelerates, and thus the velocity stays constant. 

 (c) From the spreadsheet, it is seen that it takes 17.6s to reach 99.5% of terminal velocity. 

 
103. Use the free body diagram to write Newton’s second law for the block, and solve 

for the acceleration. 

  � �
� � � �

P fr P k N P k

2
2P

k 2 22 2

  

0.20 9.80 m s41N 1.96
5.125 m s

8.0 kg 1 0.0020 1 0.0020

F ma F F F F F mg

F
a g

m v v

P P

P

  �  �  � o

 �  �  �
� �

§ ·
¨ ¸
¨ ¸
© ¹

 

For t = 0, � � 00 0,x x   � � 00 0,v v   and � � 2
00 3.165m s .a a    Assume this acceleration is 

constant over the next time interval, and so � �21
1 0 0 02 ,x x v t a t � ' � '  1 0 0 ,v v a t � '  and 

� �
2

1 22
1

1.96
5.125 m s

1 0.0020
.a

v
 �

�

§ ·
¨ ¸
¨ ¸
© ¹

  This continues for each successive interval.  We apply this 

method first for a time interval of 1 second, and get the speed and position at t = 5.0 s.  Then we 
reduce the interval to 0.5 s and again find the speed and position at t = 5.0 s.  We compare the results 
from the smaller time interval with those of the larger time interval to see if they agree within 2%.  If 
not, a smaller interval is used, and the process repeated.  For this problem, the results for position 
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%. 
 

mgG

NF
G

frF
G PF

G
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(a) The speed at 5.0 s, from the numeric 
integration, is 18.0 m/s.  The 
velocity–time graph is shown, along 
with a graph for a constant coefficient 
of friction, k 0.20.P   The varying 
(decreasing) friction gives a higher 
speed than the constant friction.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH05.XLS,” 
on tab “Problem 5.103.” 

 
(b) The position at 5.0 s, from the  

numeric integration, is 42.4 m.  The 
position–time graph is shown, along 
with a graph for a constant 
coefficient of friction, k 0.20.P   The 
varying (decreasing) friction gives a 
larger distance than the constant 
friction.    The spreadsheet used for 
this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab 
“Problem 5.103.” 

(c) If the coefficient of friction is constant, then 23.165m s .a   Constant acceleration 
relationships can find the speed and position at t = 5.0 s. 

  
� � � �

� � � �

2
0 final

22 2 21 1 1
0 0 final2 2 2

0     3.165m s 5.0s 15.8 m s

0 0     3.165m s 5.0s 39.6 m

v v at at v

x x v t at at x

 �  � o   

 � �  � � o   
  

 We compare the variable friction results to the constant friction results. 

  

 constant  variable

 variable

 constant  variable

 variable

15.8m s 18.0 m s
:   % diff 12%

18.0 m s

39.6 m s 42.4 m s
:   % diff 6.6%

42.4 m s

v v
v

v

x x
x

x

P P

P

P P

P

� �
   �

� �
   �

 

 
104. We find the acceleration as a function of velocity, and then 

use numeric integration with a constant acceleration 
approximation to estimate the speed and position of the rocket 
at later times. 

  2 2    F mg kv a g
k

ma v
m

 � �  � � o  

For t = 0, � �0 0,y   � � 00 120 m s,v v   and 

� � 2 2
00 9.80 m s .k

a a g v
m

  � �  �   Assume this 

acceleration is constant over the next time interval, and so � �21
1 0 0 02 ,y y v t a t � ' � '  1 0 0 ,v v a t � '  

0

5

10

15

20

0 1 2 3 4 5
t  (s)

v
 (m

/s)

Varying friction

Constant friction

0

10

20

30

40

50

0 1 2 3 4 5
t  (s)

x
 (m

)

Varying friction
Constant friction

t (s) y (m) v (m/s) a (m/s2)
0 0 120.0 -47.2
1 96 72.8 -23.6
2 157 49.2 -16.1
3 199 33.1 -12.6
4 225 20.5 -10.9
5 240 9.6 -10.0
6 245 -0.5 -9.8
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and 2
1 1 .k

a g v
m

 � �   This continues for each successive interval.  Applying this method gives the 

results shown in the table.  We estimate the maximum height reached as max 245m .y   

If air resistance is totally ignored, then the acceleration is a constant –g and Eq. 2-12c may be used to 
find the maximum height. 

� �
� �
� �

2 2
0 0

22 2 2
0 0

0 2

2   

120 m s
730 m

2 2 2 9.80 m s

v v a y y

v v v
y y

a g

�  � o

� �
�     

�

 

Thus the air resistance reduces the maximum height to about 1/3 of the no-resistance value.  A more 
detailed analysis (with smaller time intervals) gives 302 m for the maximum height, which is also the 
answer obtained from an analytical solution. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab “Problem 5.104.” 
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CHAPTER 6:  Gravitation and Newton’s Synthesis 
 
Responses to Questions 
 

1.  Whether the apple is attached to a tree or falling, it exerts a gravitational force on the Earth equal to 

the force the Earth exerts on it, which is the weight of the apple (Newton’s third law). 

 

2.   The tides are caused by the difference in gravitational pull on two opposite sides of the Earth. The 

gravitational pull from the Sun on the side of the Earth closest to it depends on the distance from the 

Sun to the close side of the Earth. The pull from the Sun on the far side of the Earth depends on this 

distance plus the diameter of the Earth. The diameter of the Earth is a very small fraction of the total 

Earth–Sun distance, so these two forces, although large, are nearly equal. The diameter of the Earth 

is a larger fraction of the Earth–Moon distance, and so the difference in gravitational force from the 

Moon to the two opposite sides of the Earth will be greater. 

 

3.  The object will weigh more at the poles. The value of r² at the equator is greater, both from the 

Earth’s center and from the bulging mass on the opposite side of the Earth. Also, the object has 

centripetal acceleration at the equator. The two effects do not oppose each other.  
 

4.  Since the Earth’s mass is greater than the Moon’s, the point at which the net gravitational pull on the 

spaceship is zero is closer to the Moon. A spaceship traveling from the Earth towards the Moon must 

therefore use fuel to overcome the net pull backwards for over half the distance of the trip. However, 

when the spaceship is returning to the Earth, it reaches the zero point at less than half the trip 

distance, and so spends more of the trip “helped” by the net gravitational pull in the direction of 

travel.  

 

5.  The gravitational force from the Sun provides the centripetal force to keep the Moon and the Earth 

going around the Sun. Since the Moon and Earth are at the same average distance from the Sun, they 

travel together, and the Moon is not pulled away from the Earth. 

 

6.  As the Moon revolves around the Earth, its position relative to the distant background stars changes. 

This phenomenon is known as “parallax.” As a demonstration, hold your finger at arm’s length and 

look at it with one eye at a time. Notice that it “lines up” with different objects on the far wall 

depending on which eye is open. If you bring your finger closer to your face, the shift in its position 

against the background increases. Similarly, the Moon’s position against the background stars will 

shift as we view it in different places in its orbit. The distance to the Moon can be calculated by the 

amount of shift.  

 

7.  At the very center of the Earth, all of the gravitational forces would cancel, and the net force on the 

object would be zero. 

 

8.  A satellite in a geosynchronous orbit stays over the same spot on the Earth at all times. The satellite 

travels in an orbit about the Earth’s axis of rotation. The needed centripetal force is supplied by the 

component of the gravitational force perpendicular to the axis of rotation. A satellite directly over 

the North Pole would lie on the axis of rotation of the Earth. The gravitational force on the satellite 

in this case would be parallel to the axis of rotation, with no component to supply the centripetal 

force needed to keep the satellite in orbit.  

 
9.  According to Newton’s third law, the force the Earth exerts on the Moon has the same magnitude as 

the force the Moon exerts on the Earth. The Moon has a larger acceleration, since it has a smaller 

mass (Newton’s second law, F = ma). 
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10.  The satellite needs a certain speed with respect to the center of the Earth to achieve orbit. The Earth 

rotates towards the east so it would require less speed (with respect to the Earth’s surface) to launch 

a satellite towards the east (a). Before launch, the satellite is moving with the surface of the Earth so 

already has a “boost” in the right direction. 

 

11.  If the antenna becomes detached from a satellite in orbit, the antenna will continue in orbit around 

the Earth with the satellite. If the antenna were given a component of velocity toward the Earth (even 

a very small one), it would eventually spiral in and hit the Earth. 

 

12.  Ore normally has a greater density than the surrounding rock. A large ore deposit will have a larger 

mass than an equal amount of rock. The greater the mass of ore, the greater the acceleration due to 

gravity will be in its vicinity. Careful measurements of this slight increase in g can therefore be used 

to estimate the mass of ore present. 

 

13. Yes. At noon, the gravitational force on a person due to the Sun and the gravitational force due to the 

Earth are in the opposite directions. At midnight, the two forces point in the same direction. 

Therefore, your apparent weight at midnight is greater than your apparent weight at noon. 

 

14.  Your apparent weight will be greatest in case (b), when the elevator is accelerating upward. The 

scale reading (your apparent weight) indicates your force on the scale, which, by Newton’s third law, 

is the same as the normal force of the scale on you. If the elevator is accelerating upward, then the 

net force must be upward, so the normal force (up) must be greater than your actual weight (down). 

When in an elevator accelerating upward, you “feel heavy.” 
 

Your apparent weight will be least in case (c), when the elevator is in free fall. In this situation your 

apparent weight is zero since you and the elevator are both accelerating downward at the same rate 

and the normal force is zero. 
 

Your apparent weight will be the same as when you are on the ground in case (d), when the elevator 

is moving upward at a constant speed. If the velocity is constant, acceleration is zero and N = mg. 

(Note that it doesn’t matter if the elevator is moving up or down or even at rest, as long as the 

velocity is constant.) 

 

15. If the Earth’s mass were double what it is, the radius of the Moon’s orbit would have to double (if 

the Moon’s speed remained constant), or the Moon’s speed in orbit would have to increase by a 

factor of the square root of 2 (if the radius remained constant). If both the radius and orbital speed 

were free to change, then the product rv² would have to double. 

 
16.  If the Earth were a perfect, nonrotating sphere, then the gravitational force on each droplet of water 

in the Mississippi would be the same at the headwaters and at the outlet, and the river wouldn’t flow.  

Since the Earth is rotating, the droplets of water experience a centripetal force provided by a part of 

the component of the gravitational force perpendicular to the Earth’s axis of rotation. The centripetal 

force is smaller for the headwaters, which are closer to the North pole, than for the outlet, which is 

closer to the equator. Since the centripetal force is equal to mg – N (apparent weight) for each 

droplet, N is smaller at the outlet, and the river will flow. This effect is large enough to overcome 

smaller effects on the flow of water due to the bulge of the Earth near the equator. 

 

17. The satellite remains in orbit because it has a velocity. The instantaneous velocity of the satellite is 

tangent to the orbit. The gravitational force provides the centripetal force needed to keep the satellite 

in orbit, acting like the tension in a string when twirling a rock on a string.  A force is not needed to 

keep the satellite “up”; a force is needed to bend the velocity vector around in a circle.  
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18.  Between steps, the runner is not touching the ground. Therefore there is no normal force up on the 

runner and so she has no apparent weight. She is momentarily in free fall since the only force is the 

force of gravity pulling her back toward the ground.  

 

19. If you were in a satellite orbiting the Earth, you would have no apparent weight (no normal force). 

Walking, which depends on the normal force, would not be possible. Drinking would be possible, 

but only from a tube or pouch, from which liquid could be sucked. Scissors would not sit on a table 

(no apparent weight = no normal force). 
 

20.  The centripetal acceleration of Mars in its orbit around the Sun is smaller than that of the Earth. For 

both planets, the centripetal force is provided by gravity, so the centripetal acceleration is inversely 

proportional to the square of the distance from the planet to the Sun: 
2

2

p s pm v Gm m

r r
   so  

2

2

sv Gm

r r
  

Since Mars is at a greater distance from the Sun than Earth, it has a smaller centripetal acceleration. 

Note that the mass of the planet does not appear in the equation for the centripetal acceleration. 

 

21.  For Pluto’s moon, we can equate the gravitational force from Pluto on the moon to the centripetal 

force needed to keep the moon in orbit:   

    

2

2

p mm
Gm mm v

r r
  

This allows us to solve for the mass of Pluto (mp) if we know G, the radius of the moon’s orbit, and 

the velocity of the moon, which can be determined from the period and orbital radius. Note that the 

mass of the moon cancels out. 

 

22.  The Earth is closer to the Sun in January. The gravitational force between the Earth and the Sun is a 

centripetal force. When the distance decreases, the speed increases. (Imagine whirling a rock around 

your head in a horizontal circle. If you pull the string through your hand to shorten the distance 

between your hand and the rock, the rock speeds up.)   
2

2

E S Em v Gm m

r r
     so  SGm

v
r

  

Since the speed is greater in January, the distance must be less. This agrees with Kepler’s second 

law. 

 

23. The Earth’s orbit is an ellipse, not a circle. Therefore, the force of gravity on the Earth from the Sun 

is not perfectly perpendicular to the Earth’s velocity at all points. A component of the force will be 

parallel to the velocity vector and will cause the planet to speed up or slow down. 

 

24. Standing at rest, you feel an upward force on your feet.  In free fall, you don’t feel that force.  You 

would, however, be aware of the acceleration during free fall, possibly due to your inner ear. 

 

25.   If we treat gG  as the acceleration due to gravity, it is the result of a force from one mass acting on 

another mass and causing it to accelerate. This implies action at a distance, since the two masses do 

not have to be in contact. If we view gG  as a gravitational field, then we say that the presence of a 

mass changes the characteristics of the space around it by setting up a field, and the field then 

interacts with other masses that enter the space in which the field exists. Since the field is in contact 

with the mass, this conceptualization does not imply action at a distance. 
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Solutions to Problems 
 
1. The spacecraft is at 3.00 Earth radii from the center of the Earth, or three times as far from the 

Earth’s center as when at the surface of the Earth.  Therefore, since the force of gravity decreases as 

the square of the distance, the force of gravity on the spacecraft will be one-ninth of its weight at the 

Earth’s surface. 

� � � �2

1

Earth's9

surface

1480 kg 9.80 m s
1610 N

9
GF mg    

 This could also have been found using Eq. 6-1, Newton’s law of universal gravitation. 

 

2. The force of gravity on an object at the surface of a planet is given by Newton’s law of universal  

gravitation, Eq. 6-1, using the mass and radius of the planet.  If that is the only force on an object, 

then the acceleration of a freely falling object is acceleration due to gravity. 

Moon

Moon2

Moon

  G

M m
F G mg

r
  o  

� � � �
� �

22

11 2 2 2Moon

Moon 22 6
Moon

7.35 10 kg
6.67 10 N m kg 1.62 m s

1.74 10 m

M
g G

r
�

u
  u �  

u
 

 

3. The acceleration due to gravity at any location on or above the surface of a planet is given by 
2

planet planet
,g G M r  where r is the distance from the center of the planet to the location in question. 

� �

2

2Planet Earth Earth

planet Earth22 2 2 2 2

EarthEarth

1 1 9.80 m s
1.9 m s

2.3 2.3 2.32.3

M M M
g G G G g

r RR
       

 

4. The acceleration due to gravity at any location at or above the surface of a planet is given by 
2

planet Planet
,g G M r  where r is the distance from the center of the planet to the location in question. 

  � �2 2Planet Earth Earth

planet Earth2 2 2

Earth Earth

1.80
1.80 1.80 1.80 9.80 m s 17.6 m s

M M M
g G G G g

r R R
      

§ ·
¨ ¸
© ¹

 

 

5. The acceleration due to gravity is determined by the mass of the Earth and the radius of the Earth. 

� �
0 new 0 0 2

0 new 0922 2 2

0 new 00

2 2
        

93

GM GM G M GM
g g g

r r rr
      

 So g is multiplied by a factor of 2 9 . 

 

6. The acceleration due to gravity at any location at or above the surface of a planet is given by 
2

planet Planet
,g G M r  where r is the distance from the center of the planet to the location in question.  

For this problem, 
24

Planet Earth
5.97 10 kg.M M  u  

(a) 
6

Earth
6400 m 6.38 10 m 6400 mr R �  u �  

� � � �
� �

24

11 2 2 2Earth

22 6

5.98 10 kg
6.67 10 N m kg 9.78 m s

6.38 10 m 6400 m

M
g G

r
�

u
  u  

u �
<  
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(b) � �6 6 6

Earth
6400 km 6.38 10 m 6.4 10  m 12.78 10 m 3 sig figr R �  u � u  u  

� � � �
� �

24

11 2 2 2Earth

22 6

5.98 10 kg
6.67 10 N m kg 2.44 m s

12.78 10 m

M
g G

r
�

u
  u  

u
<  

 

7. The distance from the Earth’s center is 
6 5

Earth
300 km 6.38 10 m 3 10 mr R �  u � u   

� �6
6.68 10 m 2 sig fig .u   Calculate the acceleration due to gravity at that location. 

� �
� �

24

11 2 2 2Earth Earth

22 2 6

2

2

5.97 10 kg
6.67 10 N m kg 8.924 m s

6.68 10 m

1" "
   8.924 m s 0.91 's

9.80 m s

M M
g G G

r r

g
g

� u
   u  

u

  
§ ·
¨ ¸
© ¹

<

 

This is only about a 9% reduction from the value of g at the surface of the Earth. 

 

8. We are to calculate the force on Earth, so we need the distance of each planet from Earth. 

� � � �

� �

6 10 6 11

Earth Earth

Venus Jupiter

6 12

Earth

Saturn

150 108 10  km 4.2 10 m        778 150 10  km 6.28 10 m

1430 150 10  km 1.28 10 m

r r

r

 � u  u  � u  u

 � u  u
 

Jupiter and Saturn will exert a rightward force, while Venus will exert a leftward force.  Take the 

right direction as positive. 

� � � � � �
� �

Earth Jupiter Earth Saturn Earth Venus

Earth- 2 2 2
planets Earth Earth Earth

Jupiter Saturn Venus

2

Earth 2 2 2
11 12 10

11 2 2

318 95.1 0.815
       

6.28 10 m 1.28 10 m 4.2 10 m

       6.67 10 N m kg 5.97 10

M M M M M M
F G G G

r r r

GM

�

 � �

 � �
u u u

 u u

§ ·
¨ ¸
¨ ¸
© ¹

< � � � �2
24 22 2 17 17

kg 4.02 10 m 9.56 10 N 9.6 10 N
� �u  u | u

 

 The force of the Sun on the Earth is as follows. 

� � � �� �
� �

24 30

11 2 2 22Earth Sun

Earth- 22 11
Sun Earth

Sun

5.97 10 kg 1.99 10 kg
6.67 10 N m kg 3.52 10 N

1.50 10 m

M M
F G

r
�

u u
  u  u

u
<  

 And so the ratio is 17 22 5

Earth- Earth-

planets Sun

9.56 10 N 3.52 10 N 2.7 10 ,F F � u u  u  which is 27 millionths. 

 

9. Calculate the force on the sphere in the lower left corner, using the free-

body diagram shown.  From the symmetry of the problem, the net forces in 

the x and y directions will be the same.   Note 45 .T  q  

� �
2 2 2

right dia 22 2

1 1
cos 1

2 2 22
x

m m m
F F F G G G

d dd
T �  �  �§ ·

¨ ¸
© ¹

 

Thus 

2

2

1
1

2 2
y x

m
F F G

d
  �§ ·

¨ ¸
© ¹

.  The net force can be found by the 

m 

mm 

m

d

d

T�
upF
G
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G



Chapter 6  Gravitation and Newton’s Synthesis 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

169 

Pythagorean combination of the two component forces.  Due to the symmetry of the arrangement, 

the net force will be along the diagonal of the square. 

� � � �
� �

2 2

2 2 2

2 2

2

11 2 2 8 o

2

1 1
2 2 1 2 2

22 2

8.5 kg 1
   6.67 10 N m kg 2 1.4 10 N at 45

20.80 m

x y x x

m m
F F F F F G G

d d

� �

 �    �  �

 u �  u

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

§ ·
¨ ¸
© ¹

<
 

 The force points towards the center of the square. 

 

10. Assume that the two objects can be treated as point masses, with 
1

m m  and 
2

4.00 kg .m m �   The 

gravitational force between the two masses is given by the following. 

� � � � � �

2

11 2 2 101 2

22 2

4.00 4.00
6.67 10 N m kg 2.5 10 N

0.25 m

m mm m m m
F G G

r r
� �� �

   u �  u  

This can be rearranged into a quadratic form of 
2

4.00 0.234 0m m� �  .  Use the quadratic formula 

to solve for m, resulting in two values which are the two masses. 

1 2
3.94 kg , 0.06 kgm m   

 

11. The force on m due to 2m points in the î direction.  The force on m due to 4m points in the ĵ  

direction.  The force on m due to 3m points in the direction given by 
1 0

0

tan .
y

x
T �   Add the force 

vectors together to find the net force. 
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G

 

  

12. With the assumption that the density of Europa is the same as Earth’s, the radius of Europa can be 

calculated. 

  

1/ 3

Europa EuropaEarth

Europa Earth Europa Earth3 34 4

3 3Europa Earth Earth

        
M MM

r r
r r M

U U
S S

 o  o  
§ ·
¨ ¸
© ¹

 

� �

1/ 31/ 3 2 / 3 1/ 3

Europa Europa Europa Earth Europa EuropaEarth

Europa Earth22 2 2 1/ 31/ 3
Europa Earth Earth Earth Earth

Europa

Earth

Earth

1/ 3
22

2

24

4.9 10 kg
9.80 m s

5.98 10 kg

GM GM GM M M MGM
g g

r r r M MM
r

M

     

u
  

u

§ ·
¨ ¸

§ · © ¹§ ·
¨ ¸¨ ¸¨ ¸© ¹© ¹

§ ·
¨ ¸
© ¹

2 2
1.98 m s 2.0 m s|
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13. To find the new weight of objects at the Earth’s surface, the new value of g at the Earth’s surface 

needs to be calculated.  Since the spherical shape is being maintained, the Earth can be treated as a 

point mass.  Find the density of the Earth using the actual values, and use that density to find g under 

the revised conditions. 

  � � � � � �

1/ 3

E E E E

original E2 3 34

3E E E

1/ 3 1/ 3 1/ 3

1/ 3 1/ 3E E EE

original new2 / 3 2 / 3 2 / 3 2 / 3

E

3 3
  ;        

4 4

2
  ;  2 2

3 3 3 3

4 4 4 4

m m m m
g G r

r r r

m m mm
g G G g G G g

m

U
S S SU

SU SU SU SU

   o  o

     

§ ·
¨ ¸
© ¹

§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹

  

 Thus g is multiplied by 
1/ 3

2 , and so the weight would be   multiplied by 
1/ 3

2 . 

 

14. The expression for the acceleration due to gravity at the surface of a body is 
body

body 2

body

,
M

g G
R

  where  

body
R  is the radius of the body.  For Mars, 

Mars Earth
0.38 .g g   

� �

Mars Earth

2 2

Mars Earth

2 2

24 23Mars

Mars Earth

Earth

0.38   

3400 km
0.38 0.38 5.98 10 kg 6.5 10 kg

R 6380 km

M M
G G

R R

R
M M

 o

  u  u
§ · § ·

¨ ¸¨ ¸ © ¹© ¹

 

 

15. For the net force to be zero means 

that the gravitational force on the 

spacecraft due to the Earth must be 

the same as that due to the Moon.  

Write the gravitational forces on the 

spacecraft, equate them, and solve 

for the distance x.  We measure 

from the center of the bodies. 

  
� �

� �
� �

Earth spacecraft Moon spacecraft

Earth- Moon 22
spacecraft spacecraft

22

Earth spacecraft Moon spacecraft

22

Earth Moon Earth Moon

      ;      

        

M m M m
F G F G

x d x

M m M m d xx x d x
G G

x M M M Md x

  
�

� �
 o  o  

�

 

� � � � � �
24

Earth 8 8

22 24

Moon Earth

5.97 10 kg
3.84 10 m 3.46 10 m

7.35 10 kg 5.97 10 kg

M
x d

M M

u
  u  u

� u � u
 

This is only about 22 Moon radii away from the Moon.  Or, it is about 90% of the distance from the 

center of the Earth to the center of the Moon. 

 

16. The speed of an object in an orbit of radius r around the Sun is given by 
Sun

,v G M r  and is also 

given by 2 ,v r TS  where T is the period of the object in orbit.  Equate the two expressions for the 

speed and solve for 
Sun

,M  using data for the Earth. 

d 

spacecraft 

Earth 
Moon 

d-x x 
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� �
� �� �

3
2 112 3

30Sun

Sun 22 11 2 2 7

4 1.50 10 m2 4
    2.01 10  kg

6.67 10 N m kg 3.15 10 sec

M r r
G M

r T GT

SS S
�

u
 o    u

u u<
This is the same result obtained in Example 6-9 using Kepler’s third law. 

 

17. Each mass M will exert a gravitational force on mass 

m.  The vertical components of the two forces will 

sum to be 0, and so the net force on m is directed 

horizontally.  That net force will be twice the 

horizontal component of either force. 

� �2 2
  Mm

GMm
F

x R
 

�
o

 

� � � � � �

� �

 3 / 22 2 2 2 2 2 2 2

net  3 / 2
2 2

cos

2
2

Mm x

x Mm x

GMm GMm x GMmx
F

x R x R x R x R

GMmx
F F

x R

T   
� � � �

  
�

 

 

18. From the symmetry of the problem, we can 

examine diametrically opposite infinitesimal 

masses and see that only the horizontal 

components of the force will be left.  Any off-axis 

components of force will add to zero.  The 

infinitesimal horizontal force on m due to an 

infinitesimal mass dM is � �2 2dMm

Gm
dF dM

x r
 

�
.  

The horizontal component of that force is given by the following. 

� � � � � � � � � �3 / 22 2 2 2 2 22 2
cosdMm x

Gm Gm x Gmx
dF dM dM dM

x r x r x rx r
T   

� � ��
 

The total force is then found by integration. 

  

� � � � � �3 / 2 3 / 2 3 / 2
2 2 2 2 2 2

        x x x

Gmx dM Gmx dM GMmx
dF dF F

x r x r x r
 o  o  

� � �
³ ³  

 From the diagram we see that it points inward towards the center of the ring. 

 

19. The expression for g at the surface of the Earth is E

2

E

.
m

g G
r

  Let g g� '  be the value at a distance 

of 
E

r r� '  from the center of Earth, which is r'  above the surface.  

 (a) 
� �

2

E E E E

2 22 2

E E E EE 2

E

E

    1 1 2   

1

m m m m r r
g G g g G G G g

r r r rr r r
r

r

�
' '

 o � '    � | � o
� ' '

�

§ · § ·
¨ ¸ ¨ ¸

§ · © ¹ © ¹
¨ ¸
© ¹

 

T
T

R

R

x

2 2x R�

2 2x R�

T
T

r

r

x

2 2x r�

2 2x r�

dM

dM
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E

2
r

g g
r

'
' | �  

 (b) The minus sign indicated that the change in g is in the opposite direction as the change in r.  So,  

if r increases, g decreases, and vice-versa.  

 (c) Using this result: 

   � �
5

2 2 2

6

E

1.25 10 m
2 2 9.80 m s 0.384 m s     9.42 m s

6.38 10 m

r
g g g

r

' u
' | �  �  � o  

u
 

  Direct calculation: 

   � � � �
� �

24

11 2 2 2E

22 6 5

5.98 10 kg
6.67 10 N m kg 9.43m s

6.38 10 m 1.25 10 m

m
g G

r
�

u
  u  

u � u
<   

  The difference is only about 0.1%. 

 

20. We can find the actual g by taking g due to the uniform Earth, 

subtracting away g due to the bubble as if it contained uniform Earth 

matter, and adding in g due to the oil-filled bubble.  In the diagram, 

r = 1000 m (the diameter of the bubble, and the distance from the 

surface to the center of the bubble).  The mass of matter in the 

bubble is found by taking the density of the matter times the volume 

of the bubble. 

  

oil uniform bubble bubble

present Earth (Earth (oil)

matter)

oil uniform bubble bubble

present Earth (oil) (Earth

matter)

  g g g g

g g g g g

 � � o

'  �  �
 

� �

� �

bubble
bubble (Earth
oil matter) 34

bubble bubble oil Earth bubble32 2 2 2
(Earth matteroil

matter)

GM
GM

G G
M M r

r r r r
U U S �  �  �

§ · § ·¨ ¸ ¨ ¸¨ ¸ © ¹© ¹
 

 The density of oil is given, but we must calculate the density of a uniform Earth. 

  

� �
24

3 3E

Earth 334 64matter 3 E 3

5.98 10 kg
5.50 10 kg m

6.38 10 m

m

r
U

S S

u
   u

u
 

  � �
� �

� � � �

34

oil Earth bubble32
matter

11 2 2
3

2 3 3 3 24

32
3

6.67 10 N m kg
    8.0 10 kg m 5.50 10 kg m 5.0 10 m

1.00 10 m

G
g r

r
U U S

S
�

'  �

u
 u � u u

u

§ ·
¨ ¸
© ¹

<
 

  
4 2 4 2

    1.6414 10 m s 1.6 10 m s
� � � u | � u  

Finally we calculate the percentage difference. 

� �
4 2

3

2

1.6414 10 m s
% 100 1.7 10 %

9.80 m s

g

g

�
�' � u

 u  � u  

 The negative sign means that the value of g would decrease from the uniform Earth value. 

 

 

 

Er

Er r�

r
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gravF
G

netF
G

NF
Gy

x

T

T

I

21. For an object “at rest” on the surface of the rotating Earth, there are  

two force vectors that add together to form the net force:  
grav

,F
G

 the  

force of gravity, directed towards the center of the Earth; and 
N
,F

G
 the  

normal force, which is given by 
N eff

.m �F g
G G

  The sum of these two  

forces must produce the centripetal force that acts on the object, causing 

centripetal motion.  See the diagram.  Notice that the component axes 

are parallel and perpendicular to the surface of the Earth.  Write  

Newton’s second law in vector component form for the object, and  

solve for 
eff

.gG  The radius of the circular motion of the object is  

E
cos ,r r T  and the speed of the circular motion is 

2
,

r
v

T

S
  where 

T is the period of the rotation, one day. 
2 2

E

grav N net N2

E

2 2 2 2

E E

N 2 2 2 2

E E

2 2

E E E

2 2 2

E

ˆ ˆ ˆ    sin cos   

4 4ˆ ˆ ˆ ˆsin cos sin cos

4 cos 4 cosˆ ˆ    sin cos

m m mv mv
G

r r r

mv m m mv r m r
G m G

r r r T r T

r m r
m G

T r T

T T

S ST T T T

S T S TT T

�  o � �  � o

 � �  � �

 � �

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

ª § ·
¨ ¸
© ¹

F F F j F i j

F i j i j

i j

G G G G

G

� �
� �

� �
� �

� � � �

2 6 2 6

2

2 2

2 2 2

4 6.38 10 m 4 6.38 10 m1 1ˆ ˆ    9.80 m s
2 286,400s 86,400s

ˆ ˆ    1.687 10 m s 9.783m s

m

m

S S

�

u u
 � �

 u �

º
« »
¬ ¼
ª º§ ·

¨ ¸« »¨ ¸« »© ¹¬ ¼
ª º¬ ¼

i j

i j

 

From this calculation we see that 
N

F
G

 points at an angle of 
� �

� �
2 2

1

2

1.687 10 m s
tan 0.0988

9.783m s
I

�
�

u
  q  

north of local “upwards” direction.  Now solve 
N eff

m �F g
G G

 for 
eff

.gG  

� � � �
� � � �
� � � �

2 2 2

N eff

2 2 2

eff

2 2 2 2

eff

eff

ˆ ˆ1.687 10 m s 9.783m s   

ˆ ˆ1.687 10 m s 9.783m s   

1.687 10 m s 9.783m s 9.78 m s

 points 0.099  south of radially inward

m m

g

�

�

�

 u �  � o

 � u � o

 u �  

q

ª º¬ ¼
ª º¬ ¼

F i j g

g i j

g

G G

G

G

 

 

 

22. Consider a distance r from the center of the Earth that satisfies 
Earth

.r R�   Calculate the force due to 

the mass inside the radius r. 

  � � 3 3 3Earth Earth4 4

closer to 3 33 34
center 3 Earth Earth

M M
M r V r r r

R R
U U S S

S
     

  

3Earth

3closer to

center Earth Earth

gravity surface2 2 2

Earth Earth Earth

M
r mM m

R M r r
F G G G m mg

r r R R R
    

§ ·
¨ ¸ § · § ·© ¹

¨ ¸ ¨ ¸
© ¹ © ¹
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Thus for 
gravity

0.95 ,F mg  we must have 
Earth

0.95 ,r R  and so we must drill down a distance equal 

to 5% of the Earth’s radius. 

� �6 5

Earth
0.05 0.05 6.38 10 m 3.19 10 m 320 kmR  u  u |  

 

23. The shuttle must be moving at “orbit speed” in order for the satellite to remain in the orbit when  

released.  The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be 

Earth

orbit
.

M
v G

r
  

� � � � � �
� �

24

11 2 2Earth Earth

6 5

Earth

3

5.98 10 kg
6.67 10 N m kg

680 km 6.38 10 m 6.8 10 m

  7.52 10 m s

M M
v G G

r R
�

u
   u

� u � u

 u

<
 

 

24. The speed of a satellite in a circular orbit around a body is shown in Example 6-6 to be 

orbit body
,v G M r  where r is the distance from the satellite to the center of the body. 

� � � �
� �

24

body 11 2 2Earth

6 6

Earth

3

5.98 10 kg
6.67 10 N m kg

5.8 10 m 12.18 10 m

 5.72 10 m s

M M
v G G

r R
�

u
   u

� u u

 u

<
 

 

25. Consider a free-body diagram of yourself in the elevator.  
N

F
G

 is the force of the scale 

pushing up on you, and reads the normal force.  Since the scale reads 76 kg, if it were 

calibrated in Newtons, the normal force would be � � � �2

N
76 kg 9.80 m s 744.8 N.F     

Write Newton’s second law in the vertical direction, with upward as positive. 
 

� � � �2

2N

N

744.8 N 65kg 9.80 m s
    1.7 m s upward

65kg

F mg
F F mg ma a

m

��
 �  o    ¦  

Since the acceleration is positive, the acceleration is upward. 

 

26. Draw a free-body diagram of the monkey.  Then write Newton’s second law for the 

vertical direction, with up as positive. 

T

T
    

F mg
F F mg ma a

m

�
 �  o  ¦  

 

For the maximum tension of 185 N,  

� � � �
� �

2

2 2
185 N 13.0 kg 9.80 m s

4.43m s 4.4 m s
13.0 kg

a
�

  |  

Thus the elevator must have an  upward acceleration greater than 
2

4.4 m sa    for the cord to 

break.  Any downward acceleration would result in a tension less than the monkey’s weight. 

 

mgG

TF
G

mgG
NF
G
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27. The speed of an object in a circular orbit of radius r around mass M is given in Example 6-6 by 

,v G M r  and is also given by 2 ,v r TS  where T is the period of the orbiting object.  Equate 

the two expressions for the speed and solve for T. 

� �
� � � �

3
63

3

11 2 2 22

2
  

1.86 10 m
2 2 7.20 10 s 120 min

6.67 10 N m kg 7.35 10 m

M r
G

r T

r
T

GM

S

S S
�

 o

u
   u |

u u<

 

 

28. The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be 

Earth

orbit
.

M
v G

r
   Thus the velocity is inversely related to the radius, and so the closer satellite will 

be orbiting faster. 

  

Earth

7 6 7

closeclose far Earth

6 6 6

far close EarthEarth

far

1.5 10 m 6.38 10 m 1.5 10 m
1.37

5 10 m 6.38 10 m 5 10 m

GM

rv r R

v r RGM

r

� u u � u
     

� u u � u
 

 And so  the close satellite is moving 1.4 times faster  than the far satellite. 

 

29. Consider a free-body diagram for the woman in the elevator.  
N

F
G

 is the upwards force 

the spring scale exerts, providing a normal force.  Write Newton’s second law for the 

vertical direction, with up as positive. 

� �N N
    F F mg ma F m g a �  o  �¦  

(a, b)  For constant speed motion in a straight line, the acceleration is 0, and so the  

   normal force is equal to the weight. 

� � � �2

N
53kg 9.80 m s 520 NF mg    

 (c) Here 0.33a g �  and so � � � �2

N
1.33 1.33 53kg 9.80 m s 690 N .F mg    

 (d) Here 0.33a g �  and so � � � �2

N
0.67 0.67 53kg 9.80 m s 350 N .F mg    

 (e) Here a g �  and so 
N

0 N .F   

 

30. The speed of an object in an orbit of radius r around the Earth is given in Example 6-6 by 

Earth
,v G M r  and is also given by 2 ,v r TS  where T is the period of the object in orbit.  

Equate the two expressions for the speed and solve for T.  Also, for a “near-Earth” orbit, 
Earth

.r R  

� �
� �� �

3

Earth

Earth

3
63

Earth

11 2 2 24

Earth

2
    2

6.38 10 m
2 2 5070 s 84.5 min

6.67 10 N m kg 5.98 10 m

M r r
G T

r T GM

R
T

GM

S S

S S
�

 o  

u
    

u u<

 

  No , the result does not depend on the mass of the satellite. 

 

mgG
NF
G



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

176 

31. Consider the free-body diagram for the astronaut in the space vehicle.  The Moon is  

below the astronaut in the figure.  We assume that the astronaut is touching the inside 

of the space vehicle, or in a seat, or strapped in somehow, and so a force will be exerted 

on the astronaut by the spacecraft.  That force has been labeled 
N
.F

G
  The magnitude of 

that force is the apparent weight of the astronaut.  Take down as the positive direction. 

(a) If the spacecraft is moving with a constant velocity, then the acceleration of the astronaut must  

be 0, and so the net force on the astronaut is 0. 

   � � � � � �
� �

22

11 2 2Moon

22 6

0  

75 kg 7.4 10 kg
6.67 10 N m kg 59.23N

2.5 10 m

N

N

F mg F

mM
F mg G

r
�

 �  o

u
   u  

u

¦

<
 

Since the value here is positive, the normal force points in the original direction as shown on the 

free-body diagram.  The astronaut will be pushed “upward” by the floor or the seat.  Thus the 

astronaut will perceive that he has a “weight” of 59 N, towards the Moon .  

(b) Now the astronaut has an acceleration towards the Moon.  Write Newton’s second law for the  

astronaut, with down as the positive direction. 

� � � �2
    59.23N 75kg 2.3m s 113.3 NN NF mg F ma F mg ma �  o  �  �  �¦  

Because of the negative value, the normal force points in the opposite direction from what is 

shown on the free-body diagram – it is pointing towards the Moon.  So perhaps the astronaut is 

pinned against the “ceiling” of the spacecraft, or safety belts are pulling down on the astronaut.  

The astronaut will perceive being “pushed downwards,” and so has an upward apparent weight 

of 110 N, away from the Moon .  

 

32. The apparent weight is the normal force on the passenger.  For a person at rest, the normal force is 

equal to the actual weight.  If there is acceleration in the vertical direction, either up or down, then 

the normal force (and hence the apparent weight) will be different than the actual weight.  The speed 

of the Ferris wheel is � �2 2 11.0m 12.5s 5.529 m s.v r TS S    

(a) See the free-body diagram for the highest point of the motion.  We assume the  

passengers are right-side up, so that the normal force of the Ferris wheel  

seat is upward.  The net force must point to the center of the circle, so  

write Newton’s second law with downward as the positive direction.   

The acceleration is centripetal since the passengers are moving in a circle. 
2 2

R N N
    F F mg F ma mv r F mg mv r  �   o  �¦  

The ratio of apparent weight to real weight is given by the following. 

� �
� � � �

22 2 2

2

5.529 m s
1 1 0.716

11.0 m 9.80 m s

mg m v r g v r v

mg g rg

� �
  �  �   

(b) At the bottom, consider the free-body diagram shown.  We assume 

the passengers are right-side up, so that the normal force of the Ferris  

wheel seat is upward.  The net force must point to the center of the circle,  

so write Newton’s second law with upward as the positive direction.  The  

acceleration is centripetal since the passengers are moving in a circle. 
2 2

R N N
    F F F mg ma mv r F mg mv r  �   o  �¦  

The ratio of apparent weight to real weight is given by the following. 

mgG
NF
G

mgG
NF
G

mgG
NF
G
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� �
� � � �

22 2

2

5.529 m s
1 1 1.284

11.0 m 9.80 m s

mg m v r v

mg rg

�
 �  �   

 

33. See the diagram for the two stars. 

(a) The two stars don’t crash into each other because of  

their circular motion.  The force on them is centripetal, 

and maintains their circular motion.  Another way to 

consider it is that the stars have a velocity, and the 

gravity force causes CHANGE in velocity, not actual 

velocity.  If the stars were somehow brought to rest and then released under the influence of 

their mutual gravity, they would crash into each other. 

(b) Set the gravity force on one of the stars equal to the centripetal force, using the relationship that  

2 ,v r T d TS S   and solve for the mass.    

� �

� �
� �

22 2 2 2 2

R2 2 2 2

3
2 112 3

29

22 7

11 2 2

2 2 2
     

/ 2

2 8.0 10 m2
9.6 10 kg

3.15 10 s
6.67 10 N m kg 12.6 y

1 y

G

d TM v Md M Md
F G F M M G

d d d T d T

d
M

GT

S S S

SS

�

     o  o

u
   u

u
u u

§ ·
¨ ¸
© ¹

<

 

 

34. (a) The speed of an object in near-surface orbit around a planet is given in Example 6-6 to be   

,v GM R  where M  is the planet mass and R  is the planet radius.  The speed is also given 

by 2 ,v R TS  where T is the period of the object in orbit.  Equate the two expressions for the 

speed.        
2 2 2

2 3 2

2 4 4
        

M R M R M
G G

R T R T R GT

S S S
 o  o   

The density of a uniform spherical planet is given by 
34

3
Volume

M M

R
U

S
  .  Thus  

2

3 2 2

3 3 4 3

4 4

M

R GT GT

S SU
S S

    

(b) For Earth, we have the following. 

  
� � � � � �> @

3 3

22 11 2 2

3 3
5.4 10 kg m

6.67 10 N m kg 85min 60s minGT

S SU
�

   u
u <

 

 

35. Consider the lower left mass in the diagram.  The center of the orbits is 

the intersection of the three dashed lines in the diagram.  The net force 

on the lower left mass is the vector sum of the  forces from the other 

two masses, and points to the center of the orbits.  To find that net 

force, project each force to find the component that lies along the line 

towards the center.  The angle is 30T  q .

 

2 2

component2 2
towards

center

3
    cos   

2

M M
F G F F GT o   o

l l
 

d 

GF
G

GF
G

T
r

2l



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

178 

2 2

net 2 2

3
2 3

2

M M
F G G  

l l
 

The net force is causing centripetal motion, and so is of the form 
2Mv r .  Note that cos 2r T  l . 

� �
2 2 2 2 2 2 2

net 2 2 2

3
2 3     3   

2 2cos 3 3

M M Mv Mv Mv M Mv
F G G G

r

GM
v

T
     o  o

 

l l l ll l

l

 

 

36. The effective value of the acceleration due to gravity in the elevator is 

eff elevator
.g g a �   We take the upwards direction to be positive.  The 

acceleration relative to the plane is along the plane, as shown in the free-

body diagram. 

 (a) The elevator acceleration is 
elevator

0.50 .a g �  

eff
0.50 1.50  g g g g �  o  

2

rel eff
sin 1.50 sin 32 7.79 m sa g gT  q   

 (b) The elevator acceleration is 
elevator

0.50 .a g �  

2

eff rel eff
0.50 0.50 sin 0.50 sin 32 2.60 m s    g g g g a g gT �    q  o    

 (c) The elevator acceleration is 
elevator

.a g �  

2

eff rel eff
0 sin 0sin 32 0 m s    g g g a g T �    q  o  

 (d) The elevator acceleration is 0. 

   
2

eff rel eff
0 sin 5.19 m s    g g g a g T �    o  

 

37. Use Kepler’s third law for objects orbiting the Earth.  The following are given. 

� � 6

2

8

2

6

1 Earth

86, 400 s
period of Moon 27.4 day 2.367 10  sec

1 day

radius of Moon's orbit 3.84 10 m

radius of near-Earth orbit 6.38 10 m

T

r

r R

   u

  u

   u

§ ·
¨ ¸
© ¹

 

 

� � � �2 3

1 2 1 2
  T T r r o  

� � � � � �
3/ 2

6
3 / 2 6 3

1 2 1 2 8

6.38 10 m
2.367 10 sec 5.07 10 sec 84.5 min

3.84 10 m
T T r r

u
  u  u  

u
§ ·
¨ ¸
© ¹

 

 

38. Knowing the period of the Moon and the distance to the Moon, we can calculate the speed of the 

Moon by 2 .v r TS   But the speed can also be calculated for any Earth satellite by 

Earth
,v G M r  as derived in Example 6-6.  Equate the two expressions for the speed, and solve 

for the mass of the Earth. 

N
F
G

rel
aG

eff
mgG

T
T
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� �
� � � �� �> @

Earth

3
2 82 3

24

Earth 22 11 2 2

2   

4 3.84 10 m4
5.98 10 kg

6.67 10 N m kg 27.4 d 86, 400s d

G M r r T

r
M

GT

S

SS
�

 o

u
   u

u <

 

 

39. Use Kepler’s third law for objects orbiting the Sun.  

� � � �2 3

Neptune Earth Neptune Earth
 T T r r o   

� �
3 / 2 3 / 2

9

Neptune

Neptune Earth 8

Earth

4.5 10 km
1 year 160 years

1.50 10 km

r
T T

r

u
   

u
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 

40. As found in Example 6-6, the speed for an object orbiting a distance r around a mass M is given by 

.v G M r  

  

star

AA B

B Astar

B

1 1

9 3

GM

rv r

v rGM

r

     

 

41. There are two expressions for the velocity of an object in circular motion around a mass M:  

v G M r  and 2 .v r TS  Equate the two expressions and solve for T.   

� � � �� �

� �� �

3
8 7

4

3

15 8

11 2 2 41

8

2   

3 10 m s 3.16 10 sec
3 10 ly

1 ly
2 2 5.8 10 s 1.8 10 y

6.67 10 N m kg 4 10 kg

    2 10 y

G M r r T

r
T

GM

S

S S
�

 o

u u
u

   u  u
u u

| u

§ ·
¨ ¸¨ ¸
© ¹

<
 

 

42. (a) The relationship between satellite period T, mean satellite distance r, and planet mass M can be  

derived from the two expressions for satellite speed:  v G M r  and 2 .v r TS   Equate the 

two expressions and solve for M. 
2 3

2

4
2     

r
G M r r T M

GT

SS o   

Substitute the values for Io to get the mass of Jupiter.  

� �
� �

3
2 8

27

Jupiter- 2
Io 11 2 2

4 4.22 10 m
1.90 10 kg

24 h 3600 s
6.67 10 N m kg 1.77d

1 d 1 h

M
S

�

u
  u

u u u§ ·
¨ ¸
© ¹

<
 

(b) For the other moons, we have the following. 

   
� �

� �� �

3
2 8

27

Jupiter- 211 2 2
Europa

4 6.71 10 m
1.90 10 kg

6.67 10 N m kg 3.55 24 3600 s
M

S
�

u
  u

u u u<
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� �

� �� �

3
2 9

27

Jupiter- 211 2 2
Ganymede

4 1.07 10 m
1.89 10 kg

6.67 10 N m kg 7.16 24 3600 s
M

S
�

u
  u

u u u<
 

   
� �

� �� �

3
2 9

27

Jupiter- 211 2 2
Callisto

4 1.883 10 m
1.90 10 kg

6.67 10 N m kg 16.7 24 3600 s
M

S
�

u
  u

u u u<
 

   Yes , the results are consistent – only about 0.5% difference between them. 

 

43. Use Kepler’s third law to find the radius of each moon of Jupiter, using Io’s data for r2 and T2. 

� � � � � �3 2 2 / 3

1 2 1 2 1 2 1 2
    r r T T r r T T o   

  � � � �� �2 / 3 2 / 33 3

Europa Io Europa Io
422 10 km 3.55 d 1.77 d 671 10 kmr r T T  u  u  

  � �� �2 / 33 3

Ganymede
422 10 km 7.16 d 1.77 d 1070 10 kmr  u  u  

  � �� �2 / 33 3

Callisto
422 10 km 16.7 d 1.77 d 1880 10 kmr  u  u  

 The agreement with the data in the table is excellent. 

 
44. (a) Use Kepler’s third law to relate the Earth and the hypothetical planet in their orbits around the  

Sun. 

� � � �
� � � � � �

2 3

planet Earth planet Earth

3 / 2 3/ 2

planet Earth planet Earth

  

  1 y 3 1 5.20 y 5 y

T T r r

T T r r

 o

   |
 

(b) No mass data can be calculated from this relationship, because the relationship is mass- 
independent.  Any object at the orbit radius of 3 times the Earth’s orbit radius would have a 

period of 5.2 years, regardless of its mass. 

 

45.  (a) Use Kepler’s third law to relate the orbits of the Earth and the comet around the Sun. 

� �

3 2

comet comet

Earth Earth

2 / 3 2 / 3

comet

comet Earth

Earth

  

2400 y
1 AU 179.3AU 180 AU

1 y

r T

r T

T
r r

T

 o

   |

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 (b) The mean distance is the numeric average of the closest and farthest distances. 

max

max

1.00 AU
179.3AU     357.6 AU 360 AU

2

r
r

�
 o  |  

(c) Refer to Figure 6-17, which illustrates Kepler’s second law.  If the time for each shaded region 

is made much shorter, then the area of each region can be approximated as a triangle.  The area 

of each triangle is half the “base” (speed of comet multiplied by the amount of time) times the 
“height” (distance from Sun).  So we have the following. 

� � � �1 1

min max min min max max2 2

min max max min

Area Area       

360 1

v t r v t r

v v r r

 o  o
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46. (a) In a short time t' , the planet will travel a  

distance v t'  along its orbit.  That distance is 

essentially a straight line segment for a short 

time duration.  The time (and distance moved) 

during t'  have been greatly exaggerated on the 

diagram.  Kepler’s second law states that the 

area swept out by a line from the Sun to the 

planet during the planet’s motion for the t'  is 

the same anywhere on the orbit.  Take the areas 

swept out at the near and far points, as shown on the diagram, and approximate them as 

triangles (which will be reasonable for short t' ). 

   � � � � � � � �1 1

N N F F N F F N2 2N F
Area Area         v t d v t d v v d d o '  ' o   

(b) Since the orbit is almost circular, an average velocity can be found by assuming a circular orbit 

with a radius equal to the average distance. 

   
� � � �11 1111

2 42 N F

avg 7

2 1.47 10 m 1.52 10 m22
2.973 10 m s

3.16 10 s

d dr
v

T T

SSS u � u�
    u

u
 

  From part (a) we find the ratio of near and far velocities. 

   
N F F N

1.52 1.47 1.034v v d d    

For this small change in velocities (3.4% increase from smallest to largest), we assume that the 

minimum velocity is 1.7% lower than the average velocity and the maximum velocity is 1.7% 
higher than the average velocity. 

   
� � � �

� � � �

4 4

N avg

4 4

F avg

1 0.017 2.973 10 m s 1.017 3.02 10 m s

1 0.017 2.973 10 m s 0.983 2.92 10 m s

v v

v v

 �  u  u

 �  u  u
 

 

47. (a) Take the logarithm of both sides of the Kepler’s third law expression. 
2 2 2

2 3 2 3

J J J

4 4 4
    log log     2 log log 3log   T r T r T r

Gm Gm Gm

S S S
 o  o  � o
§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

2

3 1

2 2

J

4
log log logT r

Gm

S
 �

§ ·
¨ ¸
© ¹

 

  This predicts a straight line graph for log(T) vs. log(r), with a  slope of 3/2  and a  

y-intercept of 

2

1

2

J

4
log

Gm

S§ ·
¨ ¸
© ¹

. 

 
 (b) The data is taken from  

Table 6-3, and the graph is 

shown here, with a straight-

line fit to the data.  The data 

need to be converted to 
seconds and meters before 

the logarithms are 

calculated. 

 

From the graph, the slope is 

1.50 (as expected), and the 
y-intercept is –7.76. 

Sun

Nd Fd
Fv t'

Nv t'

log(T ) = 1.50 log(r ) - 7.76

R
2
 = 1.00

5.0

5.2

5.4

5.6

5.8

6.0

6.2

8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3
log(r ) 

lo
g

(T
)
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� � � � � �
2 2 2

271

J2 2 11 15.52

J

4 4 4
log     1.97 10 kg

10 6.67 10 10
b

b m
Gm G

S S S
� �

 o    u
u

§ ·
¨ ¸
© ¹

 

The actual mass of Jupiter is given in problem 8 as 318 times the mass of the Earth, which is 
27

1.90 10 kgu .  The spreadsheet used for this problem can be found on the Media Manager, with 

filename “PSE4_ISM_CH06.XLS,” on tab “Problem 6.47b.” 

 

48. We choose the line joining the Earth and Moon 

centers to be the x-axis.  The field of the Earth 

will point towards the Earth, and the field of 

the Moon will point towards the Moon. 

 

� � � � � �

� � � �
� �� �

Moon EarthEarth Moon

2 2 2

1 1 1

2 2 2Earth- Earth- Earth-

Moon Moon Moon

11 2 2 22 24

2 2

2
61

2

ˆ ˆ ˆ

6.67 10 N m kg 7.35 10 kg 5.97 10 kg
ˆ ˆ  1.07 10 m s

384 10 m

G M MGM GM

r r r

�
�

�
 � �  

u u � u
  � u

u

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

g i i i

i i

G

<
 

 So the magnitude is 
2 2

1.07 10 m s
�u and the direction is  towards the center of the Earth .   

 

49. (a) The gravitational field due to a spherical mass M, at a distance r from the center of the mass, is  
2 .g GM r  

   
� � � �

� �
11 2 2 30

3 2Sun

Sun at 22 11
Earth Sun to

Earth

6.67 10 N m kg 1.99 10 kg
5.93 10 m s

1.496 10 m

GM
g

r

�
�

u u
   u

u

<
 

 (b) Compare this to the field caused by the Earth at the surface of the Earth. 

   

3 2Sun at

Earth 4

2

Earth

5.93 10 m s
6.05 10

9.80 m s

g

g

�
�u

  u  

  No , this is not going to affect your weight significantly.  The effect is less than 0.1 %. 

 

50. (a) From the symmetry of the situation,  

the net force on the object will be down.  

However, we will show that explicitly by 

writing the field in vector component 

notation. 

  

left right 2 2 2 2

0 0

2 2 2 2

0 0

2 2 2 2 2 2 2
0 0 0 0

ˆ ˆsin cos

ˆ ˆ                      sin cos

ˆ ˆ  2 cos 2 2

m m
G G

x y x y

m m
G G

x y x y

m m y y
G G Gm

x y x y x y x

T T

T T

T

 �  � � �
� �

� � �
� �

 �  �  �
� � �

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

g g g i j

i j

j j

G G G

� �3 / 2
2

ˆ

y�

§ ·
¨ ¸
¨ ¸
© ¹

j

  

d Earth 
Moon 

0x

T T
rightgGleftgG

0x

y
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(b) If we keep y as a positive quantity, then the magnitude of the field is 

� �3 / 2
2 2

0

2 .
y

g Gm
x y

 
�

  

We find locations of the maximum magnitude by setting the first derivative equal to 0.  Since 

the expression is never negative, any extrema will be maxima. 

  
� �

� � � �
� �

� � � �

3 / 2 1/ 2
2 2 2 23

20 0

3 / 2 3
2 2 2 2

0 0

3 / 2 1/ 2
2 2 2 2 03

0 0 max 02

2
2     2 0  

2 0    0.71
2

x y y x y yy dg
g Gm Gm

dtx y x y

x
x y y x y y y x

� � �
 o   o

� �

� � �  o  |

ª º
« »
« »¬ ¼  

  

0

0

max 3 / 2 222
002 0

0

42
2 0.77

2 3 3

2

x
x Gm Gm

g g y Gm
xxx

x

    |

�

§ ·
¨ ¸
© ¹ § ·§ ·

¨ ¸¨ ¸
© ¹© ¹

 

 There would also be a maximum at 
0

2 .y x �  

 

51. The acceleration due to the Earth’s gravity at a location at or above the surface is given by 
2

Earth
,g G M r  where r is the distance from the center of the Earth to the location in question.  

Find the location where 1

surface2
.g g  

2 2Earth Earth

Earth Earth2 2

Earth

1
    2     2

2

GM GM
r R r R

r R
 o  o   

The distance above the Earth’s surface is as follows. 

� � � �� �6 6

Earth Earth
2 1 2 1 6.38 10 m 2.64 10 mr R R�  �  � u  u  

 

52. (a) Mass is independent of location and so the mass of the ball is  13.0 kg  on both the Earth and  

the planet. 

 

(b) The weight is found by .W mg  

� � � �2

Earth Earth
13.0 kg 9.80 m s 127 NW mg    

� � � �2

Planet Planet
13.0 kg 12.0 m s 156 NW mg    

 

53. (a) The acceleration due to gravity at any location at or above the surface of a star is given by  
2

star star
,g G M r  where r is the distance from the center of the star to the location in question. 

   � � � �
� �

30

11 2 2 7 2sun

star 22 6
Moon

1.99 10 kg
6.67 10 N m kg 4.38 10 m s

1.74 10  m

M
g G

R
�

u
  u  u

u
<  

 (b) � �� �7 2 9

star
65 kg 4.38 10 m s 2.8 10 NW mg  u  u  

 (c) Use Eq. 2-12c, with an initial velocity of 0. 

   
� �

� � � � � �

2 2

0 0

7 2 3

0

2   

2 2 4.38 10 m s 1.0 m 9.4 10 m s

v v a x x

v a x x

 � � o

 �  u  u
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54. In general, the acceleration due to gravity of the Earth is given by 
2

Earth
,g G M r  where r is the 

distance from the center of the Earth to the location in question. So for the location in question, we 

have the following. 

� �

2 2Earth Earth1 1

surface Earth10 102 2

Earth

6 7

Earth

        =10

10 10 6.38 10 m 2.02 10 m

M M
g g G G r R

r R

r R

 o  o

  u  u

 

 

55. The speed of an object in an orbit of radius r around a planet is given in Example 6-6 as  

planet
,v G M r  and is also given by 2 ,v r TS  where T is the period of the object in orbit.  

Equate the two expressions for the speed and solve for T. 

       

3

Planet

Planet

2
    2

M r r
G T

r T GM

S S o   

For this problem, the inner orbit has radius 
7

inner
7.3 10 m,r  u  and the outer orbit has radius 

8

outer
1.7 10 m.r  u   Use these values to calculate the periods. 

� �
� �� �

� �
� �� �

3
7

4

inner 11 2 2 26

3
8

4

outer 11 2 2 26

7.3 10 m
2 2.0 10 s

6.67 10 N m kg 5.7 10 kg

1.7 10 m
2 7.1 10 s

6.67 10 N m kg 5.7 10 kg

T

T

S

S

�

�

u
  u

u u

u
  u

u u

<

<

 

Saturn’s rotation period (day) is 10 hr 39 min, which is about 
4

3.8 10 sec.u  Thus the inner ring will 

appear to move across the sky “faster” than the Sun (about twice per Saturn day), while the outer 

ring will appear to move across the sky “slower” than the Sun (about once every two Saturn days). 

 

56. The speed of an object in an orbit of radius r around the Moon is given by 
Moon

,v G M r  and is 

also given by 2 ,v r TS  where T is the period of the object in orbit.  Equate the two expressions 

for the speed and solve for T.        

  

  
� � � �

� �� �
� �

Moon

3
6 533

Moon

11 2 2 22

Moon Moon

3

2   

1.74 10 m 1 10 m100 km
2 2 2

6.67 10 N m kg 7.35 10 kg

  7.1 10 s 2.0 h

G M r r T

Rr
T

GM GM

S

S S S
�

 o

u � u�
   

u u

 u

<

�

 

 

57. Use Kepler’s third law to relate the orbits of Earth and Halley’s comet around the Sun. 

� � � �
� � � �� �

3 2

Halley Earth Halley Earth

2 / 3 2 / 36 6

Halley Earth Halley Earth

  

150 10 km 76 y 1 y 2690 10 km

r r T T

r r T T

 o

  u  u
 

This value is half the sum of the nearest and farthest distances of Halley’s comet from the Sun.  Since 

the nearest distance is very close to the Sun, we will approximate that nearest distance as 0.  Then the 
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farthest distance is twice the value above, or 
6 12

5380 10 km 5.4 10 m .u  u   This distance approaches 

the mean orbit distance of Pluto, which is 
12

5.9 10 m.u    It is still in the solar system, nearest to 

Pluto’s orbit. 

 

58. (a) The speed of a satellite orbiting the Earth is given by 
Earth

.v G M r   For the GPS satellites,  

� � � � 7

Earth
11,000 1.852 km 2.68 10 m.r R �  u  

� � � �24

11 2 2 3 3

7

5.97 10 kg
6.67 10 N m kg 3.86 10 m s 3.9 10 m s

2.68 10 m
v �

u
 u  u | u

u
<  

 (b) The period can be found from the speed and the radius. 

� �7

4

3

2 2.68 10 m2
2     4.4 10 sec 12 h

3.86 10 m s

r
v r T T

v

SSS
u

 o    u
u

�  

 

59. For a body on the equator, the net motion is circular.  Consider the free- 

body diagram as shown.  FN is the normal force, which is the apparent 

weight.  The net force must point to the center of the circle for the object to 

be moving in a circular path at constant speed.  Write Newton’s second law 

with the inward direction as positive. 

� �

2

R Jupiter N Jupiter

2

Jupiter2

N Jupiter Jupiter 2

Jupiter Jupiter

  

  

F mg F m v R

M v
F m g v R m G

R R

 �  o

 �  �
§ ·
¨ ¸
© ¹

¦
 

Use the fact that for a rotating object, 2 .v r TS  

 

2

Jupiter Jupiter

N 2 2

Jupiter Jupiter

perceived

4M R
F m G

R T
mg

S
 �

§ ·
 ¨ ¸

© ¹
 

Thus the perceived acceleration due to gravity of the object on the surface of Jupiter is as follows. 

� � � �
� �

� �
� �

2

Jupiter Jupiter

perceived 2 2

Jupiter Jupiter

27 2 7

11 2 2

2 2
7

4

1.9 10 kg 4 7.1 10 m
           6.67 10 N m kg

60 s7.1 10 m
595 min

1 min

M R
g G

R T

S

S
�

 �

u u
 u �

u ª º§ ·
¨ ¸« »© ¹¬ ¼

<
 

2

2

1 
           22.94 m s 2.3 ' s

9.8m s

g
g  

§ ·
¨ ¸
© ¹

 

Based on this result, you would not be crushed at all.  You would feel “heavy,” but not at all crushed. 

 

60. The speed of rotation of the Sun about the galactic center, under the assumptions made, is given by 

galaxy

Sun orbit

M
v G

r
  and so 

2

Sun orbit

galaxy
.

r v
M

G
   Substitute in the relationship that 

Sun orbit
2 .v r TS   

 

mgG

NF
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� � � �� �

� � � �

3
2 1532

Sun orbit

galaxy 22
7

11 2 2 6

41 41

4 30, 000 9.5 10 m4

3.15 10 s
6.67 10 N m kg 200 10 y

1 y

          3.452 10 kg 3 10 kg

r
M

GT

SS

�

u
  

u
u u

 u | u

ª º¬ ¼
ª º§ ·

¨ ¸« »
© ¹¬ ¼

<  

The number of solar masses is found by dividing the result by the solar mass. 
41

galaxy 11 11

30

Sun

3.452 10 kg
#  stars 1.726 10 2 10 stars

2.0 10 kg

M

M

u
   u | u

u
 

 

61. In the text, it says that Eq. 6-6 is valid if the radius r is replaced with the semi-major axis s.  From 

Fig. 6-16, the distance of closest approach minr  is seen to be � �min
1 ,r s es s e �  �  and so the 

semi-major axis is given by min

1
.

r
s

e
 

�
 

  

� �

2 2

3

3
11

2

3

2 min
2 3

22 2 7

11 2 2

36 36

SgrA

SgrA

4
  

1.5 10 m
123AU

1AU
4

1 0.87
4

4 1

3.156 10 s
6.67 10 N m kg 15.2y

1 y

7.352 10 kg 7.4 10 kg        

T

s GM

r
s eM

GT GT

S

S
S

S

�

 o

u
u

�
�   

u
u u

 u | u

§ ·
¨ ¸
¨ ¸
¨ ¸§ ·

¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
¨ ¸
© ¹

<

 

36

SgrA 6

30

Sun

7.352 10 kg
3.7 10

1.99 10 kg

M

M

u
  u

u
 and so SgrA is almost 4 million times more massive than 

our Sun. 

62. (a) The gravitational force on the satellite is given by Earth

grav 2
,

M m
F G

r
  where r is the distance of  

the satellite from the center of the Earth.  Since the satellite is moving in circular motion, then 

the net force on the satellite can be written as 
2

net
.F m v r   By substituting 2v r TS  for a 

circular orbit, we have 

2

net 2

4
.

mr
F

T

S
   Then, since gravity is the only force on the satellite, the 

two expressions for force can be equated, and solved for the orbit radius. 

� � � � � �

2

Earth

2 2

1/ 3
21/ 3 11 2 2 242

Earth

2 2

6 6

4
  

6.67 10 N m kg 6.0 10 kg 6200s

4 4

7.304 10 m 7.3 10 m 

M m mr
G

r T

GM T
r

S

S S

�

 o

u u
  

 u | u

ª º§ ·
« »¨ ¸

© ¹ « »¬ ¼

<
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(b) From this value the gravitational force on the satellite can be calculated. 

� � � � � �
� �

24

11 2 2 4Earth

grav 22 6

4

6.0 10 kg 5500 kg
6.67 10 N m kg 4.126 10 N

7.304 10 m

      4.1 10 N

M m
F G

r
�

u
  u  u

u

| u

<
 

(c) The altitude of the satellite above the Earth’s surface is given by the following. 

6 6 5

Earth
7.304 10 m 6.38 10 m 9.2 10 mr R�  u � u  u  

 

63. Your weight is given by the law of universal gravitation.  The derivative of the weight with respect 

to time is found by taking the derivative of the weight with respect to distance from the Earth’s 

center, and using the chain rule. 

  E E

2 3
    2

m m dW dW dr m m
W G G v

r dt dr dt r
 o   �  

 

64. The speed of an orbiting object is given in Example 6-6 as ,v G M r  where r is the radius of the 

orbit, and M is the mass around which the object is orbiting.  Solve the equation for M. 

� �� �
� �

2
17 52

39

11 2 2

5.7 10 m 7.8 10 m s
    5.2 10 kg

6.67 10 N m kg

rv
v G M r M

G �

u u
 o    u

u <
 

The number of solar masses is found by dividing the result by the solar mass. 
39

galaxy 9

30

Sun

5.2 10 kg
#  solar masses 2.6 10 solar masses

2 10 kg

M

M

u
   u

u
 

 

65. Find the “new” Earth radius by setting the acceleration due to gravity at the Sun’s surface equal to 

the acceleration due to gravity at the “new” Earth’s surface. 

� �
24

8Earth Sun Earth

Earth Sun Earth Sun2 2 30
new newEarth Sun Sun

new

6 1
5

5.98 10 kg
        6.96 10 m

1.99 10 kg

                                                                  1.21 10 m , about the ac

GM GM M
g g r r

r r M

u
 o  o   u

u

 u tual Earth radius.

 

 

66. (a) See the free-body diagram for the plumb bob.  The attractive gravitational force  

on the plumb bob is M

M 2
.

M

mm
F G

D
   Since the bob is not accelerating, the net 

force in any direction will be zero.   Write the net force for both vertical and 

horizontal directions.  Use Earth

2

Earth

.
M

g G
R

  

vertical T T

horizontal M T M T

2

1 1 M EarthM M

2 2 2

Earth

cos 0    
cos

sin 0    sin tan

tan     tan tan
M M M

mg
F F mg F

F F F F F mg

m Rmm m
G mg G

D gD M D

T
T

T T T

T T � �

 �  o  

 �  o   

 o   

¦
¦  
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mgG
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(b) We estimate the mass of Mt. Everest by taking its volume times its mass density.  If we  

approximate Mt. Everest as a cone with the same size diameter as height, then its volume is 

� � � �22 10 31 1

3 3
2000 m 4000 m 1.7 10 m .V r hS S   u   The density is 

3 3
3 10 kg m .U  u   Find 

the mass by multiplying the volume times the density. 

� �� �3 3 10 3 13
3 10 kg m 1.7 10 m 5 10 kgM VU  u u  u  

 (c)  With D = 5000 m, use the relationship derived in part (a). 

� � � �
� � � �

2
13 62

1 1 4M Earth

22 24

Earth M

5 10 kg 6.38 10 m
tan tan 8 10 degrees

5.97 10 kg 5000 m

M R

M D
T � � �

u u
   u

u
 

 

67.  Since all of the masses (or mass holes) are spherical, and g is being  

measured outside of their boundaries, we can use the simple 

Newtonian gravitation expression.  In the diagram, the distance r = 

2000 m.  The radius of the deposit is unknown. 

missing

dirt oil

actual full missing oil full 2 2
Earth dirt mass Earth

missing oil

dirt

full 2
Earth

       

GM
GM

g g g g g
r r

G M M

g
r

 � �  � �

�
 �

§ ·
¨ ¸
© ¹

 

 

� � � �
� �

missing oil

dirt oil

full actual missing missing oil oil missing oil2 2 2 7
Earth dirt dirt dirt

22

2

oil 7 7 11 2 2

missing oil

dirt

2

10

2000 m2 1 2
9.80 m s

10 10 6.67 10 N m kg

G M M
G GV

g g g V V g
r r r

r
V g

G

U U U U

U U
�

�
'  �   �  �  

  
u�

§ ·
¨ ¸ § · § ·© ¹

¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
¨ ¸
© ¹

< � � 2

7 3 7 3

1

3000 800 kg m

    5.34 10 m 5 10 m

�

 u | u

 

1/ 3

10 10oil

deposit deposit oil oil

3
234 m 200 m    ;  4.27 10 kg 4 10 kg

4

V
r m V U

S
  |   u | u§ ·
¨ ¸
© ¹

 

 

68. The relationship between orbital speed and orbital radius for objects in orbit around the Earth is 

given in Example 6-6 as 
Earth

.v G M r   There are two orbital speeds involved – the one at the 

original radius, 
0 Earth 0

,v G M r  and the faster speed at the reduced radius, 

� �Earth 0
.v G M r r � '  

(a) At the faster speed, 25,000 more meters will be traveled during the “catch-up” time, t.  Note that 
6 5 6

0
6.38 10 m 4 10 m 6.78 10 m.r  u � u  u   

4 4Earth Earth

0

0 0

2.5 10 m    2.5 10 m  
M M

vt v t G t G t
r r r

 � u o  � u o
� '

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
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Er r�
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� � � �

4

Earth 0 0

4

6 3 611 2 2 24

4

1

1

2.5 10 m 1 1

2.5 10 m 1 1
 

6.78 10 m 1 10 m 6.78 10 m6.67 10 N m kg 5.97 10 kg

 4.42 10 s 12 h

t
GM r r r

�

�

�

u
 �

� '

u
 �

u � u uu u

 u |

§ ·
¨ ¸¨ ¸
© ¹

§ ·
¨ ¸
© ¹<

 

(b) Again, 25,000 more meters must be traveled at the faster speed in order to catch up to the 

satellite. 

  � �

4 4Earth Earth

0

0 0

1
4 4

0

0 0 Earth 0 Earth

2
4

6

0

0 Earth

2.5 10 m    2.5 10 m  

1 1 2.5 10 m 1 2.5 10 m
      

1 2.5 10 m
6.78 10 m

                   

M M
vt v t G t G t

r r r

r r
r r r t GM r t GM

r r
r t GM

�

�

 � u o  � u o
� '

u u
 � o � '  � o

� '

u
'  �  u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º
« »
¬ ¼

ª º
� « »
¬ ¼

� � � � � � � �

2

4

6 11 2 2 24

3

1 2.5 10 m

6.78 10 m 25200s 6.67 10 N m kg 5.97 10 kg

    1755 m 1.8 10 m

�

�

u
� �

u u u

 | u

ª º
« »
« »¬ ¼<

 

 

69. If the ring is to produce an apparent gravity equivalent to that of  

Earth, then the normal force of the ring on objects must be given by  

N
.F mg   The Sun will also exert a force on objects on the ring.  

See the free-body diagram.  Write Newton’s second law for the 

object, with the fact that the acceleration is centripetal. 
2

R Sun N
F F F F m v r  �  ¦  

Substitute in the relationships that 2 ,v r TS  
N

,F mg  and Sun

Sun 2
,

M m
F G

r
  and solve for the 

period of the rotation. 
2 2

2 Sun Sun

2 2 2 2

4 4
        Sun N

M m Mmr r
F F m v r G mg G g

r T r T

S S
�  o �  o �   

� �
� � � �

� �

2 112

30
Sun

11 2 2 2
2

2
11

5

4 1.50 10 m4

1.99 10 kg
6.67 10 N m kg 9.80 m s

1.50 10 m

7.77 10 s 8.99 d  

r
T

M
G g

r

SS

�

u
  

u� u �
u

 u  

<  

The force of the Sun is only about 1/1600 the size of the normal force.  The force of the Sun could 

have been ignored in the calculation with no significant change in the result given above. 

 

Sun 

NF
G

SunF
G
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70. For an object to be apparently weightless would mean that the object would have a centripetal 

acceleration equal to g.  This is really the same as asking what the orbital period would be for an 

object orbiting the Earth with an orbital radius equal to the Earth’s radius.  To calculate, use 
2

Earth
,Cg a v R   along with 

Earth
2 ,v R TS  and solve for T. 

� �
22 6

3Earth Earth

2 2

Earth

4 6.38 10 m
    2 2 5.07 10 s 84.5 min

9.80 m s

R Rv
g T

R T g

S
S S u

  o    u �  

 

71. The speed of an object orbiting a mass is given in Example 6-6 as Sun .
GM

v
r

  

  

Sun Sun Sun Sun

new new new

new 2

new new1.5  and 1.5 1.5  

0.44
1.5

       =   
GM GM GM GM

v v v v
r r r r

r
r r

  

  

 o o o
 

 

72. From the Venus data, the mass of the Sun can be determined by the following.  Set the gravitational  

force on Venus equal to the centripetal force acting on Venus to make it orbit. 

  

2

Venus

orbit

2 2 3Venus

Venus Venus Venus2 Venus
orbit orbitSun Venus Venus Venus

Sun2 2 2

Venus Venus Venus Venus Venus

orbit orbit orbit

2

4 4

    

r

m
m r rT

GM m m v
M

r r r GT T

S

S S
   o  

§ ·
¨ ¸
¨ ¸
© ¹

 

Then likewise, for Callisto orbiting Jupiter, 

2 3

Callisto

orbit

Jupiter 2

Callisto

4

,

r

M
GT

S
  and for the Moon orbiting the Earth, 

2 3

Moon

orbit

Earth 2

Moon

4

.

r

M
GT

S
   To find the density ratios, take the mass ratios with the mass expressed as density 

times volume, and expressed as found above. 

 

� �
� �

� �
� �

2 3

Callisto

orbit

3 24

3Jupiter Jupiter Jupiter Callisto

2 334
Venus3Sun Sun Sun
orbit

2

Venus

3

3 22 3Callisto

orbitJupiter Venus Sun

2 32 3 3

Sun Callisto Venus Jupiter

orbit

4

  
4

0.01253 224.7 1

16.69 0.724

r

M r GT

rM r

GT

r
T r

T r r

S

U S
SU S

U
U

  o

  
� �3

0.948
0.0997

 

 

And likewise for the Earth–Sun combination:  

� �
� �

� �
� � � �

3

3 22 3Moon

orbitEarth Venus Sun

2 3 32 3 3

Sun Moon Venus Earth

orbit

0.003069 224.7 1
3.98

27.32 0.724 0.0109

r
T r

T r r

U
U
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73. The initial force of 120 N can be represented as 
planet

grav 2
120 N.

GM
F

r
   

 (a) The new radius is 1.5 times the original radius. 

� �
� �planet planet planet

new 22 2
radius new

1
120 N 53 N

2.25 2.251.5

GM GM GM
F

r rr
      

(b) With the larger radius, the period is T = 7200 seconds.  As found in Example 6-6, orbit speed 

can be calculated by .
GM

v
r

  

   
� �

� � � �

3
2 72 3

26

22 11 2 2

4 3.0 10 m2 4
    3.1 10 kg

6.67 10 N m kg 7200s

GM r r
v M

r T GT

SS S
�

u
  o    u

u <
 

 

74. The density of the sphere is uniform, and is given by 
34

3

.
M

r
U

S
   The mass that was removed to 

make the cavity is � �� �34 1

cavity cavity 3 834

3

2 .
M

M V r M
r

S S
S

     The net force on the point mass can 

be found by finding the force due to the entire sphere, and then subtracting the force caused by the 

cavity alone. 

  

� �
� � � �

� �

1

8

net sphere cavity 2 22 2

22

1 1

2 8 2

1
1

8 1 2
     

G M mGMm
F F F GMm

d dd r d r

GMm

d r d

 �  �  �
� �
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�

§ ·
¨ ¸
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§ ·
¨ ¸
© ¹

 

 

75. (a) We use the law of universal gravitation to express the force for each mass m.  One mass is  

“near” the Moon, and so the distance from that mass to the center of the Moon is 
EM E

.R R�   

The other mass is “far” from the Moon, and so the distance from that mass to the center of the 

Moon is 
EM E

.R R�  

� � � �
Moon Moon

near far2 2
Moon Moon

EM E EM E

          
GM m GM m

F F
R R R R

  
� �

 

� �

� �

Moon
2 22 8 6

EM Enear EM E

8 6
Moonfar EM EMoon

2

EM E

3.84 10 m 6.38 10 m
1.0687

3.84 10 m 6.38 10 m

GM m

R RF R R
GM mF R R
R R

� � u � u
    

� u � u
�

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸

© ¹© ¹© ¹
 

 (b) We use a similar analysis to part (a). 

� � � �
Sun Sun

near far2 2
Sun Moon

ES E ES E

          
GM m GM m

F F
r r r r

  
� �

 

� �

� �

Sun
2 22 11 6

ES Enear EM E

11 6
Sunfar EM ESun

2

ES E

1.496 10 m 6.38 10 m
1.000171

1.496 10 m 6.38 10 m

GM m

r rF r r
GM mF r r
r r

� � u � u
    

� u � u
�

§ · § · § ·
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 (c) For the average gravitational force on the large masses, we use the distance between their  

centers. 

Sun Earth Moon Earth

Sun Moon2 2

ES EM

          
GM M GM M

F F
r r

   

� �
� �

� �
� �

Sun Earth
2

30 822

Sun Sun EMES

22 2211
Moon EarthMoon ES Moon

2

EM

1.99 10 kg 3.84 10 m
178

7.35 10 kg1.496 10 m

GM M

F M rr
GM MF r M

r

u u
    

uu
 

 (d) Apply the expression for F' as given in the statement of the problem. 

� �
� �

near near

Moon

far farMoon MoonMoon Moon

Sun Sunnear near

Sun

far farSun Sun

1 1
1.0687 11

2.3
178 1.000171 1

1 1

F F
F

F FF F

F FF F
F

F F

� �
�'

    
' �

� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
§ · § ·
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© ¹ © ¹

 

  

76. The acceleration is found from the law of universal gravitation.  Using the chain rule, a relationship 

between the acceleration expression and the velocity can be found which is integrated to find the 

velocity as a function of distance.  The outward radial direction is taken to be positive, so the 

acceleration is manifestly negative. 

  
EE

EE

E E E

2 2 2

2E 1

E E 22 2

22 0

          

          

fv rr

f

rr

m m Gm dv dv dr dv Gm dv
F ma G a v v

r r dt dr dt dr r dr

dr dr Gm
Gm vdv Gm vdv v

r r r

  � o  �    o �  o

�  o �  o  oª º
« »¬ ¼³ ³

 

  
2E E E E1

2

E E E E

        
2

f f f

Gm Gm Gm Gm
v v v

r r r r
�  o  r o  �  

The negative sign is chosen because the object is moving towards the center of the Earth, and the 

outward radial direction is positive. 

 

77. Equate the force of gravity on a mass m at the surface of the Earth as expressed by the acceleration 

due to gravity to that as expressed by Newton’s law of universal gravitation. 

  

� �
� � � �

2 2

Earth Earth Earth

2 34
Earth3Earth Earth Earth Earth Earth Earth

2 3 3

10 10

3 7 2 2

3 3 3
    

4 2
4

2

3 10 m s m m
1.25 10 1 10

2 3000 kg m 4 10 m kg s kg s
                                  

GM m gR gR g g g
mg G

CR M R R CU S SU USU
S

� �

 o      

  u | u
u < <

 

 This is roughly twice the size of the accepted value of G. 

 

78. (a) From Example 6-6, the speed of an object in a circular orbit of radius r about mass M is  

.
GM

v
r

  Use that relationship along with the definition of density to find the speed. 

   

34
2 3      

GM GM G r
v v

r r r

U S
 o   o  
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� �

� � � �
22

4

11 2 2 3

3 22 m s3
25330 m 2.5 10 m

4 4 6.67 10 N m kg 2700 kg m

v
r

GS U S �
   | u

u <
 

 (b) 
� �2 25330 m2 2

    7234s 2.0 h
22 m s

r r
v T

T v

SS S
 o    |  

 

79. (a) The graph is shown.     

 

(b) From the graph, we get this 

equation. 
2 3

1/ 3
2

0.9999 0.3412  

0.3412

0.9999

T r

T
r

 � o

�
 
§ ·
¨ ¸
© ¹

 

 

 

 
 

� �
1/ 3

2
247.7 0.3412

247.7 y 39.44 AU
0.9999

r T
�

   
§ ·
¨ ¸
© ¹

 

A quoted value for the means distance of Pluto is 39.47 AU.  The spreadsheet used for this 

problem can be found on the Media Manager, with filename “PSE4_ISM_CH06.XLS,” on tab 

“Problem 6.79.” 
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CHAPTER 7:  Work and Energy 
 
Responses to Questions 
 
1.  “Work” as used in everyday language generally means “energy expended,” which is similar to the 

way “work” is defined in physics.  However, in everyday language, “work” can involve mental or 
physical energy expended, and is not necessarily connected with displacement, as it is in physics.  So 
a student could say she “worked” hard carrying boxes up the stairs to her dorm room (similar in 
meaning to the physics usage), or that she “worked” hard on a problem set (different in meaning 
from the physics usage). 

 
2.  Yes, she is doing work. The work done by her and the work done on her by the river are opposite in 

sign, so they cancel and she does not move with respect to the shore. When she stops swimming, the 
river continues to do work on her, so she floats downstream. 

 
3.  No, not if the object is moving in a circle. Work is the product of force and the displacement in the 

direction of the force. Therefore, a centripetal force, which is perpendicular to the direction of 
motion, cannot do work on an object moving in a circle. 

 
4.  You are doing no work on the wall. Your muscles are using energy generated by the cells in your 

body and producing byproducts which make you feel fatigued. 
 
5. No. The magnitudes of the vectors and the angle between them are the relevant quantities, and these 

do not depend on the choice of coordinate system.  
 
6.  Yes. A dot product can be negative if corresponding components of the vectors involved point in 

opposite directions.  For example, if one vector points along the positive x-axis, and the other along 
the negative x-axis, the angle between the vectors is 180º.  Cos 180º = –1, and so the dot product of 
the two vectors will be negative. 

  
7.  No. For instance, imagine C

G
 as a vector along the +x axis. A

G
and B

G
 could be two vectors with the 

same magnitude and the same x-component but with y-components in opposite directions, so that 
one is in quadrant I and the other in quadrant IV. Then  A C B C

G G GG
< <  even though A

G
and B

G
 are 

different vectors.  
 
8.  No. The dot product of two vectors is always a scalar, with only a magnitude.  
 
9.  Yes. The normal force is the force perpendicular to the surface an object is resting on. If the object 

moves with a component of its displacement perpendicular to this surface, the normal force will do 
work. For instance, when you jump, the normal force does work on you in accelerating you 
vertically. 

 
10.  (a) If the force is the same, then 1 1 2 2F k x k x  , so 2 1 1 2x k x k .  The work done on spring 1 will  

be 21
1 1 12W k x .  The work done on spring 2 will be � � � �2 2 2 21 1

2 2 2 2 1 1 2 1 1 22 2W k x k k x k W k k   . 

Since 1 2k k! , 2 1W W!  , so more work is done on spring 2. 

(b) If the displacement is the same, then 21
1 12W k x   and 21

2 22W k x .  Since 1 2k k! , 1 2W W! , so  
more work is done on spring 1. 
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11.  The kinetic energy increases by a factor of 9, since the kinetic energy is proportional to the square of 
the speed. 

 
12.  Until the x = 0 point, the spring has a positive acceleration and is accelerating the block, and 

therefore will remain in contact with it.  After the x = 0 point, the spring begins to slow down, but (in 
the absence of friction), the block will continue to move with its maximum speed and will therefore 
move faster than the spring and will separate from it. 

 
13.  The bullet with the smaller mass has a speed which is greater by a factor of 2 1.4.|   Since their 

kinetic energies are equal, then 2 21 1
1 1 2 22 2 .m v m v   If m2 = 2m1, then 2 21 1

1 1 1 22 2 2 ,m v m v �  so 

1 22 .v v  They can both do the same amount of work, however, since their kinetic energies are 
the same. (See the work-energy principle.) 

 
14.  The net work done on a particle and the change in the kinetic energy are independent of the choice 

of reference frames only if the reference frames are at rest with respect to each other. The work-
energy principle is also independent of the choice of reference frames if the frames are at rest with 
respect to each other.  

 

 If the reference frames are in relative motion, the net work done on a particle, the kinetic energy, and 
the change in the kinetic energy all will be different in different frames. The work-energy theorem 
will still be true. 

 
15.  The speed at point C will be less than twice the speed at point B. The force is constant and the 

displacements are the same, so the same work is done on the block from A to B as from B to C. 
Since there is no friction, the same work results in the same change in kinetic energy. But kinetic 
energy depends on the square of the speed, so the speed at point C will be greater than the speed at 
point B by a factor of 2,  not a factor of 2. 

 
 
Solutions to Problems 
 
1. The force and the displacement are both downwards, so the angle between them is o0 .  Use Eq. 7-1. 

� �� �� �2 o 3
G cos 280 kg 9.80 m s 2.80 m cos 0 7.7 10 JW mgd T   u  

 
2. The rock will rise until gravity does –80.0 J of work on the rock.  The displacement is upwards, but 

the force is downwards, so the angle between them is o180 .  Use Eq. 7-1. 

  
� � � � � �

G
G 2

80.0 J
cos     4.41m

mgcos 1.85 kg 9.80 m s 1
W

W mgd dT
T

�
 o    

�
 

 
3. The minimum force required to lift the firefighter is equal to his weight.  The force and the 

displacement are both upwards, so the angle between them is 0o.  Use Eq. 7-1. 

� �� �� �2 o 4
climb climb cos cos 75.0 kg 9.80 m s 20.0m cos 0 1.47 10 JW F d mgdT T    u  

 
4. The maximum amount of work would be the work done by gravity.  Both the force and the 

displacement are downwards, so the angle between them is o0 .  Use Eq. 7-1. 
� � � � � �2 o

G cos 2.0 kg 9.80 m s 0.50 m cos 0 9.8 JW mgd T    
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This is a small amount of energy.  If the person adds a larger force to the hammer during the fall, 
then the hammer will have a larger amount of energy to give to the nail. 

 
5. The distance over which the force acts is the area to be mowed divided by the width of the mower.  

The force is parallel to the displacement, so the angle between them is o0 .  Use Eq. 7-1. 

  � �
2200 m

cos cos 15 N 6000 J
0.50 m

A
W Fd F

w
T T     

 
6. Consider the diagram shown.  If we assume that the man pushes 

straight down on the end of the lever, then the work done by the 
man (the “input” work) is given by I I I .W F h  The object moves a 

shorter distance, as seen from the diagram, and so O O O.W F h   
Equate the two amounts of work.  

O I
O I O O I I

I O

       
F h

W W F h F h
F h

 o  o   

 But by similar triangles, we see that I I

O O

h
h

 
l

l
, and so O I

I O

F
F

 
l

l
. 

 
7. Draw a free-body diagram of the car on the incline.  The minimum work 

will occur when the car is moved at a constant velocity.  Write Newton’s 
second law in the x direction, noting that the car is unaccelerated.  Only the 
forces parallel to the plane do work. 

P Psin 0    sinxF F mg F mgT T �  o  ¦  

The work done by PF
G

 in moving the car a distance d along the plane 

(parallel to PF
G

) is given by Eq. 7-1. 

� � � � � �o 2 5
P P cos0 sin 950 kg 9.80 m s 310 m sin 9.0 4.5 10 JW F d mgd T   q  u  

 
8. The first book is already in position, so no work is required to position it.  The second book must be 

moved upwards by a distance d, by a force equal to its weight, mg.  The force and the displacement 
are in the same direction, so the work is mgd.  The third book will need to be moved a distance of 2d 
by the same size force, so the work is 2mgd.  This continues through all seven books, with each 
needing to be raised by an additional amount of d by a force of mg.  The total work done is  

2 3 4 5 6 7W mgd mgd mgd mgd mgd mgd mgd � � � � � �  

� �� �� �2 1   28 28 1.8 kg 9.8m s 0.040 m 2.0 10 Jmgd   u  

 
9. Since the acceleration of the box is constant, use Eq. 2-12b to find the distance moved.  Assume that 

the box starts from rest. 
� � � �22 21 1

0 0 2 20 2.0m s 7.0s 49 md x x v t at �  �  �   

Then the work done in moving the crate is found using Eq. 7-1. 
� � � � � �o 2cos 0 6.0 kg 2.0 m s 49 m 590 JW Fd mad     

 
 
 

OF
G

IF
G

Il
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Ih
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T� T�

y x 

mgG
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G
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G
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10. (a) Write Newton’s second law for the vertical direction, with up as positive. 
� �L L0.10     1.10yF F Mg Ma M g F Mg �   o  ¦  

(b) The work done by the lifting force in lifting the helicopter a vertical distance h 
is given by Eq. 7-1.  The lifting force and the displacement are in the same 
direction. 

L L cos0 1.10W F h Mgh q  . 

 
11. The piano is moving with a constant velocity down the plane.  PF

G
 is the  

force of the man pushing on the piano.  

(a) Write Newton’s second law on each direction for the piano, with an  
acceleration of 0. 

� � � � � �

N N

P

P

2

cos 0    cos

sin 0  

sin sin

    380 kg 9.80 m s sin 27 1691N 1700 N

y

x

F F mg F mg

F mg F

F mg mg

T T

T

T T

 �  o  

 �  o

  

 q  |

¦
¦

 

(b) The work done by the man is the work done by P.F
G

  The angle between PF
G

 and the direction of  
motion is 180 .q   Use Eq. 7-1. 

� � � �P P cos180 1691N 3.9 m 6595J 6600JW F d q  �  � | � . 

(c) The angle between the force of gravity and the direction of motion is 63 .q   Calculate the work 
done by gravity. 

 
� � � � � �2cos 63 cos 63 380 kg 9.80 m s 3.9 m cos 63

6594 N 6600 J    

G GW F d mgd   

 |

q q q
 

(d) Since the piano is not accelerating, the net force on the piano is 0, and so the net work done on 
the piano is also 0.  This can also be seen by adding the two work amounts calculated.  

3 3
net P G 6.6 10 J 6.6 10 J 0 JW W W �  � u � u   

 
12. (a) The motor must exert a force equal and opposite to the force of gravity on the gondola and  

passengers in order to lift it.  The force is in the same direction as the displacement.  Use Eq.  
7-1 to calculate the work. 

 � � � � � �2 7
motor motor cos0 2250kg 9.80m s 3345m 2150m 2.63 10 JW F d mgd q   �  u  

 (b) Gravity would do the exact opposite amount of work as the motor, because the force and  
displacement are of the same magnitude, but the angle between the gravity force and the 
displacement is 180 .q  

� � � � � �2 7
G G cos180 2250kg 9.80m s 3345m 2150m 2.63 10 JW F d mgd q  �  � �  � u  

 (c) If the motor is generating 10% more work, than it must be able to exert a force that is 10%  
larger than the force of gravity.  The net force then would be as follows, with up the positive 
direction. 

2
net motor G 1.1 0.1     0.1 0.98m sF F F mg mg mg ma a g �  �   o    

 
 

LF
G

M gG

y 

x
T�T� mgG

PF
G

NF
G
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13. (a) The gases exert a force on the jet in the same direction as the displacement of the jet.  From the  
graph we see the displacement of the jet during launch is 85 m.  Use Eq. 7-1 to find the work. 

   � � � � 7
gas gas

3cos0 130 10 85m 1.1 10 JNW F d q  u  u  

(b) The work done by catapult is the area underneath the graph in Figure 7-22.  That area is a 
trapezoid. 

   � � � �3 3 71
catapult 2 1100 10 N 65 10 N 85m 5.0 10 JW  u � u  u  

 
14. (a) See the free-body diagram for the crate as it is being pulled.  Since the  

crate is not accelerating horizontally, P fr 230 N.F F    The work done to 
move it across the floor is the work done by the pulling force.  The angle 
between the pulling force and the direction of motion is 0 .q   Use Eq. 7-1.     

� � � � � �P P cos0 230 N 4.0 m 1 920JW F d q    

 
(b) See the free-body diagram for the crate as it is being lifted.  Since the crate is not 

accelerating vertically, the pulling force is the same magnitude as the weight.  The 
angle between the pulling force and the direction of motion is 0o.   

� � � �o
P P cos0 2200 N 4.0m 8800JW F d mgd     

 
15. Consider a free-body diagram for the grocery cart being pushed up the 

ramp.  If the cart is not accelerating, then the net force is 0 in all 
directions.  This can be used to find the size of the pushing force.  The 
angles are 17I  q and 12 .T  q  The displacement is in the x-direction.  
The work done by the normal force is 0 since the normal force is 
perpendicular to the displacement.  The angle between the force of 
gravity and the displacement is 90 102 .Tq �  q  The angle between the 
normal force and the displacement is 90 .q  The angle between the 
pushing force and the displacement is total work done is 29 .I T�  q  

  

� � � �
� � � � � �

� � � � � �

2

normal N

P

2

sin
cos sin 0    

cos

cos112 16 kg 9.80 m s 15m cos102 490 J

cos90 0

sin12
cos 29 cos 29 sin12

cos 29

    16 kg 9.80 m s 15m sin12 490J

x P P

mg

P

mg
F F mg F

W mgd

W F d

mg
W F d d mgd

TI T T
I T

 � �  o  
�

 q  q  �

 q  

q
 q  q  q

q

 q  

§ ·
¨ ¸
© ¹

¦

 

 
16. Use Eq. 7.4 to calculate the dot product. 

  
� �� � � � � � � �� �2 2 2

2

2.0 11.0 4.0 2.5 5.0 0 22 10

       12

x x y y z zA B A B A B x x x x x

x

 � �  � � �  �

 

A B
G G
<

 

 
 

mgG
NF
G

PF
G

frF
G

'xG

mgG

PF
G

'yG

y 
x 

mgG

NF
G

PF
G

T T

I
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17.  Use Eq. 7.4 to calculate the dot product.  Note that ˆ ˆ ˆ ˆ1 0 0 , � �i i j k  ˆ ˆ ˆ ˆ0 1 0 , � �j i j k  and 
ˆ ˆˆ ˆ0 0 1 . � �k i j k  

  � � � � � �ˆ 1 0 0x y z xV V V V � �  i V
G
<   � � � � � �ˆ 0 1 0x y z yV V V V � �  j V

G
<  

  � � � � � �ˆ 0 0 1x y z zV V V V � �  k V
G
<  

 
18. Use Eq. 7.4 and Eq. 7.2 to calculate the dot product, and then solve for the angle. 

  

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � �

2 2 2 22 2

1 1

6.8 8.2 3.4 2.3 6.2 7.0 91.34

6.8 3.4 6.2 9.81      8.2 2.3 7.0 11.0

91.34
cos     cos cos 32

9.81 11.0

x x y y z zA B A B A B

A B

AB
AB

T T � �

 � �  � � � � �  

 � � � �   � � �  

 o    q

A B

A B
A B

G G
<

G G
G G <
<

 

 
19. We utilize the fact that if  ˆ ˆ ˆ ,x y zB B B � �B i j k

G
 then � � � � � �ˆ ˆ ˆ .x y zB B B�  � � � � �B i j k

G
  

� � � � � � � �
� � � � � � � � � � � �            

x x y y z z

x x y y z z

A B A B A B

A B A B A B

�  � � � � �

 � � � � �  �

A B

A B

G G
<

G G
<

 

 
20. See the diagram to visualize the geometric relationship between the two vectors.  

The angle between the two vectors is 138 .q   
 � � � �1 2 1 2 cos 75 58 cos138 3200VV T  q  �V V

G G
<  

 
 
 
21. If A

G
 is perpendicular to B

G
, then 0. A B

G G
<   Use this to find .B

G
 

  � � � �3.0 1.5 0    2.0x x y y x y y xA B A B B B B B �  �  o  �A B
G G
<  

Any vector B
G

 that satisfies 2.0y xB B �  will be perpendicular to .A
G

 For example, ˆ ˆ1.5 3.0 . �B i j
G

 
 
22. Both vectors are in the first quadrant, so to find the angle between them, we can simply subtract the 

angles of each of them. 

  
� � � � � � � �
� � � � � � � �

2 2 1 1

2 2 1 1

4.0ˆ ˆ2.0 4.0 N    2.0 N 4.0 N 20 N  ;  tan tan 2.0
2.0

5.0ˆ ˆ1.0 5.0 m    1.0 m 5.0 m 26 m  ;  tan tan 5.0
1.0

F

d

F

d

I

I

� �

� �

 � o  �    

 � o  �    

F i j

d i j

G

G
 

 (a) � � � � 1 1cos 20 N 26 m cos tan 5.0 tan 2.0 22 JW Fd T � �  �  ª º ª º ª º¬ ¼¬ ¼ ¬ ¼  

 (b) � � � � � � � �2.0 N 1.0 m 4.0 N 5.0 m 22 Jx x y yW F d F d �  �   

 
23. (a) � � � � � � � �ˆ ˆ ˆ ˆ ˆ ˆˆ9.0 8.5 8.0 7.1 4.2 6.8 9.2�  � � � � � �ª º¬ ¼A B C i j i j k i j

G GG
< <  

� � � � � � � � � � � � � � � �ˆ ˆ ˆ ˆ ˆ  9.0 8.5 1.2 2.1 4.2 9.0 1.2 8.5 2.1 0 4.2 7.05 7.1 � � � �  � � � � �  |i j i j k<  

 (b) � � � � � � � �ˆ ˆ ˆ ˆ ˆ ˆ ˆ9.0 8.5 6.8 9.2 8.0 7.1 4.2�  � � � � � �ª º¬ ¼A C B i j i j i j k
G G G

< <  

1V
G

z

x

2V
G
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� � � � � � � � � � � � � � � �ˆ ˆ ˆ ˆ ˆ15.8 17.7 8.0 7.1 4.2 15.8 8.0 17.7 7.1 0 4.2

                252 250

                � � � �  � � � �

 � | �

i j i j k<
 

 (c) � � � � � � � �ˆ ˆ ˆ ˆ ˆ ˆˆ8.0 7.1 4.2 9.0 8.5 6.8 9.2�  � � � � � �ª º¬ ¼B A C i j k i j i j
G GG
< <  

  
� � � � � � � � � � � � � � � �ˆ ˆ ˆ ˆˆ1.0 1.4 4.2 6.8 9.2 1.0 6.8 1.4 9.2 4.2 0

19.68 20

               

               

 � � �  � � � �

 |

i j k i j<
 

 
24. We assume that the dot product of two vectors is given by Eq. 7-2.  Note that for two unit vectors, 

this gives the following. 
� � � �ˆ ˆ ˆ ˆ ˆ ˆ1 1 cos 0 1 q    i i j j k k< < <  and � � � �ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1 cos 90 0 q       i j i k j i j k k i k j< < < < < <  

Apply these results to .A B
G G
<  

� � � �

� � � � � � � � � �
� � � �

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ       

       1 0 0 0 1

0 0              

x y z x y z

x x x y x z y x y y y z z x z y z z

x x x y x z y x y y

y z z x z y

A A A B B B

A B A B A B A B A B A B A B A B A B

A B A B A B A B A B

A B A B A B

 � � � �

 � � � � � � � �

 � � � �

� � �

A B i j k i j k

i i i j i k j i j j j k k i k j k k

G G
< <

< < < < < < < < <

� � � �0 1

       
z z

x x y y z z

A B

A B A B A B

�

 � �

 

 
25. If C

G
 is perpendicular to B

G
, then 0. C B

G G
<    Use this along with the value of C A

G G
< to find .C

G
 We 

also know that C
G

 has no z-component. 

  
ˆ ˆ  ;  0  ;  20.0  

9.6 6.7 0  ;  4.8 6.8 20.0
x y x x y y x x y y

x y x y

C C C B C B C A C A

C C C C

 �  �   �  o

�  � �  

C i j C B C A
G G G GG

< <
 

This set of two equations in two unknowns can be solved for the components of .C
G

 
9.6 6.7 0  ;  4.8 6.8 20.0    1.4 , 2.0  

ˆ ˆ1.4 2.0

x y x y x yC C C C C C�  � �  o  �  o

 � �C i j
G  

 
26. We are given that the magnitudes of the two vectors are the same, so 2 2 2 2 2 2.x y z x y zA A A B B B� �  � �   

If the sum and difference vectors are perpendicular, their dot product must be zero. 
� � � � � �
� � � � � �

� � � � � � � � � � � � � � � �
� � � �2 2 2 2 2 2 2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

                        0

x x y y z z

x x y y z z

x x x x y y y y z z z z

x x y y z z x y z x y z

A B A B A B

A B A B A B

A B A B A B A B A B A B

A B A B A B A A A B B B

�  � � � � �

�  � � � � �

� �  � � � � � � � �

 � � � � �  � � � � �  

A B i j k

A B i j k

A B A B

G G

G G

G GG G
<

 

 
27. Note that by Eq. 7-2, the dot product of a vector A

G
 with a unit vector B

G
 would give the magnitude 

of A
G

 times the cosine of the angle between the unit vector and A
G

.  Thus if the unit vector lies along 
one of the coordinate axes, we can find the angle between the vector and the coordinate axis.  We 
also use Eq. 7-4 to give a second evaluation of the dot product. 

  ˆ cos   x xV VT  oV i
G
<  
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� � � � � �

1 1 1

2 2 2 2 2 2

20.0
cos cos cos 52.5

20.0 22.0 14.0
x x

x

x y z

V V
V V V V

T � � �    q
� � � � �

 

  
� � � � � �

� � � � � �

1 1

2 2 2

1 1

2 2 2

22.0
cos cos 48.0

20.0 22.0 14.0

14.0
cos cos 115

20.0 22.0 14.0

y
y

z
z

V
V

V
V

T

T

� �

� �

   q
� � �

�
   q

� � �

 

 
28. For the diagram shown, �  B C A

G GG
, or . �C A B

G G G
 Let the magnitude of each vector 

be represented by the corresponding lowercase letter, so ,c C
G

 for example.  The 

angle between A
G

 and B
G

 is .T  Take the dot product .C C
G G
<  

  � � � � 2 2 22     2 cosc a b ab T � �  � � o  � �C C A B A B A A B B A B
G G G G G G GG G G G G
< < < < <  

 
29. The scalar product is positive, so the angle between A

G
 and B

G
 must be acute.  But the direction of 

the angle from A
G

 to B
G

 could be either counterclockwise or clockwise. 

  � � � � � � � �
1 20.0

cos 12.0 24.0 cos 20.0    cos 86.0
12.0 24.0

AB T T T �   o   qA B
G G
<  

So this angle could be either added or subtracted to the angle of A
G

 to find the angle of .B
G

 
� �27.4 86.0 113.4  or 58.6 301.4B AT T T r  q r q  q � q q  

 
30. We can represent the vectors as ˆ ˆ ˆ ˆcos sinx y A AA A D D �  �A i j i j

G
 and ˆ ˆ

x yB B �B i j
G

 
ˆ ˆcos sin .B BE E �i j  The angle between the two vectors is .D E�   Use Eqs. 7-2 and 7-4 to express 

the dot product. 

  
� �

� � � �
cos cos cos sin sin   

cos cos cos sin sin cos cos cos sin sin    
x x y yAB A B A B A B A B

AB AB AB

D E D E D E

D E D E D E D E D E D E

 �  �  � o

�  � �  �o

A B
G G
<

 

 
31. (a) Use the two expressions for dot product, Eqs. 7-2 and 7-4, to find the angle between the two  

vectors. 

 � � � � � � � � � � � �
� � � � � � � � � � � �

� �

1

1
1/ 2 1/ 22 2 2 2 2 2

1 2
3

cos   

cos

1.0 1.0 1.0 1.0 2.0 2.0
  cos

1.0 1.0 2.0 1.0 1.0 2.0

  cos 132 130

x x y y z z

x x y y z z

AB A B A B A B

A B A B A B
AB

T

T �

�

�

  � � o

� �
 

� � � �
 

� � � � � �

 �  q | q

ª º ª º¬ ¼ ¬ ¼

A B
G G
<

 

(b) The negative sign in the argument of the inverse cosine means that the angle between the two  
vectors is obtuse. 

 
 
 

A
G

B
G

C
G

T
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32. To be perpendicular to the given vector means that the dot product will be 0.  Let the unknown 
vector be given as ˆ ˆˆ .x yu u �u i j  

 � � 2 2ˆ ˆˆ 3.0 4.0 3.0 4.0     = 0.75   ;  unit length 1  x y y x x yu u u u u u�  � o � o �  ou i j<  

 � �22 2 2 2 1
0.75 1.5625 1    0.8  ,  0.6

1.5625x y x x x x yu u u u u u u�  � �   o  r  r  B  

So the two possible vectors are ˆ ˆˆ 0.8 0.6 �u i j  and ˆ ˆˆ 0.8 0.6 . � �u i j  
Note that it is very easy to get a non-unit vector perpendicular to another vector in two dimensions, 
simply by interchanging the coordinates and negating one of them.  So a non-unit vector 
perpendicular to � �ˆ ˆ3.0 4.0�i j could be either � �ˆ ˆ4.0 3.0�i j  or � �ˆ ˆ4.0 3.0� �i j .  Then divide each of 

those vectors by its magnitude (5.0) to get the possible unit vectors. 
 
33. From Figure 7-6, we see a graphical interpretation of the scalar product 

as the magnitude of one vector times the projection of the other vector 
onto the first vector.  So to show that � ��  �A B C A B A C

G G G G GG G
< < <  is the 

same as showing that � � � � � � ,A A A�  �B C B C
&& &

G GG G
 where the 

subscript is implying the component of the vector that is parallel to 
vector A

G
.  From the diagram, we see that � � � � � � .�  �B C B C

&& &

G GG G
  

Multiplying this equation by the magnitude of vector A
G

 gives 
� � � � � � .A A A�  �B C B C

&& &

G GG G
 But from Figure 7-6, this is the same as  

 � � .�  �A B C A B A C
G G G G GG G
< < <  So we have proven the statement. 

 
34. The downward force is 450 N, and the downward displacement would be a diameter of the pedal 

circle.  Use Eq. 7-1. 
� � � � ocos 450 N 0.36 m cos 0 160 JW Fd T    

 
35. The force exerted to stretch a spring is given by stretchF kx   

(the opposite of the force exerted by the spring, which is 
given by .F kx �   A graph of stretchF  vs. x will be a 
straight line of slope k through the origin.  The stretch from 
x1 to x2, as shown on the graph, outlines a trapezoidal area.  
This area represents the work. 

� � � � � � � �
� � � � � �

1 1
1 2 2 1 1 2 2 12 2

1
2   65 N m 0.095m 0.035m 0.11J

W kx kx x x k x x x x � �  � �

  
 

 
36. For a non-linear path, the work is found by considering the path to 

be an infinite number of infinitesimal (or differential) steps, each of 
which can be considered to be in a specific direction, namely, the 
direction tangential to the path.  From the diagram, for each step we 
have cos .dW d Fd T  F

GG
< l l   But cos ,d dyT  �l  the projection 

of the path in the direction of the force, and F mg , the force of  
 

kx2 

x1 x2 

kx1 

F = kx 

Stretch distance 

Force

B
G

C
G�B C

GG

A
G

B&

G
C&

G

� ��B C
&

GG

F
G

d
G
l

T
h
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gravity.  Find the work done by gravity. 
  � �g cosW d mg d mg dy mghT   �  �³ ³ ³F

GG
< l l  

This argument could even be extended to going part way up the hill, and then part way back down, 
and following any kind of path.  The work done by gravity will only depend on the height of the 
path. 

 
37. See the graph of force vs. distance.  The work 

done is the area under the graph.  It can be found 
from the formula for a trapezoid.   

� �� �1
2

3

12.0 m 4.0 m 380 N

3040 J 3.0 10 J   

W  �

 | u
 

 

The spreadsheet used for this problem can be 
found on the Media Manager, with filename 
“PSE4_ISM_CH07.XLS,” on tab “Problem 7.37.” 

 
38. The work required to stretch a spring from equilibrium is proportional to the length of stretch, 

squared.  So if we stretch the spring to 3 times its original distance, a total of 9 times as much work 
is required for the total stretch.  Thus it would take 45.0 J to stretch the spring to a total of 6.0 cm.  
Since 5.0 J of work was done to stretch the first 2.0 cm,  40.0 J  of work is required to stretch it the 
additional 4.0 cm. 

 

This could also be done by calculating the spring constant from the data for the 2.0 cm stretch, and 
then using that spring constant to find the work done in stretching the extra distance. 

 
39. The x-axis is portioned into 7 segments, so each segment is 1/7 of the full 20.0-m width.  The force 

on each segment can be approximated by the force at the middle of the segment.  Thus we are 
performing a simple Riemann sum to find the area under the curve.  The value of the mass does not 
come into the calculation. 

� � � �

� � � �

7 7
1
7

1 1

1
7

20.0 m 180 N 200 N 175 N 125 N 110 N 100 N 95 N

20.0 m 985 N 2800 J

i i i
i i

W F x x F
  

 '  '  � � � � � �

 |

¦ ¦
 

Another method is to treat the area as a trapezoid, with sides of 180 N and 100 N, and a base of 20.0 
m.  Then the work is � � � �1

2 20.0 m 180 N 100 N 2800 J .W  � |  

 
40. The work done will be the area under the Fx vs. x graph. 
 (a)  From 0.0x   to 10.0m,x   the shape under the graph is trapezoidal.  The area is  

� � � �1
2400 N 10 m 4 m 2800J .aW  �   

 (b)  From 10.0 mx   to 15.0m,x   the force is in the opposite direction from the direction of  
motion, and so the work will be negative.  Again, since the shape is trapezoidal, we find  

� � � �1
2200 N 5m 2 m 700J.aW  � �  �  

Thus the total work from 0.0x   to 15.0 mx   is 2800 J 700 J 2100J .�   

 
 
 
 

0

100

200

300

400
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x  (m)

F x
 (N
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41. Apply Eq. 7-1 to each segment of the motion. 
1 2 3 1 1 1 2 2 2 3 3 3cos cos cosW W W W F d F d F dT T T � �  � �  

� � � � � � � � � � � �   22 N 9.0 m cos0 38 N 5.0 m cos12 22 N 13.0 m cos0 670J q � q � q   

 
42. Since the force only has an x-component, only the x-displacement is relevant.  The object moves 

from x = 0 to x = d. 

  4 51
5

0 0

d d

xW F dx kx dx kd   ³ ³  

 
43. Since we are compressing the spring, the force and the displacement are in the same direction. 

� �3 4 2 4 51 1 1
2 4 5

0 0

X X

xW F dx kx ax bx dx kX aX bX  � �  � �³ ³  

 
44. Integrate the force over the distance the force acts to find the work.  We assume the displacement is 

all in the x-direction. 

  � � � �
0.20 m0.20 m

2 2 3

00

190
150 190 75 2.49 J

3

f

i

x

x

W F x dx x x dx x x  �  �  § ·
¨ ¸
© ¹³ ³  

 
45. Integrate the force over the distance the force acts to find the work. 

� � � �
1.0 m 1.0 m

1.0 m 1/21/2
1 0

0 0

2 2 2.0N m 1.0m 4.0 J
A

W F dx dx A x
x

     ³ ³ <  

Note that the work done is finite. 
 
46. Because the object moves along a straight line, we know that the x-coordinate increases linearly from 

0 to 10.0 m, and the y-coordinate increases linearly from 0 to 20.0 m.  Use the relationship developed 
at the top of page 170. 

  
� � � �

b b

a a

10.0 m 20.0 m
10.0 20.02 21 1

2 20 0
0 0

3.0 4.0 3.0 4.0 150J 800J

   950J

x y

x y
x y

W F dx F dy xdx ydy x y �  �  �  �

 

³ ³ ³ ³
 

 
47. Since the force is of constant magnitude and always directed at 30q to the displacement, we have a 

simple expression for the work done as the object moves.  

  
finish finish finish

start start start

3
cos30 cos30 cos30

2
FR

W d F d F d F R
SS  q  q  q  ³ ³ ³F

GG
< l l l  

 

48. The force on the object is given by Newton’s law of universal gravitation, E
2 .mm

F G
r

   The force is 

a function of distance, so to find the work, we must integrate.  The directions are tricky.  To use Eq. 

7-7, we have E
2

ˆmm
G

r
 �F r

G
 and ˆ.d dr r

G
l   It is tempting to put a negative sign with the d

G
l  

relationship since the object moves inward, but since r is measured outward away from the center of 
the Earth, we must not include that negative sign.  Note that we move from a large radius to a small 
radius. 
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  � �
EE

EE

E E E
2 2

3300 km3300 km

near

far

ˆ ˆ
rr

rr

mm mm mm
W d G dr G dr G

r r r ��

 �    � ³³ ³F r r
GG

< <l  

  � � � � � � � �

E
E E

11 2 2 24
6 6

10

1 1
3300 km

1 1
6.67 10 N m kg 2800 kg 5.97 10 kg

6.38 10 m 10 m

   6.0 10 J

   

   
6.38 3.30

Gmm
r r

�

 �
�

 u � u �
u u

 u

§ ·
¨ ¸
© ¹

§ ·
¨ ¸�© ¹

 

 
49. Let y represent the length of chain hanging over the table, and let O  represent the weight per unit 

length of the chain.  Then the force of gravity (weight) of the hanging chain is G .F yO  As the next 
small length of chain dy comes over the table edge, gravity does an infinitesimal amount of work on 
the hanging chain given by the force times the distance, G .F dy ydyO  To find the total amount of 
work that gravity does on the chain, integrate that work expression, with the limits of integration 
representing the amount of chain hanging over the table. 

  � � � �
final

initial

3.0 m
3.0m2 2 21 1

G 2 21.0 m
1.0 m

18 N m 9.0 m 1.0 m 72 J
y

y

W F dy ydy yO O    �  ³ ³  

 
50. Find the velocity from the kinetic energy, using Eq. 7-10. 

� �21
21

2 26

2 6.21 10 J2
    484 m s

5.31 10
K

K mv v
m

�

�

u
 o    

u
 

 
51. (a) Since 21

2 ,K mv  then 2v K m  and so .v Kv   Thus if the kinetic energy is  

tripled, the speed will be multiplied by a factor of 3 .  

 (b) Since 21
2 ,K mv  then 2.K vv  Thus if the speed is halved, the kinetic energy will be  

multiplied by a factor of 1 4 .  

 
52.  The work done on the electron is equal to the change in its kinetic energy.  

� � � �22 2 31 6 191 1 1
2 12 2 20 9.11 10 kg 1.40 10 m s 8.93 10 JW K mv mv � � '  �  � u u  � u  

 Note that the work is negative since the electron is slowing down. 
 
53. The work done on the car is equal to the change in its kinetic energy.  

� � � �
2

2 2 51 1 1
2 12 2 2

1m s
0 1300 kg 95km h 4.5 10 J

3.6 km h
W K mv mv '  �  �  � u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 Note that the work is negative since the car is slowing down. 
 
54. We assume the train is moving 20 m/s (which is about 45 miles per hour), and that the distance of “a 

few city blocks” is perhaps a half-mile, which is about 800 meters.  First find the kinetic energy of 
the train, and then find out how much work the web must do to stop the train.  Note that the web 
does negative work, since the force is in the OPPOSITE direction of the displacement. 
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  � � � �22 2 4 61 1 1
to stop 2 12 2 2
train

0 10 kg 20 m s 2 10 JW K mv mv '  �  �  � u  

  
� �
� �

6
2 61

web 2 2

2 2 10 J
2 10 J    6 N m

800 m
W kx k

u
 �  � u o    

 Note that this is not a very stiff “spring,” but it does stretch a long distance. 
 
55. The force of the ball on the glove will be the opposite of the force of the glove on the ball, by 

Newton’s third law.  Both objects have the same displacement, and so the work done on the glove is 
opposite the work done on the ball.  The work done on the ball is equal to the change in the kinetic 
energy of the ball. 

� � � � � �22 21 1 1
on ball 2 1 2 12 2 2ball

0 0.145kg 32 m s 74.24 JW K K mv mv �  �  �  �  

So on glove 74.24 J.W    But on glove on glove cos 0 ,W F d q  because the force on the glove is in the same 
direction as the motion of the glove.   

� � 2
on glove on glove

74.24 J
74.24 J 0.25m     3.0 10 N

0.25m
,F F o   u in the direction of the original 

velocity of the ball. 
  
56. The force exerted by the bow on the arrow is in the same direction as the displacement of the arrow.  

Thus � � � �ocos 0 105 N 0.75m 78.75J.W Fd Fd     But that work changes the kinetic energy of 
the arrow, by the work-energy theorem.  Thus  

� �2 2 21 1
2 1 2 1 2 12 2

2 78.75J2
   0 43m s

0.085kg
Fd

Fd W K K mv mv v v
m

  �  � o  �  �   

 
57. (a) The spring constant is found by the magnitudes of the initial force and displacement, and so  

.k F x  As the spring compresses, it will do the same amount of work on the block as was 
done on the spring to stretch it.  The work done is positive because the force of the spring is 
parallel to the displacement of the block.  Use the work-energy theorem to determine the speed 
of the block.   

   2 2 21 1 1
on block block on spring 2 2 2
during during
compression stretching

        f f

F Fx
W K W mv kx x v

x m
 '  o   o   

 (b) Now we must find how much work was done on the spring to stretch it from 2x  to x.  This  
will be the work done on the block as the spring pulls it back from x to 2.x  

   

� �22 2 231 1 1
on spring 2 2 2 82
during 2 2
stretching

2 231
2 8

2

3
    

4

x x
x

x
x x

f f

W Fdx kxdx kx kx k x kx

Fx
mv kx v

m

    �  

 o  

³ ³
  

 
58.  The work needed to stop the car is equal to the change in the  

car’s kinetic energy.  That work comes from the force of 
friction on the car.  Assume the maximum possible 
frictional force, which results in the minimum braking 

d = stopping distance 

mgG
NF
G

frF
G
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distance.  Thus fr N .sF FP  The normal force is equal to the car’s weight if it is on a level surface, 
and so fr .sF mgP   In the diagram, the car is traveling to the right. 

2
o 2 2 2 11 1 1

fr 2 1 12 2 2    cos180         
2s

s

v
W K F d mv mv mgd mv d

g
P

P
 ' o  � o �  � o   

Since 2
1 ,d vv  if 1v  increases by 50%, or is multiplied by 1.5, then d  will be multiplied by a factor 

of � �21.5 ,  or  2.25 . 
 
59. The net work done on the car must be its change in kinetic energy.  By applying Newton’s third law, 

the negative work done on the car by the spring must be the opposite of the work done in 
compressing the spring. 

� �
� �

2 2 21 1 1
spring 2 12 2 2

2

2
41

22

      

1m s
66 km k

3.6 km h
1200 kg 8.3 10 N m

2.2 m

W K W mv mv kx

v
k m

x

 '  � o �  � o

   u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 
60. The first car mentioned will be called car 1.  So we have these statements: 

� � � � � �2 22 21 1 1 1 1 1
1 2 1 1 2 2 1,fast 2,fast 1 1 2 22 2 2 2 2 2      ;    7.0 7.0K K m v m v K K m v m v o   o �  �  

 Now use the mass information, that 1 22 .m m  

� � � � � �
� � � � � � � �

� � � �

2 22 21 1 1 1 1
2 1 2 2 2 1 2 22 2 2 2 2

2 2 2 2
1 2 1 2 1 1

1 1 1 2 1

1 2

2   ;  2 7.0 7.0   

2   ;  2 7.0 7.0     2 7.0 2 7.0   

7.0
2 7.0 2 7.0     4.9497 m s  ; 2 9.8994 m s

2

4.9 m s  ; 9.9 m s

m v m v m v m v

v v v v v v

v v v v v

v v

 �  � o

 �  � o �  � o

�  � o     

  

 

 
61. The work done by the net force is the change in kinetic energy. 

  
� � � � � � � � � � � �

2 21 1
2 12 2

2 2 2 21 1
2 2   4.5kg 15.0 m s 30.0 m s 4.5kg 10.0 m s 20.0 m s 1400J

W K mv mv '  �

 � � �  ª º ª º¬ ¼ ¬ ¼
 

 
62. (a) From the free-body diagram for the load being lifted, write Newton’s second law for  

the vertical direction, with up being positive. 

� �� �
T

2 3
T

0.150   

1.150 1.150 265 kg 9.80 m s 2.99 10 N

F F mg ma mg

F mg

 �   o

   u

¦
 

(b)   The net work done on the load is found from the net force.  
� � � � � �� �o 2

net net

3

cos 0 0.150 0.150 265 kg 9.80 m s 23.0 m

      8.96 10 J

W F d mg d   

 u
 

(c) The work done by the cable on the load is as follows. 

� � � � � �� �o 2 4
cable T cos 0 1.150 1.15 265 kg 9.80 m s 23.0 m 6.87 10 JW F d mg d    u  

TF
G

mgG
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(d) The work done by gravity on the load is as follows. 

� �� �� �o 2 4
G cos180 265 kg 9.80 m s 23.0 m 5.97 10 JW mgd mgd  �  �  � u  

 (e) Use the work-energy theorem to find the final speed, with an initial speed of 0. 

� �3
2 2 21 1

net 2 1 2 1 2 12 2

2 8.96 10 J2
   0 8.22 m s

265kg
netW

W K K mv mv v v
m

u
 �  � o  �  �   

 
63. (a) The angle between the pushing force and the displacement is 32 .q  
   � � � �P P cos 150 N 5.0 m cos32 636.0J 640JW F d T  q  |  

 (b) The angle between the force of gravity and the displacement is 122 .q  
   � � � � � �2

G G cos cos 18kg 9.80 m s 5.0 m cos122 467.4 J 470JW F d mgdT T   q  � | �  

 (c) Because the normal force is perpendicular to the displacement, the work done by the normal  
force is 0 . 

 (d) The net work done is the change in kinetic energy. 

   � �
� �

2 21 1
P g N 2 2   

2 636.0J 467.4 J2
4.3m s

18kg

f i

f

W W W W K mv mv

W
v

m

 � �  '  � o

�
   

 

 
64. See the free-body diagram help in the determination of the frictional force. 

  
� �

N P N P

f k N k P

sin cos 0    sin cos

sin cos
yF F F mg F F mg

F F F mg

I I I I

P P I I

 � �  o  �

  �
¦  

 (a) The angle between the pushing force and the displacement is 32 .q  
   � � � �P P cos 150 N 5.0 m cos32 636.0J 640JW F d T  q  |  

 (b) The angle between the force of gravity and the displacement is 122 .q  
   � � � � � �2

G G cos cos 18kg 9.80 m s 5.0 m cos122 467.4 J 470JW F d mgdT T   q  � | �  

 (c) Because the normal force is perpendicular to the displacement, the work done by the normal  
force is 0 . 

 (d) To find the net work, we need the work done by the friction force.  The angle between the  
friction force and the displacement is 180 .q  

   

� �
� � � � � � � � � �

f f k P

2

2 21 1
P g N f 2 2

cos sin cos cos

    0.10 150 N sin 32 18kg 9.80 m s cos32 5.0 m cos180 114.5J

  f i

W F d F mg d

W W W W W K mv mv

T P I I T  �

 q � q q  �

 � � �  '  � o

ª º¬ ¼  

   � �
� �

2 636.0J 467.4 J 114.5J2
2.5m s

18kgf

W
v

m
� �

    

 
65.  The work needed to stop the car is equal to the change  

in the car’s kinetic energy.  That work comes from the force 
of friction on the car, which is assumed to be static friction 
since the driver locked the brakes.  Thus fr N .kF FP  Since 
the car is on a level surface, the normal force is equal to the 

I

mgG

IfF
G

NF
G

x
y

PF
G

d = stopping distance 

mgG
NF
G

frF
G
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car’s weight, and so fr kF mgP  if it is on a level surface.  See the diagram for the car.  The car is 
traveling to the right. 

� � � � � �

o 2 2 21 1 1
fr 2 1 12 2 2

2
1

    cos180     0   

2 2 0.38 9.80 m s 98 m 27 m s

k

k

W K F d mv mv mgd mv

v gd

P

P

 ' o  � o �  � o

   
 

The mass does not affect the problem, since both the change in kinetic energy and the work done by 
friction are proportional to the mass.  The mass cancels out of the equation. 

 
66. For the first part of the motion, the net force doing work is the 225 N force.  For the second part of 

the motion, both the 225 N force and the force of friction do work.  The friction force is the 
coefficient of friction times the normal force, and the normal force is equal to the weight.  The work-
energy theorem is then used to find the final speed. 

  

� �
� �

� � � � � � � � � � � �
� �

2 21
total 1 2 pull 1 pull 2 f 2 2

pull 1 2 k 2

2

cos0 cos0 cos180   

2

2 225 N 21.0 m 0.20 46.0 kg 9.80 m s 10.0 m
   13m s

46.0 kg

f i

f

W W W F d F d F d K m v v

F d d mgd
v

m

P

 �  q � q � q  '  � o

� �
 

�
  

ª º¬ ¼

ª º¬ ¼

  

 
67. (a) In the Earth frame of reference, the ball changes from a speed of 1v  to a speed of 1 2.v v�  

� � � �2 2 2 2 2 21 1 1 1 1
Earth 1 2 1 1 1 2 2 1 1 2 22 2 2 2 2

2 11
22

2

2

          1 2

K m v v mv m v v v v mv mv v mv

v
mv

v

'  � �  � � �  �

 �
§ ·
¨ ¸
© ¹

 

 (b) In the train frame of reference, the ball changes from a speed of 0 to a speed of 2.v  

   2 21 1
train 2 22 20K mv mv'  �   

 (c) The work done is the change of kinetic energy, in each case. 

   2 211 1
Earth 2 train 22 2

2

1 2   ;  v
W mv W mv

v
 �  

§ ·
¨ ¸
© ¹

 

(d) The difference can be seen as due to the definition of work as force exerted through a distance.  
In both cases, the force on the ball is the same, but relative to the Earth, the ball moves further 
during the throwing process than it does relative to the train.  Thus more work is done in the 
Earth frame of reference.  Another way to say it is that kinetic energy is very dependent on 
reference frame, and so since work is the change in kinetic energy, the amount of work done 
will be very dependent on reference frame as well. 

 
68. The kinetic energy of the spring would be found by adding together the kinetic energy of each 

infinitesimal part of the spring.  The mass of an infinitesimal part is given by S ,
M

dm dx
D

  and the 

speed of an infinitesimal part is 0.
x

v v
D

   Calculate the kinetic energy of the mass + spring. 

  
0

2 2
2 2 2 2 2S 0 S1 1 1 1 1 1

speed mass spring 0 0 0 02 2 2 2 2 23
mass 0 0

D D

v

x M v M
K K K mv v dm mv v dx mv x dx

D D D
 �  �  �  �§ ·

¨ ¸
© ¹³ ³ ³  
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  � �
2 3

2 20 S1 1 1 1
0 0 S2 2 2 33 3

        v M D
mv v m M

D
 �  �  

So for a generic speed v, we have � �1 1
speed S2 3

2 .
v

K m M v �  

 
69. (a) The work done by gravity as the elevator falls is the weight times the displacement.  They are in  

the same direction. 

� � � � � �2 5 5
G cos0 925kg 9.80 m s 22.5m 2.0396 10 J 2.04 10 JW mgd q   u | u  

 (b) The work done by gravity on the elevator is the net work done on the elevator while falling, and  
so the work done by gravity is equal to the change in kinetic energy.  

� �
� �

5
2 G1

G 2

2 2.0396 10 J2
0    21.0 m s

925kg
W

W K mv v
m

u
 '  � o     

 (c) The elevator starts and ends at rest.  Therefore, by the work-energy theorem, the net work done  
must be 0.  Gravity does positive work as it falls a distance of � �22.5 m,x�  and the spring will 

do negative work at the spring is compressed.  The work done on the spring is 21
2 ,kx  and so the 

work done by the spring is 21
2 .kx�  

� �

� � � �
� �

2 21 1
G spring 2 2

2 2 1
2

1
2

0    0  

4
2

W W W mg d x kx kx mgx mgd

mg m g k mgd
x

k

 �  � �  o � �  o

r � �
 

 

The positive root must be taken since we have assumed x > 0 in calculating the work done by 
gravity.  Using the values given in the problem gives 2.37 m .x   

 

70. (a) � � � �22 3 2 21 1
2 2 3.0 10 kg 3.0 m s 1.35 10 J 1.4 10 JK mv � � �  u  u | u  

(b) 
2

2actual
actual required required

1.35 10 J
0.35     3.9 10 J

0.35 0.35
K

K E E
�

�u
 o    u  

 
71. The minimum work required to shelve a book is equal to the  

weight of the book times the vertical distance the book is moved.   
See the diagram.  Each book that is placed on the lowest shelf has 
its center moved upwards by 23.0 cm (the height of the bottom of 
the first shelf, plus half the height of a book).  So the work to 
move 28 books to the lowest shelf is � �1 28 0.230m .W mg  Each 
book that is placed on the second shelf has its center of mass 
moved upwards by 56.0 cm (23.0 cm + 33.0 cm), so the work to 
move 28 books to the second shelf is � �2 28 0.560 m .W mg  

Similarly, � �3 28 0.890 m ,W mg � �4 28 1.220 m ,W mg and � �5 28 1.550 m .W mg  The total work 
done is the sum of the five work expressions. 

� �
� � � � � �2

28 0.230 m .560 m .890 m 1.220 m 1.550 m

   28 1.40 kg 9.80 m s 4.450 m 1710J

W mg � � � �

  
 

 

floor

3rd shelf

2rd shelf

1st shelf23.0 cm 

56.0 cm
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72. There are two forces on the meteorite – gravity and the force from the mud.  Take down to be the 
positive direction, and then the net force is 3

net 640 .F mg x �  Use this (variable) force to find the 
work done on the meteorite as it moves in the mud, and then use the work-energy theorem to find the 
initial velocity of the meteorite. 

  

� � � � � � � � � � � �

� � � �
� �

5.0
5.0 43 4 2

0
0

4

4
2 21

2

640 160 75kg 9.80 m s 5.0 m 160 5.0 m

   9.625 10 J

2 9.625 10 J2
    51m s

75kg

x
x

x
x

f i i

W mg x dx mgx x

W
W K m v v v

m

 
 

 
 

 �  �  �

 � u

� � u�
 '  � o    

³
 

 
73. Consider the free-body diagram for the block as it moves up the plane. 

(a) � � � �221 1
1 12 2 6.10 kg 3.25m s 32.22 J 32.2 JK mv   |  

(b)  � � � �o
P P cos 37 75.0 N 9.25m cos 37.0 554.05JW F d  q   

      554 J|  

(c) � � � � � �2cos127.0 6.10 kg 9.80 m s 9.25m cos127.0GW mgd q  q  

     332.78 J 333J � | �  

(d) o
N N cos 90 0 JW F d   

(e) Apply the work-energy theorem. 

� �
total 2 1

2 total 1 P G N 1

  

554.05 332.78 0 32.22 253JJ

W K K

KE W K W W W K

 � o

 �  � � �  � � � |
 

 
74. The dot product can be used to find the angle between the vectors. 

  
� � � �

� � � �

9 9
1 2 1 3

9 9
1 2 1 3

ˆ ˆ ˆ ˆ ˆ0.230 0.133 10 m   ;  0.077 0.133 0.247 10 m

ˆ ˆ ˆ ˆ ˆ0.230 0.133 10 m 0.077 0.133 0.247 10 m

� �
� �

� �
� �

 � u  � � u

 � u � � u

ª º ª º¬ ¼ ¬ ¼
ª º ª º¬ ¼ ¬ ¼

d i j d i j k

d d i j i j k

G G

G G
< <

 

  

� � � �

� � � � � �

2 18 2

2 2 9 9
1 2

2 2 2 9 9
1 3

1 2 1 3 1 2 1 3

2 18 2
1 11 2 1 3

1 2 1 3

            3.540 10 10 m

0.230 0.133 10 m 0.2657 10 m

0.077 0.133 0.247 10 m 0.2909 10 m

cos   

3.540 10 10 m
cos cos

0.2

d

d

d d

d d

T

T

� �

� �
�

� �
�

� � � �

� �
� �� �

� �

 u u

 � u  u

 � � u  u

 o

u u
  

ª º¬ ¼

ª º¬ ¼

d d

d d

G G
<

G G
<

� � � �9 9
62.7

657 10 m 0.2909 10 m� �
 q

u u

 

 
75. Since the forces are constant, we may use Eq. 7-3 to calculate the work done. 

  
� � � � � � � �
� � � � � �

net 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1.50 0.80 0.70 N 0.70 1.20 N 8.0 6.0 5.0 m

ˆ ˆ ˆ ˆˆ ˆ     0.80 0.40 0.70 N 8.0 6.0 5.0 m 6.4 2.4 3.5 J 12.3J

W  �  � � � � � � �

 � � � �  � �  

ª º ª º¬ ¼ ¬ ¼

ª º ª º¬ ¼ ¬ ¼

F F d i j k i j i j k

i j k i j k

G G G
< <

<
 

 

d 

T�
T� mgG

NF
G

PF
G
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76. The work done by the explosive force is equal to the change in kinetic energy of the shells.  The 
starting speed is 0.  The force is in the same direction as the displacement of the shell. 

� � � �
� �

2 2 2 21 1 1 1
2 2 2 2

22
7 7

7 6

 ;  cos       cos   

1250 kg 750 m s
2.344 10 N 2.3 10 N

2 cos 2 15m

1lb
2.344 10 N 5.3 10 lbs

4.45 N

f i f f

f

W K mv mv mv W Fd mv Fd

mv
F

d

T T

T

 '  �   o  o

   u | u

u  u
§ ·
¨ ¸
© ¹

 

 
77. We assume the force is in the x-direction, so that the angle between the force and the displacement is 

0.  The work is found from Eq. 7-7. 

  0.10

0.100.10 m

xx
kx kx k

xx

A A
W Ae dx e e

k k

 f f
� � �

  

  �  ³  

 
78. The force exerted by the spring will be the same magnitude as the force to compress the spring.  The 

spring will do positive work on the ball by exerting a force in the direction of the displacement.  This 
work is equal to the change in kinetic energy of the ball.  The initial speed of the ball is 0. 

  
� � � �

� �

2.0 m
2.02 2 2 3 2 41 1 1

2 2 2 0
0

 ;  150 12 75 3 348J

2 348J2
15m s

3.0 kg

x
x

f i f x
x

f

W K mv mv mv W x x dx x x

W
v

m

 
 

 
 

 '  �   �  �  

   

³
 

 
79. The force is constant, and so we may calculate the force by Eq. 7-3.  We may also use that to 

calculate the angle between the two vectors. 

  
� � � �

� � � � � � � � � �
1/2 1/22 2 2 2 2

ˆ ˆ ˆ ˆˆ10.0 9.0 12.0 kN 5.0 4.0 m 86 kJ

10.0 9.0 12.0 kN 18.0kN  ;  5.0 4.0 m 6.40 m

W

F d

  � � �  

 � �   �  

ª º ª º¬ ¼ ¬ ¼

ª º ª º¬ ¼ ¬ ¼

F d i j k i j
G G
< <

 

  � � � �
4

1 1
4

8.6 10 J
cos     cos cos 42

1.80 10 N 6.40 m
W

W Fd
Fd

T T � � u
 o    q

u
 

 
80. (a) The force and displacement are in the same direction. 

   � � � � � �2 2 21 1
2 2

cos   ;    

0.033kg 85m s
372.5 N 370 N

0.32 m
f i

W Fd W K

m v vK
F

d d

T  ' o

�'
    |

 

 (b) Combine Newton’s second law with Eq. 2-12c for constant acceleration. 

   
� � � � � �

� �

2 2 20.033kg 85m s
372.5 N 370 N

2 2 0.32 m
f im v v

F ma
x

�
    |

'
 

81. The original speed of the softball is � � 1m s
110 km h 30.56 m s

3.6 km h
. 

§ ·
¨ ¸
© ¹

 The final speed is 90% of 

this, or 27.50 m/s.  The work done by air friction causes a change in the kinetic energy of the ball, 
and thus the speed change.  In calculating the work, notice that the force of friction is directed 
oppositely to the direction of motion of the ball. 
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� �
� � � � � � � � � �

� �

o 2 21
fr fr 2 1 2 12

22 2 2 2 2
2 1 1

fr

cos180   

0.9 1 0.25 kg 30.56 m s 0.9 1
1.5 N

2 2 2 15 m

W F d K K m v v

m v v mv
F

d d

  �  � o

� � �
    

� � �

 

 
82. (a) The pilot’s initial speed when he hit the snow was 45 m/s.  The work done on him as he fell  

the 1.1 m into the snow changed his kinetic energy.  Both gravity and the snow did work on the 
pilot during that 1.1-meter motion.  Gravity did positive work (the force was in the same 
direction as the displacement), and the snow did negative work (the force was in the opposite 
direction as the displacement). 

  � � � � � � � � � �

21
gravity snow snow 2

22 2 21 1 1
snow 2 2 2

4 4

     

88 kg 45m s 9.80 m s 1.1m

9.005 10 J 9.0 10 J      

i

i i

W W K mgd W mv

W mv mgd m v gd

�  ' o �  � o

 � �  � �  � �

 � u | � u

ª º¬ ¼  

 (b) The work done by the snowbank is done by an upward force, while the pilot moves down. 
o

snow snow snowcos180   W F d F d  � o  
4

4 4snow
snow

9.005 10  J
8.186 10 N 8.2 10 N

1.1 m
W

F
d

� u
 �  �  u | u  

 (c) During the pilot’s fall in the air, positive work was done by gravity, and negative work by air  
resistance.  The net work was equal to his change in kinetic energy while falling.  We assume he 
started from rest when he jumped from the aircraft. 

   � � � � � � � � � �

21
gravity air air 2

22 2 21 1 1
air 2 2 2

5

    0 

88kg 45m s 9.80 m s 370 m

      2.3 10 J

f

f f

W W K mgh W mv

W mv mgh m v gh

�  ' o �  � o

 �  �  �

 � u

ª º¬ ¼  

 
83. The (negative) work done by the bumper on the rest of the car must equal the change in the car’s 

kinetic energy.  The work is negative because the force on the car is in the opposite direction to the 
car’s displacement. 

 

� �
� �

� �

2 21 1
bumper 2 2

2

2
7

22

    0   

1m s
8km h

3.6 km h
1050 kg 2 10 N m

0.015m

i

i

W K kx mv

v
k m

x

 '  o �  � o

   u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 
84. The spring must be compressed a distance such that the work done by the spring is equal to the 

change in kinetic energy of the car.  The distance of compression can then be used to find the spring 
constant.  Note that the work done by the spring will be negative, since the force exerted by the 
spring is in the opposite direction to the displacement of the spring. 

  

� �

2 21 1
spring 2 2    0     

    5.0   

i i

i

m
W K kx mv x v

k

m
F ma kx m g kv

k

 '  o �  � o  

  � o �  � o
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  � � � � � �22 2
3

2

9.80 m s5.0
1300 kg 25 5.0 10 N m

1m s
90 km h

3.6 km h
i

g
m

v
k    u

§ ·
¨ ¸

ª º© ¹ § ·
¨ ¸« »
© ¹¬ ¼

 

 
85. If the rider is riding at a constant speed, then the positive work input by the rider to the (bicycle + 

rider) combination must be equal to the negative work done by gravity as he moves up the incline.  
The net work must be 0 if there is no change in kinetic energy. 
(a) If the rider’s force is directed downwards, then the rider will do an amount of work equal to the 

force times the distance parallel to the force.  The distance parallel to the downward force 
would be the diameter of the circle in which the pedals move.  Then consider that by using 2 
feet, the rider does twice that amount of work when the pedals make one complete revolution.  
So in one revolution of the pedals, the rider does the work calculated below. 

� �rider rider pedal
motion

2 0.90W m g d  

In one revolution of the front sprocket, the rear sprocket will make 42 19 revolutions, and so 
the back wheel (and the entire bicycle and rider as well) will move a distance of 
� � � �wheel42 19 2 .rS  That is a distance along the plane, and so the height that the bicycle and 

rider will move is � � � �wheel42 19 2 sin .h rS T  Finally, the work done by gravity in moving that 
height is calculated. 

� � � � � � � � � �G rider bike rider bike rider bike wheelcos180 42 19 2 sinW m m gh m m gh m m g rS T � q  � �  � �
Set the total work equal to 0, and solve for the angle of the incline. 

 

> @ � � � � � �

� �

� � � � � �
� � � �

� � � � � �

rider G rider pedal rider bike wheel
motion

rider pedal
motion1 1

rider bike wheel

0    2 0.90 42 19 2 sin 0  

0.90
0.90 65kg 0.36 m

sin sin 6.7
42 19 77 kg 42 19 0.34 m

W W m g d m m g r

m d

m m r

S T

T
S S

� �

�  o � �  o

   q
�

 

 (b) If the force is tangential to the pedal motion, then the distance that one foot moves while  
exerting a force is now half of the circumference of the circle in which the pedals move.  The 
rest of the analysis is the same. 

   

� �

� �

� � � � � �
� � � �

� � � � � �

rider rider pedal rider G
motion

rider pedal
motion1 1

rider bike wheel

2 0.90   ;  0  

0.90
0.90 65kg 0.18m

  sin sin 10.5 10
42 19 77 kg 42 19 0.34 m

W m g r W W

m r

m m r

S

S
T

S
� �

 �  o

   q | q
�

§ ·
¨ ¸
© ¹

 

 
86. Because the acceleration is essentially 0, the net force on the mass is 0.  The magnitude of F

G
is found 

with the help of the free-body diagram in the textbook. 

  
T T

T T

cos 0    
cos

sin 0    sin sin tan
cos

y

x

mg
F F mg F

mg
F F F F F mg

T
T

T T T T
T

 �  o  

 �  o    

¦

¦
  

(a) A small displacement of the object along the circular path is given by ,dr dT l  based on the 
definition of radian measure.  The force F

G
is at an angle T  to the direction of motion.  We use 

the symbol drG for the infinitesimal displacement, since the symbol l  is already in use as the 
length of the pendulum. 
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� �

� �

0 0 0

0

F
0 0 0

00

cos tan cos sin

cos 1 cos    

W d F d mg d mg d

mg mg

T T T T T T

T T T

T

T T T T T T T

T T

   

   

    

 �  �

³ ³ ³ ³F r
G G< l l l

l l

 

 (b) The angle between mgG  and the direction of motion is � �90 .T�  

   
� �

� �

0 0

0

G
0 0

00

cos 90 sin

    cos cos 1

W m d mg d mg d

mg mg

T T T T

T T

T

T T T T

T T

  

  

  q �  �

  �

³ ³ ³g rG G< l l

l l

 

Alternatively, it is proven in problem 36 that the shape of the path does not determine the work 
done by gravity – only the height change.  Since this object is rising, gravity will do negative 
work. 

   
� � � �

� �
G final 0

0

cos height cos180 cos

cos 1    

W mgd mg mgy mg

mg

I T

T

  q  �  � �

 �

l l

l
 

  Since TF
G

 is perpendicular to the direction of motion, it does  0  work on the bob. 
  Note that the total work done is 0, since the object’s kinetic energy does not change. 
 
87. (a) The work done by the arms of the parent will change the kinetic energy of the child.  The force 

 is in the opposite direction of the displacement. 

� � � �
� �

21
parent child f i i parent parent2

22
2 i1
i parent parent2

0   ;  cos180   

18 kg 25m s
    125N 130 N 28lbs

2 2 45m

W K K K mv W F d

mv
mv F d F

d

 '  �  �  q o

�  � o    | |
 

This force is achievable by an average parent. 
 (b) The same relationship may be used for the shorter distance. 

   � � � �
� �

22
i

parent

18 kg 25 m s
469N 470 N 110 lbs

2 2 12 m
mv

F
d

   | |  

This force may not be achievable by an average parent.  Many people might have difficulty with 
a 110-pound bench press exercise, for example. 

 
88. (a) From the graph, the shape of the force  

function is roughly that of a triangle.  The 
work can be estimated using the formula 
for the area of a triangle of base 20 m and 
height 100 N. 

� � � �1 1
2 2 20.0 m 100 N

1000 J

" " " "

  

W b h|  

 
 

The spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH07.XLS,” on tab “Problem 7.88a.” 

(b) Integrate the force function to find the exact work done. 

� �
20.0 m

2
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100 10
f

i

x

x

W Fdx x dx  � �ª º¬ ¼³ ³  

0

20
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x  (m)

F
 (N
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� �
20.0 m

20.0 m2 2 31
3 0.0 m

0.0 m

20 10 1333J 1330 J   x x dx x x �  �  |ª º¬ ¼³  

 
89. (a) The work done by gravity is given by Eq. 7-1. 

� � � � � � � �2 o
G

4 4

cos 90 85kg 9.80 m s 250 m cos86.0

1.453 10 J 1.5 10 J    

W mgd T �  

 u | u
 

(b) The work is the change in kinetic energy.  The initial kinetic energy 
is 0. 

� �4
2 G1

G f i f2

2 1.453 10 J2
   18 m s

85kgf

W
W K K K mv v

m

u
 '  �  o     

 
90. (a) The work-energy principle says the net work done is the change in kinetic energy.  The  

climber both begins and ends the fall at rest, so the change in kinetic energy is 0.  Thus the total 
work done (by gravity and by the rope) must be 0.  This is used to find x.  Note that the force of 
gravity is parallel to the displacement, so the work done by gravity is positive, but the force 
exerted by the rope is in the opposite direction to the displacement, so the work done by the 
rope is negative. 

   

� �

� � � �
� �

2 21 1
net grav rope 2 2

2 2 2 21
2

1
2

2 0    2 0  

4 2 4 4
1 1

2

W W W mg x kx kx mgx mg

mg m g k mg mg m g k mg mg k
x

k k k mg

 �  � �  o � �  o

r � � r �
   r �

§ ·
¨ ¸
© ¹

l l

l l l   

We have assumed that x is positive in the expression for the work done by gravity, and so the 
“plus” sign must be taken in the above expression. 

  Thus 4
1 1 .mg k

x
k mg

 � �
§ ·
¨ ¸
© ¹

l  

 (b) Use the values given to calculate x
l

 and .kx
mg

 

   

� � � �
� �

� � � �
� � � �

� � � �
� � � �

2

2

2

85kg 9.80 m s 4 850 N m 8.0 m4
1 1 1 1 6.665m

850 N m 85kg 9.80 m s

850 N m 6.665m6.665m
0.83   ;  6.8

8.0 m 85kg 9.80 m s

mg k
x

k mg

x kx
mg

 � �  � �  

    

§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

l

l

 

 
91. Refer to the free body diagram.  The coordinates are defined simply to 

help analyze the components of the force.  At any angle ,T  since the mass 
is not accelerating, we have the following. 

  sin 0    sinxF F mg F mgT T �  o  ¦  

 Find the work done in moving the mass from 0T   to 0.T T  
0 0

F
0 0

cos 0 sinW d F d mg d
T T T T

T T

T T T
  

  

  q  ³ ³ ³F s
G G< l l  

� �0

00
cos 1 cos    mg mgTT T �  �l l  

y 

x 
T��
mgG

NF
G

T�

mgG
T

T

F
G

xy
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See the second diagram to find the height that the mass has risen.  We 
see that � �0 0cos 1 cos ,h T T �  �l l l  and so 

� �F 01 cos .W mg mghT �  l  

 
 
92. For each interval, the average force for that interval was calculated as the numeric average of the 

forces at the beginning and end of the interval.  Then this force was multiplied by 10.0 cm (0.0100 
m) to find the work done on that interval.  The total work is the sum of those work amounts.  That 
process is expressed in a formula below.  The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH07.XLS,” on tab “Problem 7.92.” 

  � �
1

1
applied 12

1

102.03J 102 J
n

i i
i

W F F x
�

�
 

 � '  |¦  

 
93. (a) See the adjacent graph.  The best- 

fit straight line is as follows. 
 � �applied 10.0 N mF x  

The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH07.XLS,” on tab 
“Problem 7.93a.” 

 
 
 
(b) Since appliedF kx  for the stretched spring, the slope is the spring constant. 

   10.0 N mk   

 (c) Use the best-fit equation from the graph. 
   � � � �10.0 N m 0.200m 2.00NF kx    
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CHAPTER 8:  Conservation of Energy 
 
Responses to Questions 
 
1.  Friction is not conservative; it dissipates energy in the form of heat, sound, and light. Air resistance 

is not conservative; it dissipates energy in the form of heat and the kinetic energy of fluids. “Human” 

forces, for example, the forces produced by your muscles, are also not conservative. They dissipate 

energy in the form of heat and also through chemical processes. 

 

2.   The two forces on the book are the applied force upward (nonconservative) and the downward force 

of gravity (conservative). If air resistance is non-negligible, it is nonconservative. 

 

3.  (a) If the net force is conservative, the change in the potential energy is equal to the negative of the  

change in the kinetic energy, so ¨U = í300 J. 

(b) If the force is conservative, the total mechanical energy is conserved, so ¨E = 0. 
 

4.  No. The maximum height on the rebound cannot be greater than the initial height if the ball is 

dropped. Initially, the dropped ball’s total energy is gravitational potential energy. This energy is 

changed to other forms (kinetic as it drops, and elastic potential during the collision with the floor) 

and eventually back into gravitational potential energy as the ball rises back up. The final energy 

cannot be greater than the initial (unless there is an outside energy source) so the final height cannot 

be greater than the initial height. Note that if you throw the ball down, it initially has kinetic energy 

as well as potential so it may rebound to a greater height. 

 

5.  (a) No. If there is no friction, then gravity is the only force doing work on the sled, and the system  

is conservative. All of the gravitational potential energy of the sled at the top of the hill will be 

converted into kinetic energy. The speed at the bottom of the hill depends only on the initial 

height h, and not on the angle of the hill.  
21

f 2
,K mv mgh   and � �1/ 2

2 .v gh   

(b) Yes. If friction is present, then the net force doing work on the sled is not conservative. Only 

part of the gravitational potential energy of the sled at the top of the hill will be converted into 

kinetic energy; the rest will be dissipated by the frictional force. The frictional force is 

proportional to the normal force on the sled, which will depend on the angle ș of the hill. 

� �21

f 2
cos sin 1 tan ,K mv mgh fx mgh mgh mghP T T P T  �  �  �  and 

� �> @1/ 2

2 1 tan ,v gh P T �  which does depend on the angle of the hill and will be smaller for 

smaller angles. 
 

6.  No work is done on the wall (since the wall does not undergo displacement) but internally your 

muscles are converting chemical energy to other forms of energy, which makes you tired. 

 

7.  At the top of the pendulum’s swing, all of its energy is gravitational potential energy; at the bottom 

of the swing, all of the energy is kinetic. 

(a) If we can ignore friction, then energy is transformed back and forth between potential and  

kinetic as the pendulum swings. 

(b) If friction is present, then during each swing energy is lost to friction at the pivot point and also  

to air resistance. During each swing, the kinetic energy and the potential energy decrease, and 

the pendulum’s amplitude decreases. When a grandfather clock is wound up, the energy lost to 

friction and air resistance is replaced by energy stored as potential energy (either elastic or 

gravitational, depending on the clock mechanism). 
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8.  The drawing shows water falling over a waterfall and then flowing back to the top of the waterfall. 

The top of the waterfall is above the bottom, with greater gravitational potential energy. The optical 

illusion of thhe diagram implies that water is flowing freely from the bottom of the waterfall back to 

the top. Since water won’t move uphill unless work is done on it to increase its gravitational 

potential energy (for example, work done by a pump), the water from the bottom of the waterfall 

would NOT be able to make it back to the top.  

 

9.  For each of the water balloons, the initial energy (kinetic plus potential) will equal the final energy 

(all kinetic).  Since the initial energy depends only on the speed and not on the direction of the initial 

velocity, and all balloons have the same initial speed and height, the final speeds will all be the 

same.  
2 21 1

2 2i i f fE mv mgh E mv �   ª º¬ ¼  

 

10.  Yes, the spring can leave the table. When you push down on the spring, you do work on it and it 

gains elastic potential energy, and loses a little gravitational potential energy, since the center of 

mass of the spring is lowered. When you remove your hand, the spring expands, and the elastic 

potential energy is converted into kinetic energy and into gravitational potential energy. If enough 

elastic potential energy was stored, the center of mass of the spring will rise above its original 

position, and the spring will leave the table. 

 

11.  The initial potential energy of the water is converted first into the kinetic energy of the water as it 

falls. When the falling water hits the pool, it does work on the water already in the pool, creating 

splashes and waves. Additionally, some energy is converted into heat and sound. 

 

12.  Stepping on top of a log and jumping down the other side requires you to raise your center of mass 

farther than just stepping over a log does. Raising your center of mass farther requires you to do 

more work, or use more energy. 

 

13. (a) As a car accelerates uniformly from rest, the potential energy stored in the fuel is converted into  

kinetic energy in the engine and transmitted through the transmission into the turning of the 

wheels, which causes the car to accelerate (if friction is present between the road and the tires).  

 (b) If there is a friction force present between the road and the tires, then when the wheels turn, the  

car moves forward and gains kinetic energy. If the static friction force is large enough, then the 

point of contact between the tire and the road is instantaneously at rest – it serves as an 

instantaneous axis of rotation. If the static friction force is not large enough, the tire will begin 

to slip, or skid, and the wheel will turn without the car moving forward as fast. If the static 

friction force is very small, the wheel may spin without moving the car forward at all, and the 

car will not gain any kinetic energy (except the kinetic energy of the spinning tires). 

 

14.  The gravitational potential energy is the greatest when the Earth is farthest from the Sun, or when the 

Northern Hemisphere has summer. (Note that the Earth moves fastest in its orbit, and therefore has 

the greatest kinetic energy, when it is closest to the Sun.) 

 

15. Yes.  If the potential energy U is negative (which it can be defined to be), and the absolute value of 

the potential energy is greater than the kinetic energy K, then the total mechanical energy E will be 

negative. 
 
16.  In order to escape the Earth’s gravitational field, the rocket needs a certain minimum speed with 

respect to the center of the Earth. If you launch the rocket from any location except the poles, then 

the rocket will have a tangential velocity due to the rotation of the Earth. This velocity is towards the 

east and is greatest at the equator, where the surface of the Earth is farthest from the axis of rotation. 

In order to use the minimum amount of fuel, you need to maximize the contribution of this tangential 
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velocity to the needed escape velocity, so launch the rocket towards the east from a point as close as 

possible to the equator. (As an added bonus, the weight of the rocket will be slightly less at the 

equator because the Earth is not a perfect sphere and the surface is farthest from the center at the 

equator.)  

 

17. For every meter the load is raised, two meters of rope must be pulled up.  The work done on the 

piano must be equal to the work done by you. Since you are pulling with half the force (the tension 

in the rope is equal to half of the weight of the piano), you must pull through twice the distance to do 

the same amount of work.  

 

18.  The faster arrow has the same mass and twice the speed of the slower arrow, so will have four times 

the kinetic energy � �21

2
.K mv  Therefore, four times as much work must be done on the faster 

arrow to bring it to rest. If the force on the arrows is constant, the faster arrow will travel four times 

the distance of the slower arrow in the hay. 

 

19. When the ball is released, its potential energy will be converted into kinetic energy and then back 

into potential energy as the ball swings. If the ball is not pushed, it will lose a little energy to friction 

and air resistance, and so will return almost to the initial position, but will not hit the instructor. If 

the ball is pushed, it will have an initial kinetic energy, and will, when it returns, still have some 

kinetic energy when it reaches the initial position, so it will hit the instructor in the nose. (Ouch!)   

 

20.  Neglecting any air resistance or friction in the pivot, the pendulum bob will have the same speed at 

the lowest point for both launches. In both cases, the initial energy is equal to potential energy mgh 

plus kinetic energy 
21

2
,mv  with v = 3.0 m/s. (Notice that the direction of the velocity doesn’t matter.) 

Since the total energy at any point in the swing is constant, the pendulum will have the same energy 

at the lowest point, and therefore the same speed, for both launches.  

 

21.   When a child hops around on a pogo stick, gravitational potential energy (at the top of the hop) is 

transformed into kinetic energy as the child moves downward, and then stored as spring potential 

energy as the spring in the pogo stick compresses. As the spring begins to expand, the energy is 

converted back to kinetic and gravitational potential energy, and the cycle repeats. Since energy is 

lost due to friction, the child must add energy to the system by pushing down on the pogo stick while 

it is on the ground to get a greater spring compression. 

 

22.  At the top of the hill, the skier has gravitational potential energy. If the friction between her skis and 

the snow is negligible, the gravitational potential energy is changed into kinetic energy as she glides 

down the hill and she gains speed as she loses elevation. When she runs into the snow bank, work is 

done by the friction between her skis and the snow and the energy changes from kinetic energy of 

the skier to kinetic energy of the snow as it moves and to thermal energy. 

 

23. The work done on the suitcase depends only on (c) the height of the table and (d) the weight of the 

suitcase. 

 
24.   Power is the rate of doing work. Both (c) and (d) will affect the total amount of work needed, and 

hence the power. (b), the time the lifting takes, will also affect the power. The length of the path (a) 

will only affect the power if different paths take different times to traverse.  

 

25.  When you climb a mountain by going straight up, the force needed is large (and the distance traveled 

is small), and the power needed (work per unit time) is also large. If you take a zigzag trail, you will 

use a smaller force (over a longer distance, so that the work done is the same) and less power, since 
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the time to climb the mountain will be longer. A smaller force and smaller power output make the 

climb seem easier. 

 

26. (a) The force is proportional to the negative of the slope of the potential energy curve, so the  

magnitude of the force will be greatest where the curve is steepest, at point C. 

(b) The force acts to the left at points A, E, and F, to the right at point C, and is zero at points B, D,  

and G. 

(c) Equilibrium exists at points B, D, and G. B is a point of neutral equilibrium, D is a point of  

stable equilibrium, and G is a point of unstable equilibrium.  

 

27. (a) If the particle has E3 at x6, then it has both potential and kinetic energy at that point. As the  

particle moves toward x0 , it gains kinetic energy as its speed increases. Its speed will be a 

maximum at x0. As the particle moves to x4, its speed will decrease, but will be larger than its 

initial speed. As the particle moves to x5, its speed will increase, then decrease to zero. The 

process is reversed on the way back to x6. At each point on the return trip the speed of the 

particle is the same as it was on the forward trip, but the direction of the velocity is opposite. 

(b) The kinetic energy is greatest at point x0, and least at x5. 

 

28. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral 

equilibrium. 

 

 

Solutions to Problems 
 

1. The potential energy of the spring is given by 
21

el 2
U kx  where x is the distance of stretching or 

compressing of the spring from its natural length. 

� �
el

2 35.0 J2
0.924 m

82.0 N m

U
x

k
    

 

2.   Subtract the initial gravitational potential energy from the final gravitational potential energy. 

� � � �� �� �2

grav 2 1 2 1
6.0 kg 9.80 m s 1.3m 76 JU mgy mgy mg y y'  �  �    

 

3. The spring will stretch enough to hold up the mass.  The force exerted by the spring will be equal to 

the weight of the mass. 

  � �
� �� �2
2.5 kg 9.80 m s

    0.39 m
63 N m

mg
mg k x x

k
 ' o '     

 Thus the ruler reading will be 39 cm 15cm 54 cm .�   

 

4. (a) The change in gravitational potential energy is given by the following. 

� � � � � � � �2 5

grav 2 1
56.5 kg 9.80 m s 2660 m 1270 m 7.7 10 JU mg y y'  �  �  u  

(b) The minimum work required by the hiker would equal the change in potential energy, which is 

5
7.7 10 J .u  

(c)  Yes .  The actual work may be more than this, because the climber almost certainly had to 

overcome some dissipative forces such as air friction.  Also, as the person steps up and down, 

they do not get the full amount of work back from each up-down event.  For example, there will 

be friction in their joints and muscles. 
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5. (a) Relative to the ground, the potential energy is given by the following. 

   � � � � � � � �2

grav book ground
1.95kg 9.80 m s 2.20 m 42.0 JU mg y y �    

 (b) Relative to the top of the person’s head, the potential energy is given by the following. 

� � � � � � � �2

grav book head
1.95kg 9.80 m s 2.20 m 1.60 m 11.47 J 11JU mg y y �  �  |  

(c) The work done by the person in lifting the book from the ground to the final height is the same  

as the answer to part (a), 42.0 J .   In part (a), the potential energy is calculated relative to the 

starting location of the application of the force on the book.  The work done by the person is not 

related to the answer to part (b), because the potential energy is not calculated relative to the 

starting location of the application of the force on the book. 

 

6. Assume that all of the kinetic energy of the car becomes potential energy of the compressed spring. 

� � � �

� �

2

2

2 2 501 1

0 final2 2 22

final

1m s
1200 kg 75 km h

3.6 km h
    1.1 10 N m

2.2 m

mv
mv kx k

x
 o    u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 

7. (a) This force is conservative, because the work done by the force on an object moving from an  

initial position � �
1

x  to a final position � �
2

x depends only on the endpoints.   

   
� � � �

� � � �

2 2 2

2

1

1 1 1

3 4 2 4 51 1 1

2 4 5

2 4 5 2 4 51 1 1 1 1 1

2 2 2 1 1 12 4 5 2 4 5
   

x x x
x

x x
x x x

W d F dx kx ax bx dx kx ax bx

kx ax bx kx ax bx

   � � �  � � �

 � � � � � � �

³ ³ ³F l
G G
<

 

  The expression for the work only depends on the endpoints. 

 (b) Since the force is conservative, there is a potential energy function U such that .x

U
F

x
w

 �
w

 

   � � � �3 4 2 4 51 1 1

2 4 5
    x

U
F kx ax bx

x
U x kx ax bx Cw

 � � �  � o
w

 � � �  

 

8. The force is found from the relations on page 189. 

� � � �

� � � � � �

2

2

6 2       2 8       4

ˆ ˆ6 2 2 8 4

x y z

U U U
F x y F x yz F y

x y z

x y x yz y

w w w
 �  � �  �  � �  �  �

w w w

 � � � � � � �F i j k
G G

  

 

9. Use Eq. 8-6 to find the potential energy function. 

  

� � � �

� �
� �

� �

3 2

2 2 2 2

2

2.0 m 0        
8m 2 8m2 2.0 m

k k
U x F x dx C dx C C

x x
k k k k

U C C U x
x

 � �  � � �  � �

 � �  o  o  � �

³ ³
 

 

10. Use Eq. 8-6 to find the potential energy function. 

  � � � � � � � �sin cos
A

U x F x dx C A kx dx C kx C
k

 � �  � �  �³ ³  



Chapter 8  Conservation of Energy 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

223 

  � � � � � �> @0 0        cos 1
A A A

U C C U x kx
k k k

 �  o  � o  �  

 

11. The forces on the skier are gravity and the normal force.  The normal force is 

perpendicular to the direction of motion, and so does no work.  Thus the skier’s 

mechanical energy is conserved.  Subscript 1 represents the skier at the top of 

the hill, and subscript 2 represents the skier at the bottom of the hill.  The 

ground is the zero location for gravitational potential energy � �0 .y    We have 

1
0,v   

1
125m,y   and 

2
0y   (bottom of the hill).  Solve for 

2
,v  the speed at the bottom. 

2 2 21 1 1

1 1 2 2 1 22 2 2
    0 0  mv mgy mv mgy mgy mv�  � o �  � o  

� � � � � �2

2 1
2 2 9.80 m s 125m 49 m s 110 mi hv gy   |  

 

12. The only forces acting on Jane are gravity and the vine tension.  The tension 

pulls in a centripetal direction, and so can do no work – the tension force is 

perpendicular at all times to her motion.  So Jane’s mechanical energy is 

conserved.  Subscript 1 represents Jane at the point where she grabs the vine, and 

subscript 2 represents Jane at the highest point of her swing.   The ground is the 

zero location for gravitational potential energy � �0 .y    We have 
1

5.0 m s,v   

1
0,y   and 

2
0v   (top of swing).  Solve for 

2
,y  the height of her swing. 

� �
� �

2 2 21 1 1

1 1 2 2 1 22 2 2

22

1

2 2

    0 0   

5.0 m s
1.276 m 1.3m

2 2 9.80 m s

mv mgy mv mgy mv mgy

v
y

g

�  � o �  � o

   |
 

 No , the length of the vine does not enter into the calculation, unless the vine is less than 0.65 m 

long.  If that were the case, she could not rise 1.3 m high. 

 

13. We assume that all the forces on the jumper are conservative, so that the mechanical energy of the 

jumper is conserved.  Subscript 1 represents the jumper at the bottom of the jump, and subscript 2 

represents the jumper at the top of the jump.  Call the ground the zero location for gravitational 

potential energy � �0 .y    We have 
1

0,y   
2

0.70 m s,v   and 
2

2.10m.y    Solve for 
1
,v  the speed 

at the bottom. 

� � � �� �

2 2 2 21 1 1 1

1 1 2 2 1 2 22 2 2 2

22 2

1 2 2

    0   

2 0.70 m s 2 9.80 m s 2.10 m 6.454 m s 6.5 m s

mv mgy mv mgy mv mv mgy

v v gy

�  � o �  � o

 �  �  |
 

 

14. The forces on the sled are gravity and the normal force.  The normal force is 

perpendicular to the direction of motion, and so does no work.  Thus the sled’s 

mechanical energy is conserved.  Subscript 1 represents the sled at the bottom of 

the hill, and subscript 2 represents the sled at the top of the hill.  The ground is 

the zero location for gravitational potential energy � �0 .y    We have 
1

0,y   

2
0,v   and 

2
1.12 m.y    Solve for 

1
,v the speed at the bottom.  Note that the angle is not used. 

� �� �

2 2 21 1 1

1 1 2 2 1 22 2 2

2

1 2

    0 0   

2 2 9.80 m s 1.12 m 4.69 m s

mv mgy mv mgy mv mgy

v gy

�  � o �  � o

   
 

mgG

N
F
G

T

1 1
 , v y

2 2
, v y

mgG

N
F
G

T
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15. Consider this diagram for the jumper’s fall.   

 (a) The mechanical energy of the jumper is conserved.  Use y  

for the distance from the 0 of gravitational potential energy 

and x for the amount of bungee cord “stretch” from its 

unstretched length.  Subscript 1 represents the jumper at 

the start of the fall, and subscript 2 represents the jumper at 

the lowest point of the fall.  The bottom of the fall is the 

zero location for gravitational potential energy � �0 ,y   

and the location where the bungee cord just starts to be 

stretched is the zero location for elastic potential energy 

� �0 .x    We have 
1

0,v   
1

31m,y   
1

0,x   
2

0,v   

2
0,y   and 

2
19 m.x    Apply conservation of energy.  

� �� �� �
� �

2 2 2 2 21 1 1 1 1

1 2 1 1 1 2 2 2 1 22 2 2 2 2

2

1

22

2

         

2 55 kg 9.80 m s 31 m2
92.57 N m 93 N m

19 m

E E mv mgy kx mv mgy kx mgy kx

mgy
k

x

 o � �  � � o  o

   |
 

(b)  The maximum acceleration occurs at the location of the maximum force, which  

occurs when the bungee cord has its maximum stretch, at the bottom of the fall.  

Write Newton’s second law for the force on the jumper, with upward as positive.  

� �� �
� �

net cord 2

2 2 22

  

92.57 N m 19 m
9.80 m s 22.2 m s 22 m s

55 kg

F F mg kx mg ma

kx
a g

m

 �  �  o

 �  �  |
 

 

16. (a) Since there are no dissipative forces present, the mechanical energy of the person–trampoline– 

Earth combination will be conserved.  We take the level of the unstretched trampoline as the 

zero level for both elastic and gravitational potential energy.  Call up the positive direction.  

Subscript 1 represents the jumper at the start of the jump, and subscript 2 represents the jumper 

upon arriving at the trampoline.  There is no elastic potential energy involved in this part of the 

problem.  We have 
1

4.5m s,v   
1

2.0 m,y   and 
2

0.y    Solve for 
2
,v  the speed upon arriving 

at the trampoline. 

� � � �� �

2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2

2 1 1

        0  

2 4.5m s 2 9.80 m s 2.0 m 7.710 m s 7.7 m s

E E mv mgy mv mgy mv mgy mv

v v gy

 o �  � o �  � o

 r �  r �  r |
 

The speed is the absolute value of 
2

v . 

(b) Now let subscript 3 represent the jumper at the maximum stretch of the trampoline, and x 

represent the amount of stretch of the trampoline.  We have 
2

7.710m s,v  �  
2

0,y   
2

0,x   

3
0,v   and 

3 3
.x y   There is no elastic energy at position 2, but there is elastic energy at 

position 3.  Also, the gravitational potential energy at position 3 is negative, and so 
3

0.y �   A 

quadratic relationship results from the conservation of energy condition. 

� �� �
� �

2 2 2 21 1 1 1

2 3 2 2 2 3 3 32 2 2 2

2 2 2 21 1 1 1

2 3 3 3 3 22 2 2 2

2 2 21 1 2 2 2

22 2 2

3
1

2

      

0 0 0     0  

4

2

E E mv mgy kx mv mgy kx

mv mgy ky ky mgy mv

mg m g k mv mg m g kmv
y

k k

 o � �  � � o

� �  � � o � �  o

� r � � � r �
  

 

Start of fall

Contact with bungee 

cord, 0 for elastic PE

Bottom of fall, 0 for 

gravitational PE

12 m 

19 m 

mgG

cord
F
G
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� � � � � � � � � �� �� �
� �

22 22 2 4

4

72 kg 9.80 m s 72 kg 9.80 m s 5.8 10 N m 72 kg 7.71m s

    
5.8 10 N m

� r � u
 

u
 

    0.284 m , 0.260 m �  

Since 
3 3

0 , 0.28m .y y�  � . 

 

The first term under the quadratic is about 500 times smaller than the second term, indicating 

that the problem could have been approximated by not even including gravitational potential 

energy for the final position.  If that approximation were made, the result would have been 

found by taking the negative result from the following solution. 

� �2 21 1

2 3 2 3 3 22 2 4

72 kg
        7.71m s 0.27 m

5.8 10 N m

m
E E mv ky y v

k
 o  o    r

u
 

 

17. Take specific derivatives with respect to position, and note that E is constant. 

  
21 1

2 2
    2 0

dE dv dU dv dU
E mv U m v mv

dx dx dx dx dx
 � o  �  �§ ·  ¨ ¸

© ¹
 

 Use the chain rule to change 
dv

v
dx

 to .
dx dv dv
dt dx dt

  

  0        
dv dU dv dU

mv m ma F
dx dx dt dx

�  o  � o   

 The last statement is Newton’s second law. 

 

18. (a) See the diagram for the thrown ball.  The speed at the top of the path  

will be the horizontal component of the original velocity.  

� � o

top 0
cos 8.5 m s cos36 6.9 m sv v T    

 (b) Since there are no dissipative forces in the problem, the mechanical  

energy of the ball is conserved.  Subscript 1 represents the ball at the release point, and 

subscript 2 represents the ball at the top of the path.  The ball’s release point is the zero location 

for gravitational potential energy � �0 .y    We have 
1

8.5m s,v   
1

0,y   and 
2 1

cos .v v T   

Solve for 
2
.y  

� � � � � �
� �

2 2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2 2 o

1

2 2

        0 cos   

1 cos 8.5 m s 1 cos 36
1.3 m

2 2 9.80 m s

E E mv mgy mv mgy mv mv mgy

v
y

g

T

T

 o �  � o �  � o

� �
   

 

  This is the height above its throwing level. 

 

19. Use conservation of energy.  The level of the ball on the uncompressed 

spring is taken as the zero location for both gravitational potential energy 

� �0y   and elastic potential energy � �0 .x    It is diagram 2 in the figure.   

Take “up” to be positive for both x and y. 

(a) Subscript 1 represents the ball at the launch point, and subscript 2  

represents the ball at the location where it just leaves the spring, at the 

uncompressed length.  We have 
1

0,v   
1 1

0.160 m,x y  �  and 

2 2
0.x y    Solve for 

2
.v  

1       2      3

0y  
0,x  

T�
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2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

2

2 2 1 11 1

1 1 2 22 2

      

2
0 0 0    

E E mv mgy kx mv mgy kx

kx mgy
mgy kx mv v

m

 o � �  � � o

�
� �  � � o  

 

� � � � � � � � � �
� �

2 2

2

875 N m 0.160 m 2 0.380 kg 9.80 m s 0.160 m
7.47 m s

0.380 kg
v

� �
   

(b) Subscript 3 represents the ball at its highest point.  We have 
1

0,v   
1 1

0.160 m,x y  �
3

0,v   

and 
3

0.x    Solve for 
3
.y  

� � � �
� � � �

2 2 2 21 1 1 1

1 3 1 1 1 3 3 32 2 2 2

22

2 11

1 1 2 2 12 2

      

875N m 0.160 m
0 0 0    3.01m

2 2 0.380 kg 9.80m s

E E mv mgy kx mv mgy kx

kx
mgy kx mgy y y

mg

 o � �  � � o

� �  � � o �    
 

 

20. Since there are no dissipative forces present, the mechanical energy of the roller coaster will be 

conserved.  Subscript 1 represents the coaster at point 1, etc.  The height of point 2 is the zero 

location for gravitational potential energy.  We have 
1

0v   and 
1

32 m.y   

 Point 2:  
2 2 21 1 1

1 1 2 2 2 1 22 2 2
  ;  0     mv mgy mv mgy y mgy mv�  �  o  o  

   � � � �2

2 1
2 2 9.80 m s 32 m 25m sv gy    

 

 Point 3:  
2 2 21 1 1

1 1 3 3 3 1 3 32 2 2
  ;  26 m     mv mgy mv mgy y mgy mv mgy�  �  o  � o  

   � � � � � �2

3 1 3
2 2 9.80 m s 6 m 11m sv g y y �    

 

 Point 4:  
2 2 21 1 1

1 1 4 4 4 1 4 12 2 2
  ;  14 m     mv mgy mv mgy y mgy mv mgy�  �  o  � o  

   � � � � � �2

4 1 4
2 2 9.80 m s 18 m 19 m sv g y y �    

 

21. With the mass at rest on the spring, the upward force due to the spring must be the same as the 

weight of the mass.   

    
mgkd mg d
k

 o   

The distance D is found using conservation of energy.  Subscript 1 represents the mass at the top of 

the uncompressed spring, and subscript 2 represents the mass at the bottom of its motion, where the 

spring is compressed by D.  Take the top of the uncompressed spring to be the zero location for both 

gravitational and elastic potential energy � �0 .y    Choose up to be the positive direction.  We have 

1 2
0,v v   

1
0,y   and 

2
.y D �   Solve for D. 

 

2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

21

2

      

2
0 0 0 0     

E E mv mgy ky mv mgy ky

mg
mgD kD D

k

 o � �  � � o

� �  � � o  
  

 We see that 2 ,D d  and so .D dz   The reason that the two distances are not equal is that putting 

the mass at rest at the compressed position requires that other work be done in addition to the work 

done by gravity and the spring.  That other work is not done by a conservative force, but done 

instead by an external agent such as your hand. 
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22. (a) Draw a free-body diagram for each block.  Write  

Newton’s second law for each block.  Notice that the 

acceleration of block A in the yA is 0 zero. 

1 N A N A
cos 0    cosyF F m g F m gT T �  o  ¦

 
1 T A A A

sinx xF F m g m aT  �¦  

� �2 B T B B T B B
    y y yF m g F m a F m g a �  o  �¦

Since the blocks are connected by the cord, 

B A
.y xa a a    Substitute the expression for the tension force from the last equation into the x 

direction equation for block 1, and solve for the acceleration. 

� �
� �
� � � � � �

B A A B A A B

B A 2 2

A B

sin     sin

sin 5.0 kg 4.0 kgsin 32
9.80 m s 3.1m s

9.0 kg

m g a m g m a m g m g m a m a

m m
a g

m m

T T

T

� �  o �  �

� � q
   

�

 

(b) Find the final speed of 
B

m  (which is also the final speed of 
A

m ) using constant acceleration 

relationships. 

   

� �
� �

� �
� � � � � � � �

B A2 2 2

0

A B

B A 2

A B

sin
2     2   

sin 5.0 kg 4.0 kgsin 32
2 2 9.80 m s 0.75m 2.2 m s

9.0 kg

f f

f

m m
v v a y v g h

m m

m m
v gh

m m

T

T

�
 � ' o  o

�

� � q
   

�

 

(c) Since there are no dissipative forces in the problem, the mechanical energy of the system is   

conserved.  Subscript 1 represents the blocks at the release point, and subscript 2 represents the 

blocks when 
B

m  reaches the floor.  The ground is the zero location for gravitational potential 

energy for 
B
,m  and the starting location for 

A
m  is its zero location for gravitational potential 

energy.  Since 
B

m falls a distance h, 
A

m  moves a distance h along the plane, and so rises a 

distance sin .h T   The starting speed is 0. 

� � 21

1 2 22A A B B

A B

2

A B

    0 sin

sin
2

 E E m gh m v m gh

m m
v gh

m

m

m

T

T

 o �  �

�

� o

§ ·
 ¨ ¸�© ¹

 

  This is the same expression found in part (b), and so gives the same numeric result. 

 

23. At the release point the mass has both kinetic energy and elastic potential energy. The total energy is 
2 21 1

0 02 2
.mv kx�   If friction is to be ignored, then that total energy is constant. 

(a) The mass has its maximum speed at a displacement of 0, and so only has kinetic energy at that 

point. 

  
2 2 2 2 21 1 1

0 0 max 0 02 2 2 max
    

kmv kx mv v v x
m

�  o  �  

(b) The mass has a speed of 0 at its maximum stretch from equilibrium, and so only has potential 

energy at that point. 

  
2 2 2 2 21 1 1

0 0 max 0 02 2 2 max
    

m
mv kx kx x x

k
v�  o  �  

 yB
T

F
G

yA

xA

A
m gG

N
F
G

T
F
G

T
T

B
m gG
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T�

T
F

mg

24. (a) The work done against gravity is the change in potential energy.  

� � � � � � � �2 4

against 2 1

gravity

75.0 kg 9.80 m s 125m 9.19 10 JW U mg y y '  �   u   

(b) The work done by the force on the pedals in one revolution is equal to the average tangential 

force times the circumference of the circular path of the pedals.  That work is also equal to the 

potential energy change of the bicycle during that revolution, assuming that the speed of the 

bicycle is constant.  Note that a vertical rise on the incline is related to the distance along the 

incline by � �rise distance sin .T u  

� �

� � � � � �
� �

pedal tan grav 1 rev1 rev

force 1 rev

2 o

1 rev

tan

2 sin   

75.0 kg 9.80 m s 5.10 m sin 9.50sin
547 N

2 2 0.180 m

W F r U mg y mgd

mgd
F

r

S T

T
S S

  '  '  o

   
 

 

25. Since there are no dissipative forces in the problem, the mechanical 

energy of the pendulum bob is conserved.  Subscript 1 represents the 

bob at the release point, and subscript 2 represents the ball at some 

subsequent position.  The lowest point in the swing of the pendulum is 

the zero location for potential energy � �0 .y    We have 
1

0v   and 

� �
1

1 cos .y T �l   The “second” point for the energy conservation will 

vary from part to part of the problem. 

(a) The second point is at the bottom of the swing, so 
2

0.y   

� �2 2 21 1 1

1 2 1 1 2 2 22 2 2
        1 cos 30.0   E E mv mgy mv mgy mg mv o �  � o � q  ol  

� � � � � � � �2

2
2 1 cos30.0 2 9.80 m s 2.00 m 1 cos30.0 2.29 m sv g � q  � q  l  

 (b) The second point is displaced from equilibrium by 15.0q , so � �
2

1 cos15.0 .y  � ql  

   � � � � � �

� � � � � �

2 21 1

1 2 1 1 2 22 2

21

2 22

2

      

1 cos30.0 1 cos15.0     2 cos15.0 cos30.0

2 9.80 m s 2.00 m cos15.0 cos30.0 1.98m s                   

E E mv mgy mv mgy

mg mv mg v g

 o �  � o

� q  � � q o  q � q

 q � q  

l l l  

(c) The second point is displaced from equilibrium by 15.0 .� q  The pendulum bob is at the same 

height at 15.0� q  as it was at 15.0 ,q  and so the speed is the same.  Also, since 

� � � �cos cos ,T T�   the mathematics is identical.  Thus 
2

1.98 m s .v   

(d) The tension always pulls radially on the pendulum bob, and so is related to the 

centripetal force on the bob.  The net centripetal force is always 
2

.mv r  Consider the 

free body diagram for the pendulum bob at each position. 

(a) 
� �2 2

T T

2 1 cos30.0
    

gmv v
F mg F m g m g

r
� q

�  o  �  �
§ · § ·

¨ ¸¨ ¸ © ¹© ¹

l

l l
 

� � � �� �� �2
3 2 cos 30.0 0.0700 kg 9.80 m s 3 2 cos 30.0 0.870 N        mg � q  � q   

   (b) 

2 2

T T
cos     cos

mv v
F mg F m g

r
T T�  o  �

§ ·
¨ ¸
© ¹l

  

l T�
cosTl

� �1 cosT�l

T
F

mg
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� �

� �
� � � � � �2

2 cos15.0 cos30.0
cos15.0

3cos15.0 2 cos30.0

0.0700 kg 9.80 m s 3cos15.0 2cos30.0 0.800 N

g
m g

mg

q � q
 q �

 q � q

 q � q  

§ ·
¨ ¸
© ¹

l

l

 

(c) Again, as earlier, since the cosine and the speed are the same for 15.0� q  as for 15.0 ,q  

the tension will be the same, 0.800 N .  

 (e) Again use conservation of energy, but now we have 
1 0

1.20 m s.v v   

  (a) The second point is at the bottom of the swing, so 
2

0.y   

� � � �

� � � � � � � �

2 2 21 1

1 2 2 12 2

2 2

1 cos 30.0     2 1 cos 30.0

1.20 m s 2 9.80 m s 2.00 m 1 cos30.0 2.59 m s   

mv mg mv v v g� � q  o  � � q

 � � q  

l l
 

   (b) The second point is displaced from equilibrium by 15.0 ,q  so � �
2

1 cos15.0 .y  � ql  

     

� � � �
� �

� � � � � � � �

2 21 1

1 22 2

2

2 1

2 2

1 cos30.0 1 cos15.0   

2 cos15.0 cos30.0

   1.20 m s 2 9.80 m s 2.00 m cos15.0 cos30.0 2.31m s

mv mg mv mg

v v g

� � q  � � q o

 � q � q

 � q � q  

l l

l  

(c) As before, the pendulum bob is at the same height at 15.0� q  as it was at 15.0 ,q  and so 

the speed is the same.  Thus 
2

2.31m s .v   

 

26. The maximum acceleration of 5.0 g occurs where the force is at a maximum.  The maximum force 

occurs at the maximum displacement from the equilibrium of the spring.  The acceleration and the 

displacement are related by Newton’s second law and the spring law, 
net spring

    F F ma kx o  �  

  .
m

x a
k

o  �   Also, by conservation of energy, the initial kinetic energy of the car will become the 

final potential energy stored in the spring. 

  � �
2 2

22 21 1 1 1

initial final 0 max max2 2 2 2
    5.0   

m m
E E mv kx k a g

k k
 o    o§ ·

¨ ¸
© ¹

 

  
� � � � � �2

22

22

0

1200 kg 25 9.80 m s5.0
4100 N m

1.0 m s
95km h

3.6 km h

m g
k

v
   

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 

27. The maximum acceleration of 5.0 g occurs where the force is at a maximum.  The  

maximum force occurs at the bottom of the motion, where the spring is at its 

maximum compression.  Write Newton’s second law for the elevator at the bottom of 

the motion, with up as the positive direction.    

net spring spring
5.0       6.0F F Mg Ma Mg F Mg �   o   

 

 

 

 

MgG
spring

F
G
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Now consider the diagram for the elevator at various points 

in its motion.  If there are no non-conservative forces, then 

mechanical energy is conserved.  Subscript 1 represents the 

elevator at the start of its fall, and subscript 2 represents the 

elevator at the bottom of its fall.  The bottom of the fall is 

the zero location for gravitational potential energy � �0 .y    

There is also a point at the top of the spring that is the zero 

location for elastic potential energy (x = 0).  We have 

1
0,v   

1
,y x h �  

1
0,x    

2
0,v   

2
0,y   and 

2
.x x   

Apply conservation of energy. 
 

� � � �

2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

2 21 1

2 2

2

1

spring 2

      

0 0 0 0     

6.0 6 6 12
6.0             

E E Mv Mgy kx Mv Mgy kx

Mg x h kx Mg x h kx

Mg Mg Mg Mg
F Mg kx x Mg h k k

k k k h

 o � �  � � o

� � �  � � o �  

  o  o �  o  § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 

28. (a) The skier, while in contact with the sphere, is moving in a circular path, and  

so must have some component of the net force towards the center of the 

circle.  See the free body diagram. 

   

2

radial
cos N

v
F mg F m

r
T �   

If the skier loses contact with the sphere, the normal force is 0.  Use that 

relationship to find the critical angle and speed. 

   

2 2

crit crit

crit crit
cos     cos

v v
mg m

r rg
T T o   

  Using conservation of mechanical energy, the velocity can be found as a function of angle.  Let  

subscript 1 represent the skier at the top of the sphere, and subscript 2 represent the skier at 

angle .T   The top of the sphere is the zero location for gravitational potential energy � �0 .y    

There is also a point at the top of the spring that is the zero location for elastic potential energy 

(x = 0).  We have 
1

0,v   
1

0,y   and � �
2

cos .y r r T � �  

   
� �

� �

2 2 21 1 1

1 2 1 1 2 2 22 2 2

2

        0 cos   

2 cos

E E mv mgy mv mgy mv mg r r

v g r r

T

T

 o �  � o  � � o

 �
  

Combine the two relationships to find the critical angle. 

  
� �2

1critcrit 2

crit crit crit 3

2 cos
cos 2 2cos     cos 48

g r rv
rg rg

T
T T T ��

   � o  | q  

(b) If friction is present, another force will be present, tangential to the surface of the sphere.  The  

friction force will not affect the centripetal relationship of 

2

crit

crit
cos .

v
rg

T    But the friction will 

reduce the speed at any given angle, and so the skier will be at a  greater  angle before the 

critical speed is reached. 

 

 

 

 

Start of fall

Contact with 

spring, 

0 for elastic PE

Bottom of fall, 0 

for gravitational 

h

x 

mgG

N
F
G

T

r
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29. Use conservation of energy, where all of the kinetic energy is transformed to thermal energy. 

� � � � � �
2

2 71 1

initial final thermal2 2

1m s
    2 56,000 kg 95km h 3.9 10 J

3.6 km h
E E mv E o    u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 

30. Apply the conservation of energy to the child, considering work done by gravity and thermal energy.   

Subscript 1 represents the child at the top of the slide, and subscript 2 represents the child at the 

bottom of the slide.  The ground is the zero location for potential energy � �0 .y    We have 
1

0,v   

1
2.2 m,y   

2
1.25m s,v   and 

2
0.y    Solve for the work changed into thermal energy. 

� � � � � � � � � �

2 21 1

1 2 1 1 2 2 thermal2 2

22 21 1

thermal 1 22 2

      

16.0 kg 9.80 m s 2.20 m 16.0 kg 1.25m s 332 J

E E mv mgy mv mgy E

E mgy mv

 o �  � � o

 �  �  
 

 

31. (a) See the free-body diagram for the ski.  Write Newton’s second law  

for forces perpendicular to the direction of motion, noting that there 

is no acceleration perpendicular to the plane. 

N N

fr N

cos     cos   

cosk k

F F mg F mg

F F mg

T T

P P T
A  � o  o

  
¦

 

Now use conservation of energy, including the non-conservative friction force.  Subscript 1 

represents the ski at the top of the slope, and subscript 2 represents the ski at the bottom of the 

slope.  The location of the ski at the bottom of the incline is the zero location for gravitational 

potential energy � �0 .y    We have 
1

0,v   
1

sin ,y T l  and 
2

0.y    Write the conservation of 

energy condition, and solve for the final speed.  Note that 
fr N

cos .k kF F mgP P T   

� � � � � � � �

2 2 21 1 1

1 1 2 2 fr 22 2 2

o o

2

   sin cos  

2 sin cos 2 9.80 m s 85 m sin 28 0.090cos 28

   25.49 m s 25m s

k

k

mv mgy mv mgy F mg mv mg

v g

T P T

T P T �

�  � � o  � o

 �  �

 |

l l l

l  

(b) Now, on the level ground, 
fr

,kF mgP  and there is no change in potential energy.  We again  

use conservation of energy, including the non-conservative friction force, to relate position 2 

with position 3.  Subscript 3 represents the ski at the end of the travel on the level, having 

traveled a distance 
3
l  on the level.  We have 

2
25.49 m s,v   

2
0,y   

3
0,v   and 

3
0.y   

   
2 2 21 1 1

2 2 3 3 fr 22 2 23 3
    kmv mgy mv mgy F mv mgP�  � � o  ol l  

   
� �

� � � �

22

2

3

25.49 m s
368.3m 370 m

2 2 9.80 m s 0.090k

v
gP �

   |l  

 

32. (a) Apply energy conservation with no non-conservative work.  Subscript 1 represents the ball as it  

is dropped, and subscript 2 represents the ball as it reaches the ground.  The ground is the zero 

location for gravitational potential energy.  We have 
1

0,v  
1

14.0 m,y   and 
2

0y  .  Solve for 

2
.v  

� �� �

2 2 21 1 1

1 2 1 1 2 2 1 22 2 2

2

2 1

          

2 2 9.80 m s 14.0 m 16.6 m s

E E mv mgy mv mgy mgy mv

v gy

 o �  � o  o

   
 

l 

T�mgG
N

F
Gfr

F
G
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(b) Apply energy conservation, but with non-conservative work due to friction included.  The 

energy dissipated will be given by 
fr

.F d   The distance d  over which the frictional force acts 

will be the 14.0 m distance of fall.  With the same parameters as above, and 
2

8.00m s,v   

solve for the force of friction. 

� � � �
� �

2 2 21 1 1

1 1 2 2 fr 1 2 fr2 2 2

22

21 2

fr

      

8.00 m s
0.145 kg 9.80 m s 1.09 N, upwards

2 2 14.0 m

mv mgy mv mgy F d mgy mv F d

y v
F m g

d d

�  � o  o

 �  �  

� �

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

 

 

33. We apply the work-energy theorem.  There is no need to use potential energy 

since the crate moves along the level floor, and there are no springs in the 

problem.  There are two forces doing work in this problem – the pulling force 

and friction.  The starting speed is 
0

0.v    Note that the two forces do work 

over different distances. 

� �

� �

o o 2 21

net P fr P P fr fr 2

1

P P fr P P fr2

2

cos0 cos180   

2
    

f i

k f kf

W W W F d F d K m v v

F d mgd m v F d mgd
m

vP P

 �  �  '  � o

  �� o
 

  
� � � � � � � � � � � � � �22

   350 N 30 m 0.25 96 kg 9.80 m s 15m 12 m s
96 kg

 �  ª º¬ ¼  

 

34. Since there is a non-conservative force, apply energy conservation with the dissipative friction term.  

Subscript 1 represents the roller coaster at point 1, and subscript 2 represents the roller coaster at 

point 2.  Point 2 is taken as the zero location for gravitational potential energy.  We have 

1
1.70 m s,v  

1
32 m,y   and 

2
0.y    Solve for 

2
.v   Note that the dissipated energy is given by 

fr
0.23 .F d mgd  

2 2 21 1

1 1 2 2 2 1 12 2
0.23     0.46 2+mv mgy mv mgy mgd v gd v gy�  � o  � � �  

� � � � � � � � � �22 2
0.46 9.80 m s 45.0 m 1.70 m s 2 9.80 m s 32 m 20.67 m s 21m s    � � �  |  

 

35. Consider the free-body diagram for the skier in the midst of the  

motion.  Write Newton’s second law for the direction perpendicular to the 

plane, with an acceleration of 0.   

  
N N

fr N

cos 0    cos   

cosk k

F F mg F mg

F F mg

T T

P P T
A  �  o  o

  
¦

 

Apply conservation of energy to the skier, including the dissipative 

friction force.  Subscript 1 represents the skier at the bottom of the slope, 

and subscript 2 represents the skier at the point furthest up the slope.  The location of the skier at the 

bottom of the incline is the zero location for gravitational potential energy � �0 .y    We have 

1
9.0 m s,v   

1
0,y   

2
0,v   and 

2
sin .y d T  

� �
� � � �

2 2 21 1 1

1 1 2 2 fr 12 2 2

22 21

2 1 1

    0 0 sin cos   

9.0 m ssin
tan tan19 0.020

cos 2 cos 2 9.80 m s 12 m cos19

k

k

mv mgy mv mgy F d mv mgd mgd

v gd v
gd gd

T P T

TP T
T T �

�  � o �  � � o

�
  �  � q  

q

�
 

mgG
N

F
G

f r
F
G

P
F
G

d

T�mgG

N
F
G

fr
F
G

T�
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36. (a) Use conservation of energy to equate the potential energy at the top of the circular track to the  

kinetic energy at the bottom of the circular track.  Take the bottom of the track to the be 0 level 

for gravitational potential energy. 

   

� � � �

21

top bottom bottom2

2

bottom

      

2 2 9.80 m s 2.0 m 6.261m s 6.3m s

E E mgr mv

v gr

 o  o

   |
 

 (b) The thermal energy produced is the opposite of the work done by the friction force.  In this  

situation, the force of friction is the weight of the object times the coefficient of kinetic friction. 

   

� �
� � � � � � � �

thermal friction friction friction k k

2

cos cos180

        0.25 1.0 kg 9.80 m s 3.0m 7.35J 7.4 J

E W F x mg x mg xT P P �  � '  � '  � ' q  '

  |

F x
G G<

 

(c) The work done by friction is the change in kinetic energy of the block as it moves from point B 

to point C. 

   

� �
� �
� � � �

2 21

friction C B C B2

22friction

C B

  

2 7.35J2
6.261m s 4.9498m s 4.9 m s

1.0 kg

W K K K m v v

W
v v

m

 '  �  � o

�
 �  �  |

 

(d) Use conservation of energy to equate the kinetic energy when the block just contacts the spring 

with the potential energy when the spring is fully compressed and the block has no speed.  

There is no friction on the block while compressing the spring. 

   

� � � �
� �

2 21 1

initial final contact max2 2

22

contact

22

max

      

4.9498 m s
1.0 kg 612.5 N m 610 N m

0.20 m

E E mv kx

v
k m

x

 o  o

   |
 

 

37. Use conservation of energy, including the non-conservative frictional force, as developed in Eq. 8-

15.  The block is on a level surface, so there is no gravitational potential energy change to consider.  

The frictional force is given by  
fr N

,k kF F mgP P   since the normal force is equal to the weight.  

Subscript 1 represents the block at the compressed location, and subscript 2 represents the block at 

the maximum stretched position.  The location of the block when the spring is neither stretched nor 

compressed is the zero location for elastic potential energy (x = 0).  Take right to be the positive 

direction.  We have 
1

0,v   
1

0.050 m,x  �  
2

0,v   and 
2

0.023 m.x     

� �
� �

2 2 2 21 1 1 1

1 2 fr 1 1 2 2 fr 2 12 2 2 2

2 21 1

1 2 2 12 2

      

  k

E E F mv kx mv kx F x x

kx kx mg x xP

 � o �  � � � o

 � � o

l
 

� �
� �

� � � � � � � �> @
� � � �

2 2

1 2 2 1

2

2 1

180 N m 0.050m 0.023m
0.40

2 2 2 0.620 kg 9.80 m s
k

k x x k x x
mg x x mg

P
� � � �� �

    
�

 

 

38. Use conservation of energy, including the non-conservative frictional force, as developed in Eq. 8-

15.  The block is on a level surface, so there is no gravitational potential energy change to consider.  

Since the normal force is equal to the weight, the frictional force is 
fr N

.k kF F mgP P    Subscript 1 

represents the block at the compressed location, and subscript 2 represents the block at the maximum 

stretched position.  The location of the block when the spring is neither stretched nor compressed is 

the zero location for elastic potential energy (x = 0).  Take right to be the positive direction.  We 

have 
1

0,v   
1

0.18 m,x  �  and 
2

0.v    The value of the spring constant is found from the fact that 
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a 25-N force compresses the spring 18 cm, and so 25 N 0.18 m 138.9 N m.k F x     The value 

of 
2

x  must be positive. 

� �

� �

� � � � � � � � � � � � � � � �

2 2 2 21 1 1 1

1 2 fr 1 1 2 2 fr 2 12 2 2 2

2 2 2 21 1

1 2 2 1 2 2 1 12 2

22

2 2

2

2 2

      

2 2
    0  

2 0.30 0.18 9.80 2 0.30 0.18 9.80
0.18 0.18 0  

138.9 138.9

0.00762 0.

k k
k

E E F mv kx mv kx F x x

mg mg
kx kx mg x x x x x x

k k

x x

x x

P PP

 � o �  � � � o

 � � o � � �  o

� � � � �  o

� �

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

l

2 2
03103 0    0.1724 m, 0.1800 m   0.17 mx x o  � o  

 

 

39. (a) Calculate the energy of the ball at the two maximum heights, and subtract to find the amount of  

energy lost.  The energy at the two heights is all gravitational potential energy, since the ball has 

no kinetic energy at those maximum heights. 

 

lost initial final initial final

lost initial final initial final

initial initial initial

2.0 m 1.5 m
0.25 25%

2.0 m

E E E mgy mgy

E mgy mgy y y
E mgy y

 �  �

� � �
     

 

(b) The ball’s speed just before the bounce is found from the initial gravitational potential energy, 

and the ball’s speed just after the bounce is found from the ball’s final gravitational potential 

energy. 

  

� � � �

21

initial before initial before2

2

before initial

      

2 2 9.80 m s 2.0 m 6.3m s

U K mgy mv

v gy

 o  o

   
 

� � � �

21

final after final after2

2

after final

      

2 2 9.80 m s 1.5 m 5.4 m s

U K mgy mv

v gy

 o  o

   
 

(c) The energy “lost” was changed  primarily into heat energy  – the temperature of the ball and the 

ground would have increased slightly after the bounce.  Some of the energy may have been 

changed into acoustic energy (sound waves).  Some may have been lost due to non-elastic 

deformation of the ball or ground. 

 

40. Since there is friction in this problem, there will be energy dissipated by friction. 

  

� � � �

� � � � � � � � � �

2 21

friction friction 1 2 1 22

2 2 51

2

0    

      56 kg 0 11.0 m s 56 kg 9.80 m s 230 m 1.2 10 J

E K U E K U m v v mg y y� ' � '  o  �' � '  � � �

 � �  uª º¬ ¼
 

41. The change in gravitational potential energy is given by .U mg y'  '  Assume a mass of 75 kg. 

  � � � � � �2
75kg 9.80 m s 1.0 m 740JU mg y'  '    

  

42. (a) Use conservation of energy.  Subscript 1 represents the block at the compressed location, and  

subscript 2 represents the block at its maximum position up the slope.  The initial location of the 

block at the bottom of the plane is taken to be the zero location for gravitational potential 

energy (y = 0).  The variable x will represent the amount of spring compression or stretch.  We 

have 
1

0,v   
1

0.50 m,x   
1

0,y   
2

0,v   and 
2

0.x    The distance the block moves up the 

plane is given by 
sin

,
y

d
T

  so 
2

sin .y d T   Solve for d. 
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 � � � �
� � � �

2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

22

2 11

1 22 2

      

75 N m 0.50 m
sin     0.73m

2 sin 2 2.0 kg 9.80 m s sin 41

E E mv mgy kx mv mgy kx

kx
kx mgy mgd d

mg
T

T

 o � �  � � o

  o    
q

 

 (b) Now the spring will be stretched at the turning point of the motion.  The first half-meter of the  

block’s motion returns the block to the equilibrium position of the spring.  After that, the block 

beings to stretch the spring.  Accordingly, we have the same conditions as before except that 

2
0.5m.x d �  

   

� �

2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

21 1

12 2

      

sin 0.5m

E E mv mgy kx mv mgy kx

kx mgd k dT

 o � �  � � o

 � �
 

  This is a quadratic relation in d.  Solving it gives 0.66 m .d   

 (c) The block now moves 0.50 m,d   and stops at the equilibrium point of the spring.    

Accordingly, 
2

0.x    Apply the method of Section 8-6. 

   

� � � � � �

� � � �
� � � � � �

2 2 2 21 1

fr 2 1 2 1 2 12 2

2 21

2 1 1

2

2

cos   

sin
tan

cos 2 cos

75 N m 0.50 m
    tan 41 0.40

2 2.0 kg 9.80 m s 0.50 m cos 41

k

k

K U F m v v k x x mg y y mgd

kx mgd kx
mgd mgd

P T

TP T
T T

' � ' �  � � � � � � o

� �
  �

�

 � q  
q

l

  

 

43. Because friction does work, Eq. 8-15 applies. 

(a) The spring is initially uncompressed, so 
0

0.x    The block is stopped at the maximum 

compression, so 0.fv   

� � � � � �2 2 2 21 1

fr 0 0 k 02 2

2 21 1

k 02 2

0  

0  

f f f

f f

K U F m v v k x x mg x x

kx mg x mv

P

P

' � ' �  � � � � �  o

� �  o

l
 

� � � � � �
� �

� �

� �

2 2 2 21 1

2 2k k 0 k k 0

1

2

2

k 0

2

k

4

2

   1 1

f

mg mg k mv mg mg kmv
x

k k

mg kmv
k mg

P P P P

P
P

� r � � � r �
  

 � r �
§ ·
¨ ¸¨ ¸
© ¹

 

� � � � � �
� �

� � � � � �
� � � � � �

2 2

22 22

2.0 kg 9.80 m s 0.30 120 N m 2.0 kg 1.3m s
   1 1

120 N m 2.0 kg 9.80 m s 0.30

   0.1258 m 0.13m

 � r �

 |

§ ·
¨ ¸
¨ ¸
© ¹  

(b) To remain at the compressed position with the minimum coefficient of static friction, the 

magnitude of the force exerted by the spring must be the same as the magnitude of the 

maximum force of static friction. 

   
� �� �
� �� �s s 2

120 N m 0.1258 m
    0.7702 0.77

2.0 kg 9.80 m s

f
f

kx
kx mg

mg
P P o    |  
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(c) If static friction is not large enough to hold the block in place, the spring will push the block 

back towards the equilibrium position.  The block will detach from the decompressing spring at 

the equilibrium position because at that point the spring will begin to slow down while the block 

continues moving.  Use Eq. 8-15 to relate the block at the maximum compression position to the 

equilibrium position.  The block is initially at rest, so 
0

0v  .  The spring is relaxed at the 

equilibrium position, so 0.fx   

� � � � � �

� �
� � � � � � � � � �

2 2 2 21 1

fr 0 0 k 02 2

2 21 1

0 k 02 2

22 2

0 k 0

0  

0  

120 N m
2 0.1258 m 2 9.80 m s 0.30 0.1258 m

2.0 kg

    0.458 m s 0.5m s

f f f

f

f

K U F m v v k x x mg x x

mv kx mg x

k
v x g x

m

P

P

P

' � ' �  � � � � �  o

� �  o

 �  �

 |

l

 

 

44. (a) If there is no air resistance, then conservation of mechanical energy can be used.  Subscript 1  

represents the glider when at launch, and subscript 2 represents the glider at landing.  The 

landing location is the zero location for elastic potential energy (y = 0).  We have 
1

3500 m,y   

2
0,y   and 

1

1m s
480 km h 133.3m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  Solve for 
2
.v    

2 21 1

1 2 1 1 2 22 2
      E E mv mgy mv mgy o �  � o  

� � � � � �22 2

2 1 1

3.6 km h
2 133.3m s 2 9.80 m s 3500 m 293.8 m s

1m s

   1058 km h 1100 km h

v v gy �  �  

 |

§ ·
¨ ¸
© ¹  

 (b) Now include the work done by the non-conservative 

frictional force.  Consider the diagram of the glider.  

The distance over which the friction acts is given by 

3500 m

sin12
. 

q
l   Use the same subscript 

representations as above, with 
1
,y  

1
,v  and 

2
y  as before, and 

2

1m s
210 km h 58.33m s

3.6 km h
.v   

§ ·
¨ ¸
© ¹

  Write the energy conservation equation and solve for 

the frictional force. 

� �

� � � � � � � � � �

2 2

1 2 12 21 1

1 2 fr 1 1 2 2 fr2 2

2 2 2

2
        

2

980 kg 133.3m s 58.33m s 2 9.80 m s 3500 m

    2415 N 2400 N
3500 m

2
sin12

f

m v v gy
E E F mv mgy mv mgy F F

� �
 � o �  � � o  

� �
  |

q

ª º¬ ¼
§ ·
¨ ¸
© ¹

l l
l

 

 

 

 

 

 

12
o
 3500 m

l 



Chapter 8  Conservation of Energy 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

237 

45. (a) Equate the gravitational force to the expression for centripetal force, since the orbit is circular.   

Let 
E

M  represent the mass of the Earth. 

   

2

2 2E E E1

22
        

2

s s s s s
s s s s

s s s s

m v GM m GM m GM m
m v m v K

r r r r
 o  o     

 (b) The potential energy is given by Eq. 8-17, 
E

.s sU GM m r �   

 (c) 

E

E

12

2

s

s

s

s

GM m
K r

GM mU
r

  �
�

 

 

46. Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1 represents 

the rocket at launch, and subscript 2 represents the rocket at its highest altitude.  We have 

1
850m s,v   

2
0,v   and we take the final altitude to be a distance h above the surface of the Earth. 

� � � � � �
� � � �

2 2E E1 1

1 2 1 22 2

E E

11
2

1 E

E E 2

E E E 0

1
11 2 2 24

6 4 4

26

      

1 2
1

2

2 6.67 10 N m kg 5.98 10 kg
  6.38 10 m 1 3.708 10 m 3.7 10 m

6.38 10 m 850 m s

GM m GM m
E E mv mv

r r h

v GM
h r r

r GM r v

��

�
�

 o � �  � � o
�

 � �  �

u u
 u �  u | u

u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

§ ·
¨ ¸¨ ¸
© ¹

<

 

 If we would solve this problem with the approximate gravitation potential energy of mgh, we would 

get an answer of 
4

3.686 10 mu , which agrees to 2 significant figures. 

 

47. The escape velocity is given by Eq. 8-19. 

  

A B A B

esc esc esc esc

A B A B
A B A B

A B A

A B B

2 2 2 2
          2     2   

2 2 1
2     

4

M G M G M G M G
v v v v

r r r r

M G M G r
r r r

   o  o

 o  
§ ·
¨ ¸
© ¹

 

 

48. Note that the difference in the two distances from the center of the Earth, 
2 1

,r r�  is the same as the 

height change in the two positions, 
2 1

.y y�   Also, if the two distances are both near the surface of 

the Earth, then 
2

1 2 E
.r r r|  

� �

� � � � � �

E E E E E

E 2 1

2 1 1 2 1 2 1 2

E E

2 1 2 1 2 12 2

E E

1 1

     

GM m GM m GM m GM m GM m
U GM m r r

r r r r r r r r

GM m GM
y y m y y mg y y

r r

'  � � �  �  �  �

| �  �  �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

 

49. The escape velocity for an object located a distance r from a mass M is given by Eq. 8-19, 

esc

2
.

MG
v

r
   The orbit speed for an object located a distance r from a mass M is 

orb
.

MG
v

r
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 (a) 
� � � �30 11 2 2

5Sun

esc at 8

Sun's
Sun

surface

2 2.0 10 kg 6.67 10 N m kg2
6.2 10 m s

7.0 10 m

M G
v

r

�u u
   u

u

<
 

(b) 
� � � �30 11 2 2

4Sun

esc at 11

Earth
Earth orbit

orbit

2 2.0 10 kg 6.67 10 N m kg2
4.2 10 m s

1.50 10 m

M G
v

r

�

�

u u
   u

u

<
 

Sunesc at

Earth

orbit Earth orbit

esc at Earth

Earth orbit
Earth Sun

orbit
orbit

Earth orbit

2

2     2

M Gv
r

v v
v M G

r

  o    

Since 
esc at Earth

Earth orbit

orbit

1.4 ,v v|  the orbiting object will not escape the orbit. 

 

50. (a) The potential energy is given by Eq. 8-17. 

   

� � � � � �
� �

� � � � � �
� �

11 2 2 24

E

A 6 6

A

10 10

11 2 2 24

E

B 6 7

B

10 10

6.67 10 N m kg 950 kg 5.98 10 kg

6.38 10 m 4.20 10 m

     3.5815 10 J 3.6 10 J

6.67 10 N m kg 950 kg 5.98 10 kg

6.38 10 m 1.26 10 m

    1.9964 10 J 2.0 10 J

GmM
U

r

GmM
U

r

�

�

u u
 �  �

u � u

 � u | � u

u u
 �  �

u � u

 � u | � u

<

<
  

(b) An expression for the kinetic energy is found by equating the gravitational force to the 

expression for centripetal force, since the satellites are in circular orbits. 

   � �

� �

2

2E E1 1

2 22

10 10 10E 1

A 2

A

10 10 10E 1

B 2

B

    
2

3.5815 10 J 1.7908 10 J 1.8 10 J
2

1.9964 10 J 0.9982 10 J 1.0 10 J
2

mv GmM GmM
mv K U

r r r
GmM

K
r

GmM
K

r

 o    �

  � � u  u | u

  � � u  u | u

 

 (c) We use the work-energy theorem to calculate the work done to change the orbit. 

   
Net orbit gravity orbit gravity orbit gravity

change change change

     W K W W W U W K U '  �  � ' o  ' � ' o  

   

� � � � � � � �

� � � �

1 1

orbit gravity B A B A B A B A2 2

change

10 10 91 1

B A2 2
1.9964 10 J 3.5815 10 J 7.9 10 J        

W K U K K U U U U U U

U U

 ' � '  � � �  � � � �

 �  � u � � u  u
 

 

51. For a circular orbit, the gravitational force is a centripetal force.  The escape velocity is given by Eq. 

8-19. 

  

2

orbit

orbit esc orbit2

2
          2 2

GMm mv MG MG MG
v v v

r r r r r
 o      
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52. (a) With the condition that 0U   at ,r  f  the potential energy is given by E .
GM m

U
r

 �   The  

kinetic energy is found from the fact that for a circular orbit, the gravitational force is a 

centripetal force. 

   

2

2 2E orbit E E1 1

orbit orbit2 22

E E E1 1

2 2

        
GM m mv GM m GM m

mv K mv
r r r r

GM m GM m GM m
E K U

r r r

 o  o   

 �  �  �

 

(b) As the value of E decreases, since E is negative, the radius r must get smaller.  But as the radius 

gets smaller, the kinetic energy increases, since 
1

.K
r

v   If the total energy decreases by 1 

Joule, the potential energy decreases by 2 Joules and the kinetic energy increases by 1 Joule. 

 

53. The speed of the surface of the Earth at the equator (relative to the center of the Earth) is given by 

the following.  It is an eastward velocity. Call east the x-direction, and up the y-direction. 

� �6

E
2 6.38 10 m2

464 m s
86, 400s

r
v

T

SS u
    

The escape velocity from the Earth (relative to the center of the Earth) is given in Eq. 8-19. 

 
� � � �11 2 2 24

E

esc 6

E

2 6.67 10 N m kg 5.98 10 kg2
11,182 m s

6.38 10 m

GM
v

r

�u u
   

u

<
 

(a) With the surface of the Earth traveling east and the rocket velocity to the east, the rocket 

velocity and surface velocity will add linearly to give the escape velocity. 

rocket relative rocket relative

to surface of to surface of

Earth Earth

464 m s 11,182 m s     10,700 m sv v�  o   

 (b) With the surface of the Earth traveling east and the rocket velocity to the west,  the rocket  

velocity will have to be higher than the nominal escape velocity. 

   
rocket relative rocket relative

to surface of to surface of

Earth Earth

464 m s 11,182 m s     11,646 m s 11,600 m sv v�  � o  |  

 (c) When fired vertically upward, the rocket velocity and the Earth’s velocity are at right angles to  

each other, and so add according to the Pythagorean theorem to give the escape velocity. 

   � � � �
rocket relative

to surface of

Earth

2 22

rocket relative

to surface of

Earth

464 m s 11,182 m s     11,172 m s 11, 200 m sv v�  o  |  

 

54. (a) Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the rocket at launch, and subscript 2 represents the rocket at its highest altitude.  We 

have 
1 0

,v v  
2

0,v   
1 E

,r r  and 
2 E

r r h �  where we take the final altitude to be a distance h 

above the surface of the Earth. 

2 2E E E1 1

1 2 0 22 2

E E E

11
2

0 E

E E 2

E E E 0

      

21
1

2

GM m GM m GM m
E E mv mv

r r h r h

v GM
h r r

r GM r v

��

 o � �  � �  � o
� �

 � �  �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

§ ·§ ·
¨ ¸¨ ¸
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 (b) 

1

E

E 2

E 0

2
1

GM
h r

r v

�

 �
§ ·
¨ ¸
© ¹

 

� � � � � �
� � � �

1
11 2 2 24

6 6

26

2 6.67 10 N m kg 5.98 10 kg
  6.38 10 m 1 8.0 10 m

6.38 10 m 8350 m s

�
�u u

 u �  u
u

§ ·
¨ ¸¨ ¸
© ¹

<
 

 

55. (a) From Eq. 8-19, the escape velocity at a distance 
E

r rt  from the center of the Earth is 

 E

esc

2
.

GM
v

r
  

   
1/ 2 3 / 2E esc E1

esc E E2 3

2
2     2

2

GM dv GM
v r GM r GM

r dr r
� �  o  �  �  

 (b) 
� � � �

� �
� �

11 2 2 24

5esc E

esc 33
6

6.67 10 N m kg 5.98 10 kg
3.2 10 m

2 2 6.38 10 m

dv GM
v r r

dr r

�u u
' | '  � '  � u

u

<
 

      280 m s �  

The escape velocity has decreased by 280 m/s, and so is 
4

esc
1.12 10 m s 280 m sv  u �   

4
1.09 10 m s .u  

 

56. (a) Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the meteorite at the high altitude, and subscript 2 represents the meteorite just before 

it hits the sand.  We have 
1

90.0m sv  , 
1 E E

850kmr r h r �  � , and 
2 E

.r r  

 
2 2E E1 1

1 2 1 22 2

E E

      
GM m GM m

E E mv mv
r h r

 o � �  � � o
�

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
2

2 1 E

E E

1 1
2 3835.1m s 3840 m sv v GM

r r h
 � �  |

�
§ ·
¨ ¸
© ¹

 

 (b) We use the work-energy theorem, where work is done both by gravity (over a short distance)  

and the sand.  The initial speed is 3835.1 m/s, and the final speed is 0. 

   � �2 21

net G fr fr 2
 f iW W W mgd W K m v v �  �  '  � o  

   
� � � � � � � � � �22 21 1

fr 2 2

9

575kg 3835.1m s 575kg 9.80 m s 3.25m

    4.23 10 J

iW mv mgd � �  � �

 � u
  

 (c) The average force is the magnitude of the work done, divided by the distance moved in the  

sand. 

9

9sand

sand

sand

4.23 10 J
1.30 10 N

3.25m

W
F

d
u

   u  

(d) The work done by the sand shows up as thermal energy, so 
9

4.23 10 Ju  of thermal energy is  

produced. 
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57. The external work required � �other
W  is the change in the mechanical energy of the satellite.  Note the 

following, from the work-energy theorem. 

  � �
total gravity other other other mech

        W W W K U W W K U K U E � o '  �' � o  ' � '  ' �  '  

 From problem 52, we know that the mechanical energy is given by 1

2
.

GMm
E

r
 �  

  

1 1 1 1 1

2 2 2 2 2

final initial initial final

1 1

2 2

E E Einitial final

    

                                       
2 3 12

GMm GMm GMm GMm GMm
E E

r r r r r

GMm GMm GMm
r r r

 � o '  � � �  �

 �  

§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 

58. (a) The work to put 
1

m  in place is 0, because it is still infinitely distant from the other two masses.   

The work to put 
2

m  in place is the potential energy of the 2-mass system, 
1 2

12

.
Gm m

r
�   The work 

to put 
3

m  in place is the potential energy of the 
1 3

m m�  combination, 
1 3

13

,
Gm m

r
�  and the 

potential energy of the 
2 3

m m�  combination, 
2 3

23

.
Gm m

r
�   The total work is the sum of all of 

these potential energies, and so 
1 3 2 31 2

12 13 23

 
Gm m Gm mGm m

W
r r r

 � � � o  

1 2 1 3 2 3

12 13 23

.
m m m m m m

W G
r r r

 � � �
§ ·
¨ ¸
© ¹

  Notice that the work is negative, which is a result of the 

masses being gravitationally attracted towards each other. 

(b) This formula gives the potential energy of the entire system.  Potential energy does not “belong” 

to a single object, but rather to the entire system of objects that interact to give the potential 

energy. 

(c) Actually, 
1 3 2 31 2

12 13 23

m m m mm mW G
r r r

§ ·
 � �¨ ¸

© ¹
 is the binding energy of the system.  It would take 

that much work (a positive quantity) to separate the masses infinitely far from each other. 

 

59. Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the asteroid at high altitude, and subscript 2 represents the asteroid at the Earth’s surface.  

We have 
1

660 m s,v   
9

1 E
5.0 10 m,r r � u  and 

2 E
.r r  

 

� �
� � � �

2 2 2E E1 1

1 2 1 2 2 1 E2 2

1 2 2 1

11 2 2 24

2 4

6 9 6

1 1
        2

2 6.67 10 N m kg 5.98 10 kg

660 m s 1.12 10 m s1 1

6.38 10 m 5.0 10 m 6.38 10 m

GM m GM m
E E mv mv v v GM

r r r r
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u u
 �  u

�
u � u u
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60. Calculate the density of the shell.  Use that density to calculate the potential due to a full sphere of 

radius 
1
r , and then subtract the potential due to a mass of radius 

2
r . 

  

� � � � � �
3 34 4

full 1 inner 23 33 3 3 3 3 34 4 4
sphere sphere

3 3 31 2 1 2 1 2

full inner

sphere sphere

shell full inner full inner

sphere sphere sphere sphere

          

        

M M M
M r M r

r r r r r r

GM m GM m
Gm

U U U M M
r r r

G

U S S
S S S

   
� � �

 �  � � �  � �

 �

§ ·
§ ·¨ ¸ ¨ ¸¨ ¸ © ¹

© ¹
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3 3

3 3 1 24 4

1 23 33 3 3 3 3 3 3 34 4

3 31 2 1 2 1 2 1 2

        

m M M GmM r r
r r

r r r r r r r r r r

GmM r

S S
S S

�  � �
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 �

§ · § ·
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© ¹ © ¹

 

 

61. (a) The escape speed from the surface of the Earth is 
E E E

2 .v GM r   The escape velocity from  

the gravitational field of the sun, is 
S S SE

2 .v GM r     In the reference frame of the Earth, if 

the spacecraft leaves the surface of the Earth with speed v (assumed to be greater than the 

escape velocity of Earth), then the speed vc  at a distance far from Earth, relative to the Earth, is 

found from energy conservation. 

 
2 2 2 2 2 2 2 2 2E E1 1

E E2 22 2

E E

2
        

GM m GM
mv mv v v v v v v v

r r
c c c�  o  �  � o  �  

The reference frame of the Earth is orbiting the sun with speed 
0
.v   If the rocket is moving with 

speed vc  relative to the Earth, and the Earth is moving with speed 
0

v  relative to the Sun, then 

the speed of the rocket relative to the Sun is 
0

v vc �  (assuming that both speeds are in the same 

direction).  This is to be the escape velocity from the Sun, and so 
S 0

,v v vc �  or 
S 0

.v v vc  �   

Combine this with the relationship from above. 

 � � � �2 22 2 2 2 2

E S 0 E S 0 E
    v v v v v v v v v vc �  � � o  � �   

 
� � � �11 2 2 24

4E
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E

2 6.67 10 N m kg 5.98 10 kg2
1.118 10 m s

6.38 10 m
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v
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�u u
   u

u
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� � � �

� �
� �

11 2 2 30

4S

S 11

SE

11

4SE

0 7

SE

2 6.67 10 N m kg 1.99 10 kg2
4.212 10 m s

1.496 10 m

2 1.496 10 m2
2.978 10 m s

3.156 10 s

GM
v

r

r
v

T

SS

�u u
   u

u

u
   u

u

<

 

 
� � � � � �2 22 2 4 4 4

S 0 E

4

4.212 10 m s 2.978 10 m s 1.118 10 m s

1.665 10 m s 16.7 km s  

v v v v � �  u � u � u

 u |
 

 (b) Calculate the kinetic energy for a 1.00 kg mass moving with a speed of 
4

1.665 10 m s.u  This is  

the energy required per kilogram of spacecraft mass. 

 � � � �2
2 4 81 1

2 2
1.00 kg 1.665 10 m s 1.39 10 JK mv  u  u  
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62. The work necessary to lift the piano is the work done by an upward force, equal in magnitude to the 

weight of the piano.  Thus cos0 .W Fd mgh  q  The average power output required to lift the piano 

is the work done divided by the time to lift the piano. 

 
� �� �� �2
335 kg 9.80 m s 16.0 m

   30.0s
1750 W

W mgh mgh
P t

t t P
  o     

 

63. The 18 hp is the power generated by the engine in creating a force on the ground to propel the car 

forward.  The relationship between the power and the force is Eq. 8-21 with the force and velocity in 

the same direction, .P Fv   Thus the force to propel the car forward is found by .F P v   If the 

car has a constant velocity, then the total resistive force must be of the same magnitude as the engine 

force, so that the net force is zero.  Thus the total resistive force is also found by .F P v   

� � � �

� �

18 hp 746 W 1 hp
510 N

1m s
95km h

3.6 km h

P
F

v
   

§ ·
¨ ¸
© ¹

 

 

64. (a) � � � �221 1

2 2
85kg 5.0 m s 1062.5J 1100JK mv   |  

 (b) The power required to stop him is the change in energy of the player, divided by the time to  

carry out the energy change. 

 
1062.5J

1062.5W 1100 W
1.0s

P   |   

 

65. The energy transfer from the engine must replace the lost kinetic energy.  From the two speeds,  

calculate the average rate of loss in kinetic energy while in neutral. 

� � � � � �

1 2

2 22 2 51 1 1

2 12 2 2

1m s 1m s
95km h 26.39 m s       65km h 18.06 m s

3.6 km h 3.6 km h

1080 kg 18.06 m s 26.39 m s 1.999 10 J

v v

KE mv mv

    

'  �  �  � u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º¬ ¼

 

� �
5

4 41.999 10 J 1 hp
2.856 10 W , or 2.856 10 W 38.29 hp

7.0 s 746 W

W
P

t
u

   u u   

 So 
4

2.9 10 W  or 38 hpu  is needed from the engine. 

 

66. Since 
W

P
t

 , we have � � 6746 W 3600 s
3.0 hp 1 hr 8.1 10 J

1 hp 1 h
.W Pt   u§ · § ·

¨ ¸¨ ¸ © ¹© ¹
 

 

67. The power is the force that the motor can provide times the velocity, as given in Eq. 8-21.  The force 

provided by the motor is parallel to the velocity of the boat.  The force resisting the boat will be the 

same magnitude as the force provided by the motor, since the boat is not accelerating, but in the 

opposite direction to the velocity. 

  
� � � �

� �

55hp 746 W 1 hp
    4220 N 4200 N

1m s
35km h

3.6 km h

P
P Fv F

v
  o    |

§ ·
¨ ¸
© ¹

F v
G G<  

 So the force resisting the boat is 4200 N, opposing the velocity .  
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68. The average power is the energy transformed per unit time.  The energy transformed is the change in  

kinetic energy of the car. 

� � � � � �

� �

2

2 21

2 12

4

1m s
1400 kg 95 km h

3.6 km henergy transformed

time 2 7.4 s

   6.6 10 W 88 hp

m v vK
P

t t

�'
    

 u |

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 

69. The minimum force needed to lift the football player vertically is equal to his weight, mg.  The  

distance over which that force would do work would be the change in height, � �78m sin 33 .y'  q   

So the work done in raising the player is W mg y '  and the power output required is the work done 

per unit time. 

 
� � � � � �2
92 kg 9.80 m s 78 m sin 33

510 W
75 sec

W mg y
P

t t

q'
     

 

70. The force to lift the water is equal to its weight, and so the work to lift the water is equal to the  

weight times the vertical displacement.  The power is the work done per unit time.  

 
� �� �� �2
21.0 kg 9.80 m s 3.50 m

12.0 W
60 sec

W mgh
P

t t
     

 

71. The force to lift a person is equal to the person’s weight, so the work to lift a person up a vertical 

distance h is equal to mgh.  The work needed to lift N people is Nmgh, and so the power needed is 

the total work divided by the total time.  We assume the mass of the average person to be 70 kg. 

� � � � � �2

6 6
47000 70 kg 9.80 m s 200 m

1.79 10 W 2 10 W
3600 s

W Nmgh
P

t t
    u | u . 

 

72. We represent all 30 skiers as one person on the free-body diagram.  The engine 

must supply the pulling force.  The skiers are moving with constant velocity, 

and so their net force must be 0. 

N N

P fr

P fr k

cos 0    cos

sin 0  

sin sin cos

y

x

F F mg F mg

F F mg F

F mg F mg mg

T T

T

T T P T

 �  o  

 � �  o

 �  �

¦
¦  

The work done by 
P

F  in pulling the skiers a distance d is 
P

F d  since the force is parallel to the 

displacement.  Finally, the power needed is the work done divided by the time to move the skiers up 

the incline. 

� �

� � � � � � � �

kP

2

sin cos

30 75kg 9.80 m s sin 23 0.10cos 23 220 m 1hp
   19516 W 26 hp

120s 746 W

mg dW F d
P

t t t
T P T�

   

q � q
   § ·

¨ ¸
© ¹

 

 

73. The net rate of work done is the power, which can be found by .P Fv mav    The velocity is given 

by 
2

15.0 16.0 44
dx

v t t
dt

  � �  and 30.0 16.0.
dv

a t
dt

  �  

mgG

P
F
G

fr
F
G

N
F
G

T T

y 
x 
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 (a) � � � �> @� � � � � �22
0.28 kg 30.0 2.0 16.0 m s 15.0 2.0 16.0 2.0 44 m sP mav  � � �ª º¬ ¼      

      
2

197.1W 2.0 10 W � | � u  

 (b) � � � �> @� � � � � �22
0.28 kg 30.0 4.0 16.0 m s 15.0 4.0 16.0 4.0 44 m sP mav  � � �ª º¬ ¼  

    3844 W 3800 W |  

 The average net power input is the work done divided by the elapsed time.  The work done is the 

change in kinetic energy.  Note � �0 44 m s,v  �  � � � � � �2

2.0 15.0 2.0 16.0 2.0 44 16 m s,v  � �  �  

and � � � � � �2

4.0 15.0 4.0 16.0 4.0 44 132 m s.v  � �   

 (c) 
� � � � � � � �2 2

2 2 11
22

avg

0 to 2.0

0.28 kg 16 m s 44 m s

120 W
2.0s

f im v vK
P

t t

� � ��'
    �

' '

ª º¬ ¼
 

 (d) 
� � � � � � � �2 2

2 2 11
22

avg

2.0 to 4.0

0.28 kg 132 m s 16 m s

1200 W
2.0s

f im v vK
P

t t

��'
    

' '

ª º¬ ¼
 

 

74. First, consider a free-body diagram for the cyclist going down hill.  Write 

Newton’s second law for the x direction, with an acceleration of 0 since the 

cyclist has a constant speed. 

fr fr
sin 0    sinxF mg F F mgT T �  o  ¦  

 

 

 

Now consider the diagram for the cyclist going up the hill.  Again, write 

Newton’s second law for the x direction, with an acceleration of 0. 

fr P P fr
sin 0    sinxF F F mg F F mgT T � �  o  �¦  

Assume that the friction force is the same when the speed is the same, so the 

friction force when going uphill is the same magnitude as when going 

downhill. 

P fr
sin 2 sinF F mg mgT T �   

The power output due to this force is given by Eq. 8-21, with the force and velocity parallel. 

� � � � � �2 o

P
2 sin 2 75 kg 9.80 m s 4.0 m s sin 6.0 610 WP F v mgv T     

 

75. The potential energy is given by � � 21

2
U x kx  and so has a parabolic 

shape.  The total energy of the object is 
21

02
.E kx   The object, when 

released, will gain kinetic energy and lose potential energy until it 

reaches the equilibrium at x = 0, where it will have its maximum 

kinetic energy and maximum speed.  Then it continues to move to the 

left, losing kinetic energy and gaining potential energy, until it reaches 

its extreme point of 
0
.x x   Then the motion reverses, until the object 

reaches its original position.  Then it will continue this oscillatory 

motion between 0x   and 
0
.x x  

 

 

y 
x 

T�
T�

mgG

N
F
G

fr
F
G

P
F
G

y

x

T�

 

�

mgG

N
F
G

fr
F
G

T�

E

K

x0
x

U(x)

0
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76. (a) The total energy is � � � �221 1

02 2
160 N m 1.0 m 80 J .E kx    The answer has 2 significant  

figures. 

(b) The kinetic energy is the total energy minus the potential energy. 

� � � �221 1

2 2
80 J 160 N m 0.50 m 60 JK E U E kx �  �  �   

  The answer has 2 significant figures. 

(c) The maximum kinetic energy is the total energy, 80 J .  

(d) The maximum speed occurs at 0 ,x   the equilibrium position at the center of the motion.  Use 

the maximum kinetic energy (which is equal to the total energy) to find the maximum speed. 

   
� �2 max1

max max max2

2 80 J2
    5.7 m s

5.0 kg

K
K mv v

m
 o     

(e) The maximum acceleration occurs at the maximum displacement, 1.0 m ,x   since 

  F ma kx  � o  .
k x

a
m

  

   
� � � � 2max

max

160 N m 1.0m
32 m s

5.0 kg

k x
a

m
    

 

77. (a) To find possible minima and maxima, set the first derivative of the function equal to 0 and  

solve for the values of r. 

 � � � �6

6 12 12 7 13

1
    6 12

a b dU a b
U r b ar

r r r dr r r
 � �  � o  �  

 

1/ 6

crit7 13

2
0    2     ,

dU a b b
r

dr r r a
 o  o  f§ ·

¨ ¸
© ¹

 

The second derivative test is used to determine the actual type of critical points found. 

� �

� �
1 / 6

2

6

2 8 14 14

1/ 62

crit14 / 6 14 / 62
2

1
42 156 156 42

1 2 1 2
156 42 156 84 0  

2 2b
a

d U a b
b ar

dr r r r
d U b b

b a b b r
dr a ab b

a a
§ ·
¨ ¸
© ¹

 � �  �

 �  � ! o  § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹§ · § ·

¨ ¸ ¨ ¸
© ¹ © ¹

 

 

Thus there is a  minimum at 

1/ 6

2b
r

a
 § ·
¨ ¸
© ¹

.  We also must check the endpoints of the function.  

We see from the form � � � �6

12

1
U r b ar

r
 �  that as � �0, ,r U ro of  and so there is a 

maximum at r = 0. 

 (b) Solve � � 0U r   for the distance. 

   � � � � � �6 6

6 12 12 12

1 1
0    0 or 0  

a b
U r b ar b ar

r r r r
 � �  �  o  �  o   

   

1/ 6

 ; 
b

r r
a

 f  § ·
¨ ¸
© ¹
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 (c) See the adjacent graph.  The spreadsheet  

used for this problem can be found on the 

Media Manager, with filename 

“PSE4_ISM_CH08.XLS,” on tab 

“Problem 8.77c.” 
  

(d) For E < 0, there will be bound oscillatory 

motion between two turning points.  This 

could represent a chemical bond type of 

situation.  For E > 0, the motion will be 

unbounded, and so the atoms will not stay 

together. 
 

 (e) The force is the opposite of the slope of the potential energy graph. 

  

1/ 6

2
0 for 

b
F r

a
! � § ·

¨ ¸
© ¹

  ; 

1/ 6

2
0  for 

b
F r

a
� � � f§ ·

¨ ¸
© ¹

  ; 

1/ 6

2
0  for ,

b
F r r

a
   f§ ·

¨ ¸
© ¹

 

 (f)  � �
13 7

12 6dU b a
F r

dr r r
 �  �  

 

78. The binding energy will be � � � �
U min

U U rf � .  The value of r for which U(r) has a minimum is 

found in problem 77 to be 

1/ 6

2
.

b
r

a
 § ·
¨ ¸
© ¹

 

  � � � �
1/ 6 2 2 2

U min 2 2

2
0 0 0

2 2 4 42

b a b a a b a
U U r U r

ba b b bb
a a

f �  �   � � �  � � �  

ª º
« »§ · ª º§ · « »¨ ¸¨ ¸ « »§ ·© ¹ « » ¬ ¼§ ·© ¹ ¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

 

Notice that this is just the depth of the potential well. 

 

79. The power must exert a force equal to the weight of the elevator, through the vertical height, in the 

given time. 

  
� � � � � �

� �

2

4
885kg 9.80 m s 32.0 m

2.52 10 W
11.0s

mgh
P

t
   u  

 

80. Since there are no non-conservative forces, the mechanical energy of the projectile will be 

conserved.  Subscript 1 represents the projectile at launch and subscript 2 represents the projectile as 

it strikes the ground.  The ground is the zero location for potential energy � �0 .y    We have 

1
165m s,v   

1
135m,y   and 

2
0.y    Solve for 

2
.v    

� � � � � �

2 2 2 21 1 1 1

1 2 1 1 2 2 1 1 22 2 2 2

22 2

2 1 1

          

2 165m s 2 9.80 m s 135m 173m s

E E mv mgy mv mgy mv mgy mv

v v gy

 o �  � o �  o

 �  �  
 

Notice that the launch angle does not enter the problem, and so does not influence the final speed. 

 

 

 

 

r

U
(r

)

1/ 6br
a

§ · ¨ ¸
© ¹ � �

1/ 6

2
 minimum

b
r U

a
 § ·
¨ ¸
© ¹
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y 
x 

T��
mgG

N
F
G

P2
F
G

T�
fr2

F
G

81. (a) Use conservation of mechanical energy, assuming there are no non-conservative forces.   

Subscript 1 represents the water at the top of the dam, and subscript 2 represents the water as it 

strikes the turbine blades.  The level of the turbine blades is the zero location for potential 

energy � �0 .y    Assume that the water goes over the dam with an approximate speed of 0.  We 

have 
1

0,v   
1

80 m,y   and 
2

0.y    Solve for 
2
.v  

� �� �

2 2 21 1 1

1 2 1 1 2 2 1 22 2 2

2

2 1

          

2 2 9.80 m s 88 m 41.53m s 42 m s

E E mv mgy mv mgy mgy mv

v gy

 o �  � o  o

   |
 

(b) The energy of the water at the level of the turbine blades is all kinetic energy, and so is given by  
21

22
.mv   55% of that energy gets transferred to the turbine blades.  The rate of energy transfer to 

the turbine blades is the power developed by the water. 

� �� �� �2

2 51

22

0.55 550 kg s 41.53m s
0.55 2.6 10 W

2

m
P v

t
   u§ ·

¨ ¸
© ¹

 

 

82.  First, define three speeds: 

0
12 km hv    speed when coasting downhill. 

1
32 km hv   speed when pedaling downhill. 

2
v  Speed when climbing the hill. 

For coasting downhill at a constant speed, consider the first free-body 

diagram shown.  The net force on the bicyclist must be 0.  Write 

Newton’s second law for the x direction. 

fr0 fr0
sin 0    sinxF F mg F mgT T �  o  ¦  

Note that this occurs at 
0
.v v  

 

When pumping hard downhill, the speed is 32 8

1 12 3
.o ov v v    Since the 

frictional force is proportional to 
2
,v  the frictional force increases by  

a factor of � �2
8

3
: � �2

8

fr1 fr03

64

9
sin .F F mg T   See the second free-

body diagram.  There is a new force, 
P1

,F
G

 created by the bicyclist.  

Since the cyclist is moving at a constant speed, the net force in the x 

direction must still be 0.  Solve for 
P1

,F  and calculate the power associated with the force. 

� � 55

fr1 P1 P1 fr1 9

1 fr1 1 1

64

9

55

9

sin 0    sin sin sin

sin

1xF F mg F F F mg mg mg

P F v mgv

T T T T

T

 � �  o  �   

  

�¦
 

 

Now consider the cyclist going uphill.  The speed of the cyclist going 

up the hill is 
2

v .  Since the frictional force is proportional to 
2
,v  the 

frictional force is given by  � �2

fr2 2 0
sin .F v v mg T   See the third free-

body diagram.  There is a new force, 
P2

,F
G

 created by the bicyclist.  

Since the cyclist is moving at a constant speed, the net force in the x 

direction must still be 0. 

P2 fr 2
sin 0xF F mg FT � �  ¦  

The power output of the cyclist while pedaling uphill is the same as when pedaling going downhill. 

y 
x 

T��
mgG

N
F
G

fr0
F
G

T�

y 
x 

T��
mgG

N
F
G

fr1
F
G

T�
P1

F
G
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� �55 55 55

2 1 1 2 2 1 2 1 29 9 9
sin   sin    sinP PP P mgv F v mgv F mg v vT T T  o  o   

Combine this information with Newton’s second law equation for the bicyclist going uphill.  

� � � �2

P2 fr 2 1 2 2 0

55

9
sin sin sin sin 0F mg F mg v v mg v v mgT T T T� �  � �   

This simplifies to the following cubic equation:  
3 2 255

2 2 0 1 09
0.v v v v v� �    Note that since every term 

has speed to the third power, there is no need to do unit conversions.  Numerically, this equation is 
3

2 2
144 28160 0,v v� �   when the speed is in km/h.  Solving this cubic equation (with a spreadsheet, 

for example) gives 
2

28.847 km h 29 km h .v  |  

 

83. (a) The speed 
B

v  can be found from conservation of mechanical energy.  Subscript A represents the  

skier at the top of the jump, and subscript B represents the skier at the end of the ramp.  Point B 

is taken as the zero location for potential energy � �0 .y   We have 
1

0,v   
1

40.6m,y   and 

2
0.y    Solve for 

2
.v    

2 2 21 1 1

A B A A B B A B2 2 2
          E E mv mgy mv mgy mgy mv o �  � o  o  

� � � �2

B A
2 2 9.80m s 40.6m 28.209 m s 28.2 m sv gy   |  

(b) Now we use projectile motion.  We take the origin of coordinates to be the point on the ground 

directly under the end of the ramp.  Then an equation to describe the slope is 
slope

tan 30 .y x � q   

The equations of projectile motion can be used to find an expression for the parabolic path that 

the skier follows after leaving the ramp.  We take up to be the positive vertical direction.  The 

initial y-velocity is 0, and the x-velocity is 
B

v  as found above. 

   � �221 1

B proj 0 0 B2 2
  ;  x v t y y gt y g x v  �  �  

  The skier lands at the intersection of the two paths, so 
slope proj

y y . 

   

� �

� � � � � � � �

2

2 2 21

slope proj 0 B 0 B2

B

2 2
2 2 2 2 2 2

B B 0 B B B 0 B

    tan 30     2 tan 30 2 0  

2 tan 30 2 tan 30 8 tan 30 tan 30 2

2

x
y y x y g gx x v y v

v

v v gy v v v gy v
x

g g

 o � q  � o � q �  o

q r q � q r q �
  

§ ·
¨ ¸
© ¹

 

Solving this with the given values gives 7.09 m, 100.8m.x  �   The positive root is taken.  

Finally, 
100.8m

cos30.0     116m
cos30.0 cos30.0

.
x

s x sq  o    
q q

 

 

84. (a) The slant of the jump at point B does not affect the energy conservation calculations from  

problem 83, and so this part of the problem is solved exactly as in problem 83, and the answer is 

exactly the same as in problem 83: 
B

28.209 m s 28.2 m s .v  |  

(b) The projectile motion is now different because the velocity at point B is not purely horizontal.  

We have that 
B

28.209 m sv   and 
B

3.0m s.yv    Use the Pythagorean theorem to find 
B

.xv  

 � � � �2 22 2

B B B
28.209 m s 3.0m s 28.049 m sx yv v v �  �   

We take the origin of coordinates to be the point on the ground directly under the end of the 

ramp.  Then an equation to describe the slope is 
slope

tan 30 .y x � q   The equations of projectile 

motion can be used to find an expression for the parabolic path that the skier follows after 

leaving the ramp.  We take up to be the positive vertical direction. 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

250 

 

2

21 1

B proj 0 B 0 B2 2

B B

  ;  x y y
x x

x x
x v t y y v t gt y v g

v v
  � �  � �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

  The skier lands at the intersection of the two paths, so 
slope proj

.y y  

 � �
� � � �

2

1

slope proj 0 B 2

B B

2 2

B B B 0 B

2
2

B B B B B B 0 B

    tan 30   

2 tan 30 2 0  

2 tan 30 2 tan 30 8

2

y
x x

x x y x

x x y x x y x

x x
y y x y v g

v v

gx x v v v y v

v v v v v v gy v
x

g

 o � q  � � o

� q � �  o

q � r q � �
 

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º¬ ¼

ª º ª º¬ ¼ ¬ ¼

 

Solving this with the given values gives 6.09 m, 116.0m.x  �   The positive root is taken.  

Finally, 
116.0m

cos30.0     134 m
cos30.0 cos30.0

.
x

s x sq  o    
q q

 

 

85. (a) The tension in the cord is perpendicular to the path at all times, and so the tension in the cord  

does not do any work on the ball.  Thus only gravity does work on the ball, and so the 

mechanical energy of the ball is conserved.  Subscript 1 represents the ball when it is horizontal, 

and subscript 2 represents the ball at the lowest point on its path.  The lowest point on the path 

is the zero location for potential energy � �0 .y    We have 
1

0v  , 
1

,y  l  and 
2

0.y    Solve 

for 
2
.v    

2 2 21 1 1

1 2 1 1 2 2 2 22 2 2
            2E E mv mgy mv mgy mg mv v g o �  � o  o  l l  

 (b) Use conservation of energy, to relate points 2 and 3.  Point 2 is as described above.  Subscript 3  

represents the ball at the top of its circular path around the peg.  The lowest point on the path is 

the zero location for potential energy � �0 .y    We have 
2

2 ,v g l  
2

0,y   and 

� � � �
3

2 2 0.80 0.40y h �  �  l l l l .  Solve for 
3
.v    

� � � �2 2 21 1 1 1

2 3 2 2 3 3 32 2 2 2

3

        2 0.40   

1.2

E E mv mgy mv mgy m g mv mg

v g

 o �  � o  � o

 

l l

l
 

 

86. The ball is moving in a circle of radius � �.h�l   If the ball is to complete the circle with the string 

just going slack at the top of the circle, the force of gravity must supply the centripetal force at the 

top of the circle.  This tells the critical (slowest) speed for the ball to have at the top of the circle. 

� �
2

2crit

crit
    

mv
mg v gr g h

r
 o   �l  

To find another expression for the speed, we use energy conservation.  Subscript 1 refers to the ball 

at the launch point, and subscript 2 refers to the ball at the top of the circular path about the peg.  The 

zero for gravitational potential energy is taken to be the lowest point of the ball’s path.  Let the speed 

at point 2 be the critical speed found above. 

� � � �2 21 1 1

1 2 1 1 2 22 2 2
        2   

0.6

E E mv mgy mv mgy mg mg h mg h

h

 o �  � o  � � � o

 

l l l

l
 

If h is any smaller than this, then the ball would be moving slower than the critical speed when it 

reaches the top of the circular path, and would not stay in centripetal motion.  
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87. Consider the free-body diagram for the coaster at the bottom of the loop.  The net 

force must be an upward centripetal force.  
2 2

bottom N bottom N bottom

bottom bottom

    F F mg m v R F mg m v R �  o  �¦  

Now consider the force diagram at the top of the loop.  Again, the net force must be 

centripetal, and so must be downward. 
2 2

top N top top

top top

    NF F mg m v R F m v R mg �  o  �¦ .   

Assume that the speed at the top is large enough that 
top

0,NF !  and so 
top

.v Rg!   

Now apply the conservation of mechanical energy.  Subscript 1 represents the coaster at the bottom 

of the loop, and subscript 2 represents the coaster at the top of the loop.  The level of the bottom of 

the loop is the zero location for potential energy � �0 .y    We have y1 = 0 and y2 = 2R. 

2 2 2 21 1

1 2 1 1 2 2 bottom top2 2
        4E E mv mgy mv mgy v v gR o �  � o  �  

 The difference in apparent weights is the difference in the normal forces. 

� � � � � �
� �

2 2 2 2

N N bottom top bottom top

bottom top

2

                  2 4 6

F F mg m v R m v R mg mg m v v R

mg m gR R mg

�  � � �  � �

 �  
 

 Notice that the result does not depend on either v or R . 
 

88. The spring constant for the scale can be found from the 0.5 mm compression due to the 760 N force.  

6

4

760 N
1.52 10 N m.

5.0 10 m

F
k

x �
   u

u
  Use conservation of energy for the jump.  Subscript 1 

represents the initial location, and subscript 2 represents the location at maximum compression of the 

scale spring.  Assume that the location of the uncompressed scale spring is the 0 location for 

gravitational potential energy. We have 
1 2

0v v   and 
1

1.0 m.y    Solve for 
2
,y  which must be 

negative.  
2 2 21 1 1

1 2 1 1 2 2 22 2 2

2 2 2 3 31

1 2 2 2 2 1 2 22

      

    2 2 1.00 10 1.00 10 0

E E mv mgy mv mgy ky

mg mg
mgy mgy ky y y y y y

k k
� �

 o �  � � o

 � o � �  � u � u  
 

� � � �

2 2

2

6 2 4

scale

3.21 10 m, 3.11 10 m

1.52 10 N m 3.21 10 m 4.9 10 N

y

F k x

� �

�

 � u u

  u u  u
 

 

89. (a) The work done by the hiker against gravity is the change in gravitational potential energy.   

� � � � � �2 5 5

G
65 kg 9.80 m s 4200 m 2800 m 8.918 10 J 8.9 10 JW mg y '  �  u | u  

 (b) The average power output is found by dividing the work by the time taken. 

� � � �
5

grav 1

output

2

8.918 10 J
49.54 W 5.0 10 W

5.0 h 3600 s 1 h

1 hp
49.54 W 6.6 10 hp

746 W

W
P

t

�

u
   | u

 u§ ·
¨ ¸
© ¹

 

 (c) The output power is the efficiency times the input power. 

output

output input input

49.54 W
0.15     330 W 0.44 hp

0.15 0.15

P
P P P o      

mgG

N

bottom

F
G

mgGN

top

F
G
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90. (a) Draw a free-body diagram for the block at the top of the curve.  Since the  

block is moving in a circle, the net force is centripetal.  Write Newton’s 

second law for the block, with down as positive.  If the block is to be on 

the verge of falling off the track, then 
N

0.F    

2 2

R N top top
        F F mg m v r mg m v r v gr �  o  o  ¦  

Now use conservation of energy for the block.  Since the track is frictionless, there are no non-

conservative forces, and mechanical energy will be conserved.  Subscript 1 represents the block 

at the release point, and subscript 2 represents the block at the top of the loop.  The ground is 

the zero location for potential energy � �0 .y    We have 
1

0,v   
1

,y h  
2

,v gr  and 
2

2 .y r   

Solve for h. 
2 21 1 1

1 2 1 1 2 22 2 2
        0 2   

2.5

E E mv mgy mv mgy mgh mgr mgr

h r

 o �  � o �  � o

 
 

 (b) See the free-body diagram for the block at the bottom of the loop.  The net  

force is again centripetal, and must be upwards. 
2 2

R N N bottom
    F F mg m v r F mg m v r �  o  �¦  

The speed at the bottom of the loop can be found from energy conservation, 

similar to what was done in part (a) above, by equating the energy at the 

release point (subscript 1) and the bottom of the loop (subscript 2).  We now have 
1

0,v   

1
2 5 ,y h r   and 

2
0.y    Solve for 

2
.v  

 

2 2 21 1 1

1 2 1 1 2 2 bottom2 2 2

2 2

bottom N bottom

        0 5 0  

10     10 11

E E mv mgy mv mgy mgr mv

v gr F mg m v r mg mg mg

 o �  � o �  � o

 o  �  �  
 

 (c) Again we use the free body diagram for the top of the loop, but now the normal force does not  

vanish.  We again use energy conservation, with 
1

0,v   
1

3 ,y r  and 
2

0.y    Solve for 
2
.v  

   

2 2

R N N top

2 2 21 1 1

1 2 1 1 2 2 top2 2 2

    

        0 3 0  

F F mg m v r F m v r mg

E E mv mgy mv mgy mgr mv

 �  o  �

 o �  � o �  � o

¦
 

   
2 2

top N top
6     6 5v gr F m v r mg mg mg mg o  �  �   

 (d) On the flat section, there is no centripetal force, and 
N

.F mg  

 

91. (a) Use conservation of energy for the swinging motion.  Subscript 1  

represents the student initially grabbing the rope, and subscript 2 

represents the student at the top of the swing.  The location where the 

student initially grabs the rope is the zero location for potential 

energy � �0 .y    We have 
1

5.0 m s ,v   
1

0,y   and 
2

0.v    Solve 

for 
2
.y  

2 21 1

1 2 1 1 2 22 2

2

2 11

1 2 22

      

    
2

E E mv mgy mv mgy

v
mv mgy y h

g

 o �  � o

 o   
 

Calculate the angle from the relationship in the diagram. 

2

1
cos 1 1   

2

h h v
g

T �
  �  � o
l

l l l
 

mgGN
F
G

l 

y2 = h 

l - h 
T�

mgG

N
F
G
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� �
� � � �

22

1 11

2

5.0 m s
cos 1 cos 1 29

2 2 9.80 m s 10.0 m

v
g

T � � �  �  q
§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹l

 

(b) At the release point, the speed is 0, and so there is no radial acceleration,  

since 
2

R
.a v r  Thus the centripetal force must be 0.  Use the free-body 

diagram to write Newton’s second law for the radial direction. 

� � � �
R T

2 o

T

cos 0  

cos 56 kg 9.80 m s cos 29 480 N

F F mg

F mg

T

T

 �  o

   

¦
 

 (c) Write Newton’s second law for the radial direction for any angle, and solve for the tension. 
2 2

R T T
cos     cosF F mg m v r F mg m v rT T �  o  �¦  

As the angle decreases, the tension increases, and as the speed increases, the tension increases.  

Both effects are greatest at the bottom of the swing, and so that is where the tension will be at 

its maximum. 

� � � � � � � �2

2 2

T 1

max

56 kg 5.0 m s
cos0 56 kg 9.80 m s 690 N

10.0 m
F mg m v r �  �   

 

92. (a) � � � � � � 0 0 00 0 0

0 0 02

0 0

1 1 1r r r r r rdU r r r r
F r U e U e U e

dr r r r r r r
� � � �  � � � � � �  � �

ª º§ · § ·§ · § ·
¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »© ¹ © ¹© ¹ © ¹¬ ¼

 

  

(b) � � � �
0 0

0 0

30

0

20 0 0 2

0 0 9

0

0

0 0 0

1 1

3 3
3 0.03

1 1

r r

r r

r
U e

r r r
F r F r e

r
U e

r r r

�

�

�

� �
  |

� �

§ ·
¨ ¸
© ¹
§ ·
¨ ¸
© ¹

 

 (c) � � � � � � � � � � � �

� �

2

0 1

0 0 92 2

2

0

1

31
3 0.1

1
  ;  

C
dU r rC

F r C F r F r
dr r r C

r

�
 �  � � �  �   |

�

ª º§ ·
¨ ¸« »© ¹¬ ¼

 

The Yukawa potential is said to be “short range” because as the above examples illustrate, the 

Yukawa force “drops off” more quickly then the electrostatic force.  The Yukawa force drops by 

about 97% when the distance is tripled, while the electrostatic force only drops by about 89%. 

 

93. Energy conservation can be used to find the speed that the water must leave the ground.  We take the 

ground to be the 0 level for gravitational potential energy.  The speed at the top will be 0. 

� � � �2 21

ground top ground top ground top2
        2 2 9.80 m s 33m 25.43m sE E mv mgy v gy o  o     

The area of the water stream times the velocity gives a volume flow rate of water.  If that is 

multiplied by the density, then we have a mass flow rate.  That is verified by dimensional analysis. 

> @ > @2 3
    m m s kg m kg sAvU o  ª º ª º¬ ¼ ¬ ¼  

Another way to think about it is that AvU is the mass that flows out of the hose per second.  It takes a 

minimum force of Av gU  to lift that mass, and so the work done per second to lift that mass to a 

height of 
top

y  is 
top

.Av gyU  That is the power required. 

T�

mgG

T
F
G

T�
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� � � � � � � � � �2
2 3 3 2

top
1.5 10 m 25.43m s 1.00 10 kg m 9.80 m s 33m 5813W

   5800 W or 7.8hp

P Av gyU S �  u u  

|
 

 

94. A free-body diagram for the sled is shown as it moves up the hill.  From 

this we get an expression for the friction force. 

  
N N fr k

cos 0    cos     cosyF F mg F mg F mgT T P T �  o  o  ¦  

(a) We apply conservation of energy with a frictional force as given in 

Eq. 8-15.  Subscript 1 refers to the sled at the start of its motion, and 

subscript 2 refers to the sled at the top of its motion.  Take the 

starting position of the sled to be the 0 for gravitational potential 

energy.  We have  
1

2.4 m s ,v  
1

0,y   and 
2

0.v    The relationship between the distance 

traveled along the incline and the height the sled rises is 
2

sin .y d T   Solve for d. 

  

2 21 1

1 2 fr 1 1 2 2 fr2 2

21

1 k2

      

sin cos   

E E F mv mgy mv mgy F d

mv mgd mgdT P T

 � o �  � � o

 � o

l
  

  
� �

� �
� � � �

22

1

2

k

2.4 m s
0.4258 m 0.43m

2 sin cos 2 9.80 m s sin 28 0.25cos 28

v
d

g T P T
   |

� q � q
 

(b) For the sled to slide back down, the friction force will now point UP the hill in the free-body 

diagram.  In order for the sled to slide down, the component of gravity along the hill must be 

large than the maximum force of static friction. 

   
fr s s s

sin     sin cos     tan 28     0.53mg F mg mgT T P T P P! o ! o � q o �   

(c) We again apply conservation of energy including work done by friction.  Subscript 1 refers to 

the sled at the top of the incline, and subscript 2 refers to the sled at the bottom of the incline.  

We have 
1

0,v  
1

sin ,y d T and 
2

0.y     

   

2 21 1

1 2 fr 1 1 2 2 fr2 2

21

2 k2

      

sin cos   

E E F mv mgy mv mgy F d

mgd mv mgdT P T

 � o �  � � o

 � o

l
 

   
� � � � � � � �2

2 k
2 sin cos 2 9.80 m s 0.4258 m sin 28 0.25cos 28

   1.4 m s

v gd T P T �  q � q

 
 

 

95. We apply conservation of mechanical energy.  We take the surface of the Moon to be the 0 level for 

gravitational potential energy.  Subscript 1 refers to the location where the engine is shut off, and 

subscript 2 refers to the surface of the Moon.  Up is the positive y-direction. 

 (a) We have 
1

0,v   
1

,y h  
2

3.0 m s ,v   and 
2

0.y    

   � �
� �

2 2 21 1 1

1 2 1 1 2 2 22 2 2

22

2

2

          

3.0 m s
2.8 m

2 2 1.62 m s

E E mv mgy mv mgy mgh mv

v
h

g

 o �  � o  o

   
 

 (b) We have the same conditions except 
1

2.0 m s.v  �  

   � � � �
� �

2 2 2 21 1 1 1

1 2 1 1 2 2 1 22 2 2 2

2 22 2

2 1

2

          

3.0 m s 2.0 m s
1.5m

2 2 1.62 m s

E E mv mgy mv mgy mv mgh mv

v v
h

g

 o �  � o �  o

� ��
   

 

mgG

fr
F
G

N
F
G

T T

y 
x 
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(c) We have the same conditions except 
1

2.0 m s.v   And since the speeds, not the velocities, are 

used in the energy conservation calculation, this is the same as part (b), and so 1.5m .h   

   � � � �
� �

2 2 2 21 1 1 1

1 2 1 1 2 2 1 22 2 2 2

2 22 2

2 1

2

          

3.0 m s 2.0 m s
1.5m

2 2 1.62 m s

E E mv mgy mv mgy mv mgh mv

v v
h

g

 o �  � o �  o

� ��
   

 

 

96. A free-body diagram for the car is shown.  We apply conservation of energy 

with a frictional force as given in Eq. 8-15.  Subscript 1 refers to the car at the 

start of its motion, and subscript 2 refers to the sled at the end of the motion.  

Take the ending position of the car to be the 0 for gravitational potential 

energy.  We have  
1

95km h ,v   
2

0,y   and 
2

35km h.v    The 

relationship between the distance traveled along the incline and the initial 

height of the car is 
1

sin .y d T  

  

� � � �

� � � � � �� � � � � �

2 21 1

1 2 fr 1 1 2 2 fr2 2

2 2 2 21 1

fr 1 2 1 1 22 2

2

2 2 2 21

2

6

      

2 sin

1m s
     1500 kg 95km h 35km h 2 9.80 m s 3.0 10 m sin17

3.6 km h

     1.7 10 J

E E E mv mgy mv mgy E

E m v v mgy m v v gd T

 � o �  � � o

 � �  � �

 � � u q

 u

ª º¬ ¼
ª º§ ·
« »¨ ¸

© ¹« »¬ ¼

 

 

97. The energy to be stored is the power multiplied by the time:  .E Pt   The energy will be stored as 

the gravitational potential energy increase in the water:  ,E U mg y Vg yU '  '  '  where U  is the 

density of the water, and V  is the volume of the water. 

� � � �
� � � � � �

6

5 3

3 3 2

180 10 W 3600 s
    1.7 10 m

1.00 10 kg m 9.80 m s 380 m

Pt
Pt Vg y V

g y
U

U
u

 ' o    u
' u

 

 

98. It is shown in problem 52 that the total mechanical energy for a satellite orbiting in a circular orbit of 

radius r is 
E1

2
.

GmM
E

r
 �  That energy must be equal to the energy of the satellite at the surface of 

the Earth plus the energy required by fuel. 

(a) If launched from the equator, the satellite has both kinetic and potential energy initially.  The  

kinetic energy is from the speed of the equator of the Earth relative to the center of the Earth.  In 

problem 53 that speed is calculated to be 464 m/s. 

� � � � � �^

� � � �

2 E E1

surface fuel orbit 0 fuel2

E

2 11 2 2 241

fuel E 02

E

1

26 6 6

1

2
      

1 1
6.67 10 N m kg 1465kg 5.98 10 kg

2

1 1
                    1465kg 46

6.38 10 m 2 6.38 10 m 1.375 10 m

GmM GmM
E E E mv E

R r

E GmM mv
R r

�

�  o � �  � o

 � �  u u

� �
u u � u

§ ·
¨ ¸
© ¹

½§ ·°
¨ ¸¾¨ ¸°© ¹¿

<

< � �2

10

4 m s

5.38 10 J u

 

T� T�

�

x 

mgG

N
F
G

fr
F
G

y
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(b) If launched from the North Pole, the satellite has only potential energy initially.  There is no  

initial velocity from the rotation of the Earth. 

� � � � � �^

� �

E E

surface fuel orbit fuel

E

11 2 2 24

fuel E

E

6 6 6

1

2
      

1 1
6.67 10 N m kg 1465kg 5.98 10 kg

2

1 1
                                            

6.38 10 m 2 6.38 10 m 1.375 10 m

GmM GmM
E E E E

R r

E GmM
R r

�

�  o � �  � o

 �  u u

�
u u � u

§ ·
¨ ¸
© ¹

½§ ·°
¨ ¸¾¨ ¸°© ¹¿

<

<

10
5.39 10 J u

 

 

99. (a) Use energy conservation and equate the energies at A and B.  The distance from the center of  

the Earth to location B is found by the Pythagorean theorem. 

� � � �2 2

B

2 2E E1 1

2 2

A B

13,900 km 8230 km 16,150 km

      A B A B

r

GM m GM m
E E mv mv

r r

 �  

 o � �  � � o
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

� �
� � � �11 2 2 24

22

E

B A
7 6

2 6.67 10 N m kg 5.98 10 kg
1 1

2 8650 m s 1 1

1.615 10 m 8.23 10 m

   5220 m s

B Av v GM
r r

�u u
 � �  �

�
u u

 

 ½
§ · ° °

® ¾¨ ¸ § ·© ¹ ¨ ¸° °
© ¹¯ ¿

< <

 

 (b) Use energy conservation and equate the energies at A and C. 

   
C

16,460 km 8230 km 24,690 kmr  �   

   � �
� � � �

2 2E E1 1

2 2

A B

11 2 2 24

22

E

B A
7 6

      

2 6.67 10 N m kg 5.98 10 kg
1 1

2 8650 m s 1 1

2.469 10 m 8.23 10 m

   3190 m s

A B A B

B A

GM m GM m
E E mv mv

r r

v v GM
r r

�

 o � �  � � o

u u
 � �  �

�
u u

 

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 ½
§ · ° °

® ¾¨ ¸ § ·© ¹ ¨ ¸° °
© ¹¯ ¿

< <
 

 

100. (a) The force is found from the potential function by Eq. 8-7. 

   

� �

� �

2

2
1  

r rr
r

r

r e edU d GMm d e
F e GMm GMm

dr dr r dr r r

GMm
e r

r

D DD
D

D

D

D

� ��
�

�

� �
 �  � �   

 � �

§ ·§ ·§ ·
¨ ¸¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹ © ¹

 

 (b) Find the escape velocity by using conservation of energy to equate the energy at the surface of  

the Earth to the energy at infinity with a speed of 0. 

   
1

EE 2

E

21

esc esc2

E E

2
    0 0    

RR
R

GMm GM
E E mv e v e

R R
DD ��

f o �  � o   
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Notice that this escape velocity is smaller than the Newtonian escape velocity by a factor of 
1

E2
Re D�

. 

 

101. (a) Assume that the energy of the candy bar is completely converted into a change of potential  

energy. 

� � � �
6candy

bar

candy 2

bar

1.1 10 J
    1500 m

76 kg 9.8m s

E
E U mg y y

mg
u

 '  ' o '     

 (b) If the person jumped to the ground, the same energy is all converted into kinetic energy. 

� �
� �

6candy

bar21

candy 2

bar

2
2 1.1 10 J

    170 m s
76 kg

E
E mv v

m

u
 o      

 

102. (a) 
61000 W 3600 s 1 J/s

1 kW h 1 kW h 3.6 10 J
1 kW 1 h 1 W

  u§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

< <  

 (b) � � � � � � � � 1kW 30d 24 h
580 W 1month 580 W 1month 417.6 kW h

1000 W 1month 1d
  

§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

<  

420 kW h| <  

 (c) 

6

9 93.6 10 J
417.6 kW h 417.6 kW h 1.503 10 J 1.5 10 J

1 kW h

u
  u | u

§ ·
¨ ¸
© ¹

< <
<

 

 (d) � � $0.12
417.6 kW h $50.11 $50

1 kW h
 |§ ·

¨ ¸
© ¹

<
<

 

Kilowatt-hours is a measure of energy, not power, and so  no , the actual rate at which the energy is 

used does not figure into the bill.  They could use the energy at a constant rate, or at a widely varying 

rate, and as long as the total used is about 420 kilowatt-hours, the price would be about $50. 

 

103. The only forces acting on the bungee jumper are gravity and the elastic force from the bungee cord, 

so the jumper’s mechanical energy is conserved.  Subscript 1 represents the jumper at the bridge, and 

subscript 2 represents the jumper at the bottom of the jump.  Let the lowest point of the jumper’s 

motion be the zero location for gravitational potential energy � �0 .y    The zero location for elastic 

potential energy is the point at which the bungee cord begins to stretch.  See the diagram in the 

textbook.  We have 
1 2

0,v v   
1

,y h  
2

0,y   and the amount of stretch of the cord 
2

15.x h �   

Solve for h. 

� �

� �

22 2 2 21 1 1 1 1

1 2 1 1 1 2 2 22 2 2 2 2

2 2

2

        15   

30 2 225 0    59.4 225 0  

59.4 59.4 4 225
55m,4 m      60 m

2

E E mv mgy kx mv mgy kx mgh k h

mg
h h h h

k

h h

 o � �  � � o  � o

� � �  o � �  o

r �
  o  

§ ·
¨ ¸
© ¹

 

 The larger answer must be taken because h > 15 m.  And only 1 significant figure is justified. 
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104. See the free-body diagram for the patient on the treadmill.  We assume that there  

are no dissipative forces.  Since the patient has a constant velocity, the net force 

parallel to the plane must be 0.  Write Newton’s second law for forces parallel to 

the plane, and then calculate the power output of force 
P
.F

G
 

� � � � � �

parallel P P

2

sin 0    sin

1m s
sin 75kg 9.8 m s 3.3km h sin12

3.6 km h

   140.1W 140 W

P

F F mg F mg

P F v mgv

T T

T

 �  o  

   q

 |

§ ·
¨ ¸
© ¹

¦

 

 This is 1.5 to 2 times the wattage of typical household light bulbs (60–100 W). 

 

105. (a) Assume that there are no non-conservative forces on the rock, and so its mechanical energy is  

conserved.  Subscript 1 represents the rock as it leaves the volcano, and subscript 2 represents 

the rock at  its highest point.  The location as the rock leaves the volcano is the zero location for 

PE � �0y  .  We have 
1

0,y   
2

500 m,y   and 
2

0.v    Solve for 
1
.v  

� � � �

2 2 21 1 1

1 2 1 1 2 2 1 22 2 2

2

1 2

          

2 2 9.80 m s 320 m 79.20 m s 79 m s

E E mv mgy mv mgy mv mgy

v gy

 o �  � o  o

   |
 

(b) The power output is the energy transferred to the launched rocks per unit time.  The launching  

energy of a single rock is 
21

12
,mv  and so the energy of 1000 rocks is � �21

12
1000 .mv   Divide this 

energy by the time it takes to launch 1000 rocks (1 minute) to find the power output needed to 

launch the rocks. 

� � � � � �2 21

2 1 7
1000 500 450 kg 79.20 m s

2.4 10 W
60 sec

mv
P

t
   u  

 

106. Assume that there are no non-conservative forces doing work, so the mechanical energy of the 

jumper will be conserved.  Subscript 1 represents the jumper at the launch point of the jump, and 

subscript 2 represents the jumper at the highest point.  The starting height of the jump is the zero 

location for potential energy � �0 .y    We have 
1

0,y   
2

1.1m,y   and 
2

6.5m s.v    Solve for 
1
.v    

� � � �� �

2 21 1

1 2 1 1 2 22 2

22 2

1 2 2

      

2 6.5 m s 2 9.80 m s 1.1 m 8.0 m s

E E mv mgy mv mgy

v v gy

 o �  � o

 �  �  
 

 

107. (a) The work done by gravity as the elevator falls is the opposite of the change in gravitational  

potential energy. 

� � � � � � � �2

grav grav 1 2 1 2

5 5

920 kg 9.8 m s 24 m

       2.164 10 J 2.2 10 J

W U U U mg y y �'  �  �  

 u | u
 

Gravity is the only force doing work on the elevator as it falls (ignoring friction), so this result 

is also the net work done on the elevator as it falls. 

 (b) The net work done on the elevator is equal to its change in kinetic energy.  The net work done  

just before striking the spring is the work done by gravity found above.  

� �
� � � � � �

1

G 2 1 1 2 22

2

2 1 2

    0  

2 2 9.80m s 24 m 21.69 m s 22 m s

W K K mg y y mv

v g y y

 � o �  � o

 �   |
 

T�
T�mgG

N
F
G

P
F
G
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 (c) Use conservation of energy.  Subscript 1 represents the elevator just before striking the spring,  

and subscript 2 represents the elevator at the bottom of its motion.  The level of the elevator just 

before striking the spring is the zero location for both gravitational potential energy and elastic 

potential energy.  We have 
1

21.69m s,v   
1

0,y   and 
2

0.v    We assume that 
2

0.y �    

2 2 2 21 1 1 1

1 2 1 1 1 2 2 22 2 2 2

22 2

1
2 2 2

2
12 2

2 2 1 2

      

2 4
4

2 0    
2

E E mv mgy ky mv mgy ky

mvmg m g
mg m g mkvmg m k k ky y v y

k k k

 o � �  � � o

� r � � r �
� �  o   

 

We must choose the negative root so that 
2

y  is negative.  Thus 

� � � � � � � � � � � � � �22 22 2 5

2 5

920 kg 9.80 m s 920 kg 9.80 m s 920 kg 2.2 10 N m 21.69 m s

2.2 10 N m

   1.4 m

y
� � � u

 
u

 �

 

 

108. (a) The plot is included here.  To find the  

crossing point, solve � � 0U r   for r. 

   

� �
0 2

2

2 1
0  

2 1
0    2

U r U
r r

r
r r

 �  o

�  o  

ª º
« »¬ ¼

 

To find the minimum value, set 

0
dU
dr

  and solve for r. 

   
0 3 2 3 2

4 1 4 1
0    0    4

dU
U r

dr r r r r
 � �  o � �  o  ª º

« »¬ ¼
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 

“PSE4_ISM_CH08.XLS,” on tab “Problem 8.108a.” 
 

 (b) The graph is redrawn with the energy  

value included.  The approximate 

turning points are indicated by the 

small dots.  An analytic solution to 

the relationship � �
0

0.050U r U �  

gives 2.3 , 17.7.r |   The maximum 

kinetic energy of the particle occurs 

at the minimum of the potential 

energy, and is found from 

.E K U �  

     E K U � o  

� � � �2 1 1

0 0 0 0 016 4 8
0.050 4     0.050 0.075U K U r K U K U U U�  �   � � o  �   
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109. A point of stable equilibrium will have 0
dU
dx

  and 

2

2
0,

d U
dx

!  indicating a minimum in the potential 

equilibrium function. 

  � � 2

2
     0        

a dU a a
U x bx b x x a b

x dx x b
 �  � �  o  o  r  

 But since the problem restricts us to 0x ! , the point of must be .x a b  

� �

2

3/ 22 3 3/ 2

2 2 2
0,

x a bx a b

d U a a
dx x aba b  

   !  and so the point x a b gives a minimum in the 

potential energy function. 

 

110. (a) 

13 7 12 6

0

0
2

6

F
U Fdr C F dr C C

r r r r
V V V V V

 � �  � � �  � �
ª º ª º§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« » « »© ¹ © ¹ © ¹ © ¹¬ ¼ ¬ ¼

³ ³  

 (b) The equilibrium distance occurs at the location where the force is 0. 

   � �
13 7

1/ 6 1/ 6 11 11

0 0

0 0

2 0    2 2 3.50 10 m 3.93 10 mF F r
r r
V V V � � �  o   u  u

ª º§ · § ·
« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

 

 (c) In order to draw the graphs in terms of 
0

r , and to scale them to the given constants, the  

functions have been parameterized as follows. 

   

� �

� �

� �

13 713 7 13 7

0 0

0 0

0 0

13 13 7 7

0 0 0 0 0

1212 6

0 0

0

2 2   

2

6 6
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F r F F

r r r r r r

F r r r
F r r r r

F F r
U r

r r r r

V V V V

V V

V V V V V

� �

 �  � o

 �

 �  

ª ºª º § · § ·§ · § · § · § ·« »¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« » ¨ ¸ ¨ ¸© ¹ © ¹ © ¹ © ¹© ¹ © ¹« »¬ ¼ ¬ ¼
ª º§ · § · § · § ·
« »¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« »¬ ¼

ª º § ·§ · § ·
¨ ¸ ¨ ¸« » ¨ ¸© ¹ © ¹ © ¹¬ ¼

� �

12 6 6

0 0 0
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0 0 0 0 0

    

1 1
 

6 6

r
r r

U r r r
F r r r r r r

V

V V V V
V

� �

� �

� o

 �  �

ª º§ · § · § ·
« »¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹« »¬ ¼
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The spreadsheet used for this problem can be found on the Media Manager, with filename 

“PSE4_ISM_CH08.XLS,” on tab “Problem 8.110c.” 
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CHAPTER 9:  Linear Momentum 
 
Responses to Questions 
 
1.  Momentum is conserved if the sum of the external forces acting on an object is zero. In the case of 

moving objects sliding to a stop, the sum of the external forces is not zero; friction is an unbalanced 
force. Momentum will not be conserved in that case. 

 
2.   With the spring stretched, the system of two blocks and spring has elastic potential energy. When the 

blocks are released, the spring pulls them back together, converting the potential energy into kinetic 
energy. The blocks will continue past the equilibrium position and compress the spring, eventually 
coming to rest as the kinetic energy changes back into potential energy. If no thermal energy is lost, 
the blocks will continue to oscillate. The center of mass of the system will stay stationary. Since 
momentum is conserved, and the blocks started at rest, 1 1 2 2m v m v �  at all times, if we assume a 
massless spring. 

 
3.  The heavy object will have a greater momentum. If a light object m1 and a heavy object m2 have the 

same kinetic energy, then the light object must have a larger velocity than the heavy object. If 

2 21 1
1 1 2 22 2 ,m v m v  where m1 < m2, then 2

1 2

1

.
m

v v
m

  The momentum of the light object is 

2 1
1 1 1 2 2 2

1 2

.
m m

m v m v m v
m m

   Since the ratio 1

2

m
m

is less than 1, the momentum of the light object 

will be a fraction of the momentum of the heavy object. 
 
4.  The momentum of the person is changed (to zero) by the force of the ground acting on the person. 

This change in momentum is equal to the impulse on the person, or the average force times the time 
over which it acts.  

 
5. As the fish swishes its tail back and forth, it moves water backward, away from the fish.  If we 

consider the system to be the fish and the water, then, from conservation of momentum, the fish 
must move forward.  

 
6.  (d) The girl moves in the opposite direction at 2.0 m/s. Since there are no external forces on the pair, 

momentum is conserved. The initial momentum of the system (boy and girl) is zero. The final 
momentum of the girl must be the same in magnitude and opposite in direction to the final 
momentum of the boy, so that the net final momentum is also zero. 

 
7.  (d) The truck and the car will have the same change in the magnitude of momentum because 

momentum is conserved. (The sum of the changes in momentum must be zero.)  
 
8.  Yes. In a perfectly elastic collision, kinetic energy is conserved. In the Earth/ball system, the kinetic 

energy of the Earth after the collision is negligible, so the ball has the same kinetic energy leaving 
the floor as it had hitting the floor. The height from which the ball is released determines its potential 
energy, which is converted to kinetic energy as the ball falls. If it leaves the floor with this same 
amount of kinetic energy and a velocity upward, it will rise to the same height as it originally had as 
the kinetic energy is converted back into potential energy. 
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9.  In order to conserve momentum, when the boy dives off the back of the rowboat the boat will move 
forward.  

 
10.  He could have thrown the coins in the direction opposite the shore he was trying to reach. Since the 

lake is frictionless, momentum would be conserved and he would “recoil” from the throw with a 
momentum equal in magnitude and opposite in direction to the coins. Since his mass is greater than 
the mass of the coins, his speed would be less than the speed of the coins, but, since there is no 
friction, he would maintain this small speed until he hit the shore.  

 
11. When the tennis ball rebounds from a stationary racket, it reverses its component of velocity 

perpendicular to the racket with very little energy loss. If the ball is hit straight on, and the racket is 
actually moving forward, the ball can be returned with an energy (and a speed) equal to the energy it 
had when it was served. 

 
12.  Yes. Impulse is the product of the force and the time over which it acts. A small force acting over a 

longer time could impart a greater impulse than a large force acting over a shorter time.  
 
13. If the force is non-constant, and reverses itself over time, it can give a zero impulse. For example, 

the spring force would give a zero impulse over one period of oscillation. 
 
14.  The collision in which the two cars rebound would probably be more damaging. In the case of the 

cars rebounding, the change in momentum of each car is greater than in the case in which they stick 
together, because each car is not only brought to rest but also sent back in the direction from which it 
came. A greater impulse results from a greater force, and so most likely more damage would occur.  

 
15. (a) No. The ball has external forces acting on it at all points of its path. 

(b) If the system is the ball and the Earth, momentum is conserved for the entire path. The forces  
acting on the ball-Earth system are all internal to the system. 

(c) For a piece of putty falling and sticking to a steel plate, if the system is the putty and the Earth,  
momentum is conserved for the entire path. 

 
16.  The impulse imparted to a car during a collision is equal to the change in momentum from its initial 

speed times mass to zero, assuming the car is brought to rest. The impulse is also equal to the force 
exerted on the car times the time over which the force acts. For a given change in momentum, 
therefore, a longer time results in a smaller average force required to stop the car. The “crumple 
zone” extends the time it takes to bring the car to rest, thereby reducing the force.  

 
17. For maximum power, the turbine blades should be designed so that the water rebounds. The water 

has a greater change in momentum if it rebounds than if it just stops at the turbine blade. If the water 
has a greater change in momentum, then, by conservation of momentum, the turbine blades also 
have a greater change in momentum, and will therefore spin faster. 

 
18.  (a)  The direction of the change in momentum of the ball is perpendicular to the wall and away from  

it, or outward. 
(b) The direction of the force on the ball is the same as the direction of its change in momentum.  

Therefore, by Newton’s third law, the direction of the force on the wall will be perpendicular to 
the wall and towards it, or inward. 

 
19. When a ball is thrown into the air, it has only a vertical component of velocity. When the batter hits 

the ball, usually in or close to the horizontal direction, the ball acquires a component of velocity in 
the horizontal direction from the bat. If the ball is pitched, then when it is hit by the bat it reverses its 
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horizontal component of velocity (as it would if it bounced off of a stationary wall) and acquires an 
additional contribution to its horizontal component of velocity from the bat. Therefore, a pitched ball 
can be hit farther than one tossed into the air. 

 
20.  A perfectly inelastic collision between two objects that initially had momenta equal in magnitude but 

opposite in direction would result in all the kinetic energy being lost. For instance, imagine sliding 
two clay balls with equal masses and speeds toward each other across a frictionless surface. Since 
the initial momentum of the system is zero, the final momentum must be zero as well. The balls stick 
together, so the only way the final momentum can be zero is if they are brought to rest. In this case, 
all the kinetic energy would be lost. 

 
21. (b) Elastic collisions conserve both momentum and kinetic energy; inelastic collisions only conserve 

momentum. 
 
22.  Passengers may be told to sit in certain seats in order to balance the plane. If they move during the 

flight, they could change the position of the center of mass of the plane and affect its flight.  
 
23. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, 

your center of mass is in front of your feet, you will fall forward. 
 
24.   A piece of pipe is typically uniform, so that its center of mass is at its geometric center. Your arm 

and leg are not uniform. For instance, the thigh is bigger than the calf, so the center of mass of a leg 
will be higher than the midpoint.  

 
25.  
 
  
 
 
 
 
 
 
 
 
26.  Draw a line from each vertex to the midpoint of the opposite side. The center of mass will be the 

point at which these lines intersect.  
 
27. When you stand next to a door in the position described, your center of mass is over your heels.  If 

you try to stand on your toes, your center of mass will not be over your area of support, and you will 
fall over backward. 

 
28. If the car were on a frictionless surface, then the internal force of the engine could not accelerate the 

car. However, there is friction, which is an external force, between the car tires and the road, so the 
car can be accelerated.  

 
29. The center of mass of the system of pieces will continue to follow the original parabolic path. 
 
30.  Far out in space there are no external forces acting on the rocket, so momentum is conserved. 

Therefore, to change directions, the rocket needs to expel something (like gas exhaust) in one 
direction so that the rest of it will move in the opposite direction and conserve momentum.  

CM is within the body, 
approximately half-way 
between the head and feet. 

Lying down Sitting up 

CM is outside the 
body. 
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31. If there were only two particles involved in the decay, then by conservation of momentum, the 
momenta of the particles would have to be equal in magnitude and opposite in direction, so that the 
momenta would be required to lie along a line. If the momenta of the recoil nucleus and the electron 
do not lie along a line, then some other particle must be carrying off some of the momentum. 

 
32. Consider Bob, Jim, and the rope as a system. The center of mass of the system is closer to Bob, 

because he has more mass. Because there is no net external force on the system, the center of mass 
will stay stationary. As the two men pull hand-over-hand on the rope they will move toward each 
other, eventually colliding at the center of mass. Since the CM is on Bob’s side of the midline, Jim 
will cross the midline and lose.  

 
33. The ball that rebounds off the cylinder will give the cylinder a larger impulse and will be more likely 

to knock it over. 
 
 
Solutions to Problems 
 
1. The force on the gas can be found from its change in momentum.  The speed of 1300 kg of the gas 

changes from rest to 44.5 10 m su , over the course of one second.  

� �� �4 74.5 10 m s 1300 kg s 5.9 10 N, opposite to the velocity
p m v m

F v
t t t

' '
   '  u  u
' ' '

 

The force on the rocket is the Newton’s third law pair (equal and opposite) to the force on the gas, 

and so is 75.9 10 N in the direction of the velocity .u  

 
2. For a constant force, Eq. 9-2 can be written as .t'  'p F

GG
  For a constant mass object, .m'  'p vG G

  
Equate the two expressions for .'pG  

    
t

t m
m
'

'  ' o '  
F

F v v
G

G G G
 

If the skier moves to the right, then the speed will decrease, because the friction force is to the left.   
� � � �25 N 15s

5.8m s
65kg

F t
v

m
'

'  �  �  �  

The skier loses 5.8 m s  of speed. 
 
3. The force is the derivative of the momentum with respect to time. 

  
� � � �

2ˆ4.8 8.0 8.9
ˆ9.6 8.9 N

d t td
t

dt dt

� �
   �

i j kp
F i k

G GGG G
 

 
4. The change in momentum is the integral of the force, since the force is the derivative of the 

momentum. 

  � � � � � �
2

1

2.0s
2.0s2 3

1.0s
1.0s

ˆ ˆ ˆ    26 12 26 4 26 28 kg m s
t t

t

t
t t

d
dt t dt t t

dt

 
 

 
 

 o   �  �  �³ ³
p

F p F i j i j i j
G G G GG GG <  

 
5. The change is momentum is due to the change in direction. 

  � � � �� � � �0
ˆ ˆ ˆ ˆ0.145 kg 30.0 m s 30.0 m s 4.35 kg m sfm'  �  �  �p v v j i j iG G G <  

fvG

0vG
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6. The average force is the change in momentum divided by the elapsed time.  Call the direction from 
the batter to the pitcher the positive x direction, and call upwards the positive y direction.  The initial 
momentum is in the negative x direction, and the final momentum is in the positive y direction.  The 
final y-velocity can be found using the height to which the ball rises, with conservation of 
mechanical energy during the rising motion. 

  � � � �2 21
initial final 2        2 2 9.80 m s 36.5m 26.75m sy yE E mv mgh v gh o  o     

  
� � � � � � � �

� � � �

avg 0 3

2 2 1
avg

ˆ ˆ26.75 m s 32.0 m s ˆ ˆ0.145 kg 1856 1552 N
2.5 10 s

1552 N
1856 N 1552 N 2400 N   ;  tan 39.9

1856 N

f

m
t t

F T

�

�

� �'
  �   �
' ' u

 �    q

§ ·
¨ ¸¨ ¸
© ¹

j ip
F v v i j

GG G G

 

 
7. To alter the course by 35.0 ,q  a velocity perpendicular to the original velocity must be added.  Call 

the direction of the added velocity, add ,vG  the positive direction.  From the diagram, we see that 

add orig tan .v v T   The momentum in the perpendicular direction will be 

conserved, considering that the gases are given perpendicular momentum in the 
opposite direction of add.vG   The gas is expelled oppositely to add ,vG  and so a 

negative value is used for  gas.vA  

� �

� �
� �� �

� � � �> @

gas  gas rocket gas add
before after

2rocket add
gas

add  gas

    0   

3180 kg 115 m s tan 35.0
1.40 10 kg

115 m s tan 35.0 1750 m s

p p m v m m v

m v
m

v v

A A A

A

 o  � � o

q
   u

� q � �

 

 

8. The air is moving with an initial speed of 
1m s

120 km h 33.33m s
3.6 km h

. 
§ ·
¨ ¸
© ¹

  Thus, in one second, a 

volume of air measuring 45 m x 65 m x 33.33 m will have been brought to rest.  By Newton’s third 
law, the average force on the building will be equal in magnitude to the force causing the change in 
momentum of the air.  The mass of the stopped air is its volume times its density. 

  
� � � � � � � � � �3

6
45m 65m 33.33m 1.3kg m 33.33m s 0

4.2 10 N
1s

p m v V v
F

t t t
U �' ' '

     u
' ' '

 

 
9. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the first car.  Let A represent the first car and B represent the second car.  Momentum will be 
conserved in the collision.  Note that B 0.v   

� �
� � � � � �

initial final A A B B A B

4A A
B

      

7700 kg 18m s 5.0 m s
2.0 10 kg

5.0 m s

p p m v m v m m v

m v v
m

v

c o �  � o

c� �
   u

c
 

 
10. Consider the horizontal motion of the objects.  The momentum in the horizontal direction will be 

conserved.  Let A represent the car and B represent the load.  The positive direction is the direction 
of the original motion of the car. 

� �initial final A A B B A B      p p m v m v m m vc o �  � o  

T�
origvG

addvG

finalvG
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� � � �
� � � �

A A B B

A B

9150 kg 15.0 m s 0
10.2 m s

9150 kg 4350 kg

m v m v
v

m m
��c    

� �
 

 
11. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the alpha particle.  Let A represent the alpha particle, with a mass of A ,m  and let B represent the 

daughter nucleus, with a mass of A57 .m   The total momentum must be 0 since the nucleus decayed 
at rest. 

� �
initial final A A B B

5
AA A

B B

B A

    0   

2.8 10 m s
4900 m s

57
    

p p m v m v

mm v
v v

m m

c c o  � o

uc
c c �  �  o

 

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a 
ratio of masses is what is significant. 

 
12. The tackle will be analyzed as a one-dimensional momentum conserving situation.  Let A represent 

the halfback and B represent the tackler.  We take the direction of the halfback to be the positive 
direction, so A 0v !  and B 0.v �  

� �
� � � � � � � �

initial final A A B B A B

A A B B

A B

      

82 kg 5.0 m s 130 kg 2.5m s
0.401m s 0.4 m s

82 kg 130 kg

p p m v m v m m v

m v m v
v

m m

c o �  � o

� ��c    |
� �

 

 They will be moving it the direction that the halfback was running before the tackle. 
 
13. The throwing of the package is a momentum-conserving action, if the water resistance is ignored.  

Let A represent the boat and child together, and let B represent the package.  Choose the direction 
that the package is thrown as the positive direction.  Apply conservation of momentum, with the 
initial velocity of both objects being 0. 

� �
� � � �
� �

initial final A B A A B B

B B
A

A

      

5.70 kg 10.0 m s
0.966 m s

24.0 kg 35.0 kg

p p m m v m v m v

m v
v

m

c c o �  � o

c
c  �  �  �

�

 

The boat and child move in the opposite direction as the thrown package, as indicated by the 
negative velocity. 

 
14. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the original nucleus.  Let A represent the alpha particle, with a mass of 4 u, and let B represent the 
new nucleus, with a mass of 218 u.  Momentum conservation gives the following. 

� �
� � � � � � � � � �

initial final A B A A B B

A B B B
A

A

      

222 u 420 m s 218 u 350 m s
4200 m s

4.0 u

p p m m v m v m v

m m v m v
v

m

c c o �  � o

c� � �c    
 

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a 
ratio of masses is what is significant. 

 
15. Momentum will be conserved in one dimension in the explosion.  Let A represent the fragment with  

the larger kinetic energy. 

A A
initial final A A B B B

B

    0     
m v

p p m v m v v
m

c
c c c o  � o  �  
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� �
2

2 2 A A A1 1
A B A A B B B2 2

B B

1
2     2     

2

m v m
K K m v m v m

m m
c

c c o   � o  
§ ·
¨ ¸
© ¹

 

The fragment with the larger kinetic energy has half the mass of the other fragment. 
 
16. Consider the motion in one dimension with the positive direction being the direction of motion of the 

bullet.  Let A represent the bullet and B represent the block.  Since there is no net force outside of the 
block-bullet system (like friction with the table), the momentum of the block and bullet combination 
is conserved.  Note that 0.Bv   

� � � � � �
initial final A A B B A A B B

A A A
B

B

      

0.022 kg 210 m s 150 m s
0.66 m s

2.0 kg

p p m v m v m v m v

m v v
v

m

c c o �  � o
c� �c    

 

 
17. Momentum will be conserved in two dimensions.  The fuel was ejected in the y direction as seen by 

an observer at rest, and so the fuel had no x-component of velocity in that reference frame. 
� � 2

rocket 0 rocket fuel fuel rocket3
3

02:    0     x x x xp m v m m v m m v v vc c � �  o c   

� � � �1 2
fuel fuel rocket fuel rocket 0 rocket3 3 0:    0 2     y y y yp m v m m v m v m v v vc c � �  � o c  �  

 Thus 3
0 02
ˆ ˆ .v vc  �v i jG

 

 
18. Since the neutron is initially at rest, the total momentum of the three particles after the decay must 

also be zero.  Thus proton electron neutrino0 . � �p p pG G G
  Solve for any one of the three in terms of the other 

two:  � �proton electron neutrino . � �p p pG G G
  Any two vectors are always coplanar, since they can be translated 

so that they share initial points.  So in this case the common initial point and their two terminal 
points of the electron and neutrino momenta define a plane, which contains their sum.  Then, since 
the proton momentum is just the opposite of the sum of the other two momenta, it is in the same 
plane. 

 
19. Since no outside force acts on the two masses, their total momentum is conserved. 

  

� � � � � �

� �

� �

1 1 1 1 2 2

1
2 1 1

2

  

2.0 kg ˆ ˆ ˆˆ ˆ4.0 5.0 2.0 m s 2.0 3.0 m s
3.0 kg

2.0 kg ˆ ˆ ˆ6.0 5.0 5.0 m s
3.0 kg

ˆ ˆ ˆ    4.0 3.3 3.3 m s

   

m m m
m
m

c c � o

c c �  � � � � �

 � �

 � �

ª º¬ ¼

ª º¬ ¼

v v v

v v v i j k i k

i j k

i j k

G G G

G G G

 

 
20. (a) Consider the motion in one dimension with the positive direction being the direction of motion  

before the separation.  Let A represent the upper stage (that moves away faster) and B represent 
the lower stage.  It is given that A B,m m  A B ,v v v   and B A rel .v v vc c �   Momentum 
conservation gives the following. 

� � � �
� �

� �
� � � � � � � �

� �

initial final A B A A B B A A B A rel

3 31
2A B B rel

A

A B

      

925kg 6.60 10 m s 925kg 2.80 10 m s

925kg

p p m m v m v m v m v m v v

m m v m v
v

m m

c c c c o �  �  � � o

u � u� �c   
�
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3

3 3 3
B A rel

    8.00 10 m s  , away from Earth

8.00 10 m s 2.80 10 m s 5.20 10 m s, away from Earthv v v

 u

c c �  u � u  u
 

(b) The change in kinetic energy was supplied by the explosion. 

  

� � � �

� � � � � � � � � �

2 2 21 1 1
final initial A A B B A B2 2 2

2 2 23 3 31 1
2 2

8 8

      462.5kg 8.00 10 m s 5.20 10 m s 925 kg 6.60 10 m s

      9.065 10 J 9 10 J

K K K m v m v m m vc c'  �  � � �

 u � u � u

 u | u

ª º
¬ ¼  

 
21. (a) For the initial projectile motion, the horizontal velocity is constant.  The velocity at the highest  

point, immediately before the explosion, is exactly that horizontal velocity, 0 cos .xv v T   The 

explosion is an internal force, and so the momentum is conserved during the explosion.  Let 3vG  
represent the velocity of the third fragment. 

   

� �
� � � �

� � � �

1 1 1
before after 0 0 0 33 3 3

3 0 0

ˆ ˆ ˆ    cos cos cos   

ˆ ˆ ˆ ˆ2 cos cos 2 116 m s cos60.0 116 m s cos60.0

ˆ ˆ   116 m s 58.0 m s

mv mv mv m

v v

T T T

T T

 o  � � � o

 �  q � q

 �

p p i i j v

v i j i j

i j

G G G

G  

  This is 130 ms at an angle of 26.6q above the horizontal. 

(b) The energy released in the explosion is after before.K K�   Note that � � � �2 22
3 0 02 cos cosv v vT T �  

2 2
05 cos .v T  

   

� � � � � � � � � � � �

� �^ `
� � � �

2 2 221 1 1 1 1 1 1
after before 0 0 3 02 3 2 3 2 3 2

2 2 2 2 2 2 2 21 1 1 1
0 0 0 02 3 3 3

22 2 2 51 4 2
02 3 3

cos cos cos

                    cos cos 5 cos cos

                    cos 224 kg 116 m s cos 60.0 5.02 10

K K m v m v m v m v

m v v v v

mv

T T T

T T T T

T

�  � � �

 � � �

  q  u

ª º¬ ¼

ª º¬ ¼

J

 

 
22. Choose the direction from the batter to the pitcher to be the positive direction. Calculate the average 

force from the change in momentum of the ball. 

  
� � � �

avg

avg 3

  

56.0 m s 35.0 m s
0.145 kg 2640 N, towards the pitcher

5.00 10 s

p F t m v

v
F m

t �

'  '  ' o

� �'
   

' u
§ ·
¨ ¸
© ¹

 

 
23. (a) The impulse is the change in momentum.  The direction of travel of the struck ball is the  

positive direction. 

   � �� �24.5 10 kg 45m s 0 2.0 kg m sp m v �'  '  u �  < , in the forward direction 

 (b) The average force is the impulse divided by the interaction time. 

   
3

2.0 kg m s
580 N

3.5 10 s

p
F

t �

'
   
' u

<
, in the forward direction 

 
24. (a) The impulse given to the nail is the opposite of the impulse given to the hammer.  This is the  

change in momentum.  Call the direction of the initial velocity of the hammer the positive 
direction.  

� � � � 2
nail hammer 12 kg 8.5 m s 0 1.0 10 kg m si fp p mv mv'  �'  �  �  u <  
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 (b)  The average force is the impulse divided by the time of contact. 
2

4
avg 3

1.0 10 kg m s
1.3 10 N

8.0 10 s

p
F

t �

' u
   u
' u

<
 

 
25. The impulse given the ball is the change in the ball’s momentum.  From the symmetry of the 

problem, the vertical momentum of the ball does not change, and so there is no vertical impulse.  
Call the direction AWAY from the wall the positive direction for momentum perpendicular to the 
wall. 

  
� �

� � � �

o o o

final initial

2 o

sin 45 sin 45 2 sin 45

      2 6.0 10 km 25m s sin 45 2.1kg m s, to the left

p mv mv m v v mvA A A

�

'  �  � �  

 u  <
 

 
26. (a) The momentum of the astronaut–space capsule combination will be conserved since the only  

forces are “internal” to that system.  Let A represent the astronaut and B represent the space 
capsule, and let the direction the astronaut moves be the positive direction. Due to the choice of 
reference frame, A B 0.v v    We also have A 2.50 m s.vc   

   � �
initial final A A B A A B B

A
B A

B

    0   

130 kg
2.50 m s 0.1912 m s 0.19 m s

1700 kg

Bp p m v m v m v m v

m
v v

m

c c o �   � o

c c �  �  � | �
 

The negative sign indicates that the space capsule is moving in the opposite direction to the 
astronaut. 

 (b) The average force on the astronaut is the astronaut’s change in momentum, divided by the time  
of interaction. 

   
� � � �� � 2A A

avg

130 kg 2.50 m s 0
6.5 10 N

0.500 s

m v vp
F

t t

c � �'
    u
' '

 

 (c) � �� �2 21
astronaut 2 130 kg 2.50 m s 4.0 10 JK   u  

  � �� �21
capsule 2 1700 kg 0.1912 m s 31JK  �   

 
27. If the rain does not rebound, then the final speed of the rain is 0.  By Newton’s third law, the force on 

the pan due to the rain is equal in magnitude to the force on the rain due to the pan.  The force on the 
rain can be found from the change in momentum of the rain.  The mass striking the pan is calculated 
as volume times density. 

  

� � � �
� � � � � � � �

0

avg 0 0 0 0

2

3 3 2
5.0 10 m

     1.00 10 kg m 1.0 m 8.0 m s 0.11N
3600s

1h
1h

f
f

mv mvp m V Ah h
F v v v v Av

t t t t t t
U U U

�

�'
   � �    
' ' ' ' ' '

u
 u  

§ ·
¨ ¸
© ¹

 

 
28. (a) The impulse given the ball is the area under the F vs. t graph.  Approximate the area as a  

triangle of “height” 250 N, and “width” 0.04 sec.  A width slightly smaller than the base was 
chosen to compensate for the “inward” concavity of the force graph. 

   � �� �1
2 250 N 0.04 s 5 N sp'   <  
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 (b) The velocity can be found from the change in momentum.  Call the positive direction the  
direction of the ball’s travel after being served. 

   � �i -2

5 N s
    0 80 m s

6.0 10 kgf f i

p
p m v m v v v v

m
'

'  '  � o  �  �  
u
<

 

 
29. Impuse is the change of momentum, Eq. 9-6.  This is a one-dimensional configuration. 
  � � � � � �final 0 0.50 kg 3.0 m s 1.5 kg m sJ p m v v '  �   <  

 
30. (a) See the adjacent graph.  The  

spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH09.XLS,” on tab 
“Problem 9.30a.” 

 (b) The area is trapezoidal.  We  
estimate values rather than 
calculate them. 

  
� � � �1

2 750 N 50 N 0.0030s

1.2N s  

J | �

 <
 

 (c) � � � �
0.0030

0.0030 s5 5 2

0
0

740 2.3 10 740 1.15 10J Fdt t dt t t  � u  � uª º ª º¬ ¼ ¬ ¼³ ³  

� � � � � � � �25740 N 0.0030s 1.15 10 N s 0.0030s 1.185 N s 1.2 N s   � u  |< <  

 (d) The impulse found above is the change in the bullet’s momentum 

   31.185N s
    4.558 10 kg 4.6 g

260 m s

J
J m m

v
p v �  o    u |

'
' ' <

 

 (e) The momentum of the bullet–gun combination is conserved during the firing of the bullet.  Use  
this to find the recoil speed of the gun, calling the direction of the bullet’s motion the positive 
direction.  The momentum before firing is 0. 

   � � � �
initial final bullet bullet gun gun

3

bullet bullet
gun

gun

    0   

4.558 10 kg 260 m s
0.26 m s

4.5 kg

p p m v m v

m v
v

m

�

 o  � o

u
   

 

 
31. (a) Since the velocity changes direction, the momentum changes.  Take the final velocity to be in  

the positive direction.  Then the initial velocity is in the negative direction.  The average force is 
the change in momentum divided by the time. 

   
� �

avg 2
mv mvp mv

F
t t t

� �'
   
' ' '

 

(b) Now, instead of the actual time of interaction, use the time between collisions in order to get the 
average force over a long time. 

    
� �

avg 2
mv mvp mv

F
t t t

� �'
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32. (a) The impulse is the change in momentum.  Take upwards to be the positive direction.  The  
velocity just before reaching the ground is found from conservation of mechanical energy. 

   
� � � �

� � � � � �

2 21
initial final 2

2
0

        2 2 9.80 m s 3.0 m 7.668 m s

65kg 7.668 m s 498 kg m s 5.0 10 kg m s, upwards

y y

f

E E mgh mv v gh

m

 o  o  �  �  

 '  �  �  | uJ p v v
G G G G < <

 

 (b) The net force on the person is the sum of the upward force from the ground, plus the downward  
force of gravity. 

  � � � � � � � � � �
� �

net ground

2 2 2
0 2

ground

5

  

0 7.668m s
65kg 9.80 m s

2 2 0.010 m

        1.9 10 m s, upwards

f

F F mg ma

v v
F m g a m g

x

 �  o

� � �
 �  �  �

' �

 u

§ · § ·
¨ ¸ ¨ ¸¨ ¸ © ¹© ¹

 

 This is about 300 times the jumper’s weight. 
(c) We do this the same as part (b). 

  

� � � � � � � �
� �

2 2 2
0 2

ground

3

0 7.668 m s
65kg 9.80 m s

2 2 0.50 m

        4.5 10 m s, upwards

fv v
F m g

x

� � �
 �  �

' �

 u

§ · § ·
¨ ¸ ¨ ¸¨ ¸ © ¹© ¹  

This is about 7 times the jumper’s weight. 
  
33. Take the upwards direction as positive. 

(a) The scale reading as a function of time will be due to two components – the weight of the 
(stationary) water already in the pan, and the force needed to stop the falling water.  The weight 
of the water in the pan is just the rate of mass being added to the pan, times the acceleration due 
to gravity, times the elapsed time. 

   � � � � � � � � � � � �2
water
in pan

0.14 kg s 9.80 m s 1.372 N 1.4 N
m

W g t t t t
t

'
   |

'
 

The force needed to stop the falling water is the momentum change per unit time of the water 

striking the pan, to stop
moving
water

.
p

F
t

'
 
'

 The speed of the falling water when it reaches the pan can be 

found from energy conservation.  We assume the water leaves the faucet with a speed of 0, and 
that there is no appreciable friction during the fall. 

 21
water water at2
at faucet at pan pan

        2E E mgh mv v gh o  o  �  

 The negative sign is because the water is moving downwards. 

   � � � � � �� �falling 2
to stop
moving
water

0.14 kg s 0 2 9.80 m s 2.5m 0.98 N
mp

F v
t t

'
  '  � �  
' '

 

This force is constant, as the water constantly is hitting the pan.  And we assume the water level 
is not riding.  So the scale reading is the sum of these two terms. 

   � �scale to stop water
moving in pan
water

0.98 1.4 NF F W t �  �  

 (b) After 9.0 s, the reading is � �� �scale 0.98 1.372 0.9s N 13.3N .F  �   
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 (c) In this case, the level of the water rises over time.  The height of the water in the cylinder is the  
volume of water divided by the area of the cylinder. 

� �> @

� �

3

3water
in tube

in 4 2
tube tube

1m
0.14 kg

1.0 10 kg
0.070 m

20 10 m

tV
h t

A �

u
   

u

§ ·
¨ ¸
© ¹  

The height that the water falls is now � �2.5 0.070 m.h tc  �  Following the same analysis as 
above, the speed of the water when it strikes the surface of the already-fallen water is now 

2 ,v ghc c �  and so the force to stop the falling water is given by the following. 

� � � � � �� � � �2
to stop
moving
water

0.14 kg s 0 2 9.80 m s 2.5 .070 m 0.6198 2.5 .070 NF t t � � �  �  

  The scale reading is again the sum of two terms. 

   

� �� �

� �� �

scale to stop water
moving in cylinder
water

0.6198 2.5 .070 1.372 N

       0.62 2.5 .070 1.4 N

F F W t t

t t

 �  � �

| � �

 

  At t = 9.0 s, the scale reading is as follows. 

� �� � � �� �scale 0.6198 2.5 .070 9.0 1.372 9.0 N 13.196 N 13.2 NF   � �  |  

 
34. Let A represent the 0.060-kg tennis ball, and let B represent the 0.090-kg ball.  The initial direction 

of the balls is the positive direction.  We have A 4.50 m sv   and B 3.00 m s.v    Use Eq. 9-8 to 
obtain a relationship between the velocities. 

  � �A B A B B A    1.50 m sv v v v v vc c c c�  � � o  �  
 Substitute this relationship into the momentum conservation equation for the collision. 

  

� �
� � � � � � � � � �

A A B B A A B B A A B B A A B A

A A B B
A

A B

B A

    1.50 m s   

1.50 m s 0.060 kg 4.50 m s 0.090 kg 3.00 m s 1.50 m s

0.150 kg

   2.7 m s

1.50 m s 4.2 m s

m v m v m v m v m v m v m v m v

m v m v
v

m m

v v

c c c c�  � o �  � � o

� � � �c   
�

 

c c �  

 

 Both balls move in the direction of the tennis ball’s initial motion. 
 
35. Let A represent the 0.450-kg puck, and let B represent the 0.900-kg puck.  The initial direction of 

puck A is the positive direction.  We have A 4.80 m sv   and B 0.v    Use Eq. 9-8 to obtain a 
relationship between the velocities. 

  � �A B A B B A A    v v v v v v vc c c c�  � � o  �  
 Substitute this relationship into the momentum conservation equation for the collision. 

  

� �
� �
� � � � � �

� �

A A B B A A B B A A A A B A A

A B
A A

A B

B A A

      

0.450 kg
4.80 m s 1.60 m s 1.60 m s west

1.350 kg

4.80 m s 1.60 m s 3.20 m s east

m v m v m v m v m v m v m v v

m m
v v

m m

v v v

c c c c�  � o  � � o

� �c    �  
�

c c �  �  
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36. (a) Momentum will be conserved in one dimension.  Call the direction of the first ball the  
positive direction.  Let A represent the first ball, and B represent the second ball.  We have 

B 0v   and 1
B A2 .v vc    Use Eq. 9-8 to obtain a relationship between the velocities. 

   � � 1
A B A B A A2    v v v v v vc c c�  � � o  �  

Substitute this relationship into the momentum conservation equation for the collision. 
   1 1

initial final A A B B A A B B A A A A B A2 2          p p m v m v m v m v m v m v m vc c o �  � o  � � o  

� �B A3 3 0.280 kg 0.840 kgm m    

(b) The fraction of the kinetic energy given to the second ball is as follows.  

� �22 11
2A A2B B B

2 21
2A A A A A

3
0.75

m vK m v
K m v m v
c c
    

 
37. Let A represent the moving ball, and let B represent the ball initially at rest.  The initial direction of 

the ball is the positive direction.  We have A 7.5m s,v   B 0,v   and A 3.8 m s.vc  �    
(a) Use Eq. 9-8 to obtain a relationship between the velocities. 

   � �A B A B B A B A    7.5m s 0 3.8m s 3.7 m sv v v v v v v vc c c c�  � � o  � �  � �   

 (b) Use momentum conservation to solve for the mass of the target ball. 

   � �
� � � � � �

A A B B A A B B

A A
B A

B B

  

7.5m s 3.8m s
0.220 kg 0.67 kg

3.7 m s

m v m v m v m v

v v
m m

v v

c c�  � o
c� � �

   
c �

 

 
38. Use the relationships developed in Example 9-8 for this scenario. 

  
� �

� �

A B
A A

A B

A AA A
B A A A

A A A A

  

0.350 1.350
2.08

0.350 0.650

m m
v v

m m

v vv v
m m m m m

v v v v

�c  o
�

c � ��
    

c � � �

§ ·
¨ ¸
© ¹

§ ·§ · § ·
¨ ¸¨ ¸¨ ¸ © ¹© ¹ © ¹

 

 
39. The one-dimensional stationary target elastic collision is analyzed in Example 9-8.  The fraction of 

kinetic energy lost is found as follows. 

� �

2

A
B A

2A A B 1
A Binital final final 2 B B A B

22 21
2A A A A A A A B

inital inital

2

4

m
m vK K K m mm v m m

K K m v m v m m

� �c
    

�

ª º§ ·
« »¨ ¸

© ¹« »¬ ¼  

 (a) 
� �

� � � �
� �

A B
2 2

A B

4 1.01 1.014
1.00

1.01 1.01

m m
m m

  
� �

 

All the initial kinetic energy is lost by the neutron, as expected for the target mass equal to the 
incoming mass. 

 (b)  
� �

� � � �
� �

A B
2 2

A B

4 1.01 2.014
0.890

1.01 2.01

m m
m m

  
� �

 

 (c) 
� �

� � � �
� �

A B
2 2

A B

4 1.01 12.004
0.286

1.01 12.00

m m
m m

  
� �
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 (d) 
� �

� � � �
� �

A B
2 2

A B

4 1.01 2084
0.0192

1.01 208

m m
m m

  
� �

 

Since the target is quite heavy, almost no kinetic energy is lost.  The incoming particle “bounces 
off” the heavy target, much as a rubber ball bounces off a wall with approximately no loss in 
speed. 

 
40. Both momentum and kinetic energy are conserved in this one-dimensional collision.  We start with 

Eq. 9-3 (for a one-dimensional setting) and Eq. 9-8. 
  � �A A B B A A B B A B A B B A B A  ;      m v m v m v m v v v v v v v v vc c c c c c�  � �  � � o  � �  

Insert the last result above back into the momentum conservation equation. 
� � � � � �

� � � � � � � �
A A B B A A B A B A A B A B A B

A A B B B A B A B A A B A B B A B A

A B B
A A B

A B A B

  

   2   

2

m v m v m v m v v v m m v m v v

m v m v m v v m m v m m v m v m m v

m m m
v v v

m m m m

c c c�  � � �  � � � o

c c� � �  � o � �  � o

�c  �
� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

Do a similar derivation by solving Eq. 9-8 for A ,vc  which gives A B A B.v v v vc c � �  

  

� � � � � �
� � � � � � � �

A A B B A B A B B B A A B A B B

A A B B A A B A B B A A B A B A B B

A B A
B A B

A B A B

  

   2   

2

m v m v m v v v m v m v v m m v

m v m v m v v m m v m v m m v m m v

m m m
v v v

m m m m

c c c�  � � �  � � � � o

c c� � � �  � o � �  � o

�c  �
� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
41. (a) At the maximum compression of the spring, the blocks will not be moving relative to each  

other, and so they both have the same forward speed.  All of the interaction between the blocks 
is internal to the mass-spring system, and so momentum conservation can be used to find that 
common speed.  Mechanical energy is also conserved, and so with that common speed, we can 
find the energy stored in the spring and then the compression of the spring.  Let A represent the 
3.0 kg block, let B represent the 4.5 kg block, and let x represent the amount of compression of 
the spring. 

   

� �

� �

� �

� � � �
� � � �

A
initial final A A A B A

A B

2 2 21 1 1
initial final A A A B2 2 2

2 2 2A B
A A A B A

A B

2

        

      

1 1

3.0 kg 4.5kg1
8.0 m s 0.37 m

850 N m 7.5kg
 

m
p p m v m m v v v

m m

E E m v m m v kx

m m
x m v m m v v

k k m m

c c o  � o  
�

c o  � � o

c � �  
�

  

ª º¬ ¼

§ ·
¨ ¸
© ¹

  

 (b) This is a stationary target elastic collision in one dimension, and so the results of Example 9-8  
may be used. 

   

� �

� �

A B
A A

A B

A
B A

A B

1.5kg
8.0 m s 1.6 m s

7.5kg

2 6.0 kg
8.0 m s 6.4 m s

7.5kg

m m
v v

m m

m
v v

m m

� �c    �
�

c    
�

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
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 (c) Yes, the collision is elastic.  All forces involved in the collision are conservative forces. 
 

42. From the analysis in Example 9-11, the initial projectile speed is given by 2 .
m M

v gh
m
�

   

Compare the two speeds with the same masses. 

2
22 2

2 1

1 11
1

2 5.2
2     2

2.62

m M
gh hv hm v v

m Mv hhgh
m

�

     o  
�

 

 
43. (a) In Example 9-11, 21

2iK mv  and � � 21
2 .fK m M vc �   The speeds are related by  

m
v v

m M
c  

�
. 

� � � �
2

2
2 21 1

2 2
2 21

2

2 2
2

2
       1

f i

i i

m
m M v mvK K m M v mvK m M

K K mv mv

m v mv m Mm M
mv m M m M

� �c� � �' �   

� ��  �  
� �

§ ·
¨ ¸
© ¹

 

 (b) For the given values, 
380 g

0.96
396 g

M
m M
� �

  �
�

.  Thus 96% of the energy is lost. 

 
44. From the analysis in the Example 9-11, we know that  

  2   
m M

v gh
m
�

 o  

  � �
� � � � 22

2

1

0.028 kg 210 m s1 1

2 2 9.80 m s 0.028 kg 3.6kg

0.134 m 1.3 10 m  

mv
h

g m M

�

  
� �

 | u

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹  

 From the diagram we see the following.  

  
� �

� � � � � �

22 2

2 2 22 2.8m 2.8m 0.134 m 0.86 m

h x

x h

 � �

 � �  � �  

l l

l l
 

 
45. Use conservation of momentum in one dimension, since the particles will separate and travel in 

opposite directions.  Call the direction of the heavier particle’s motion the positive direction.  Let A 
represent the heavier particle, and B represent the lighter particle. We have A B1.5 ,m m  and  

A B 0.v v   

B B 2
initial final A A B B A B3

A

    0     
m v

p p m v m v v v
m

c
c c c c o  � o  �  �  

The negative sign indicates direction.  Since there was no mechanical energy before the explosion, 
the kinetic energy of the particles after the explosion must equal the energy added. 

l  

x 

l - h 
T�

h 
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� � � � � �
� �

22 2 2 25 51 1 1 2 1 1
added 2 2 2 3 2 3 2 3

3 3
added added5 5

1.5

7500J 4500J       7500J 4500J 3000J

A B A A B B B B B B B B B

B A B

E K K m v m v m v m v m v K

K E K E K

c c c c c c c c �  �  �   

c c c    �  �  
 

Thus 3 33.0 10 J   4.5 10 J .A BK Kc c u  u  

 
46. Use conservation of momentum in one dimension.  Call the direction of the sports car’s velocity the 

positive x direction.  Let A represent the sports car, and B represent the SUV.  We have 0Bv   and 

A B.v vc c   Solve for A.v  

  � � A B
initial final A A A B A A A

A

    0     
m m

p p m v m m v v v
m
�c c o �  � o   

The kinetic energy that the cars have immediately after the collision is lost due to negative work 
done by friction.  The work done by friction can also be calculated using the definition of work.  We 
assume the cars are on a level surface, so that the normal force is equal to the weight.  The distance 
the cars slide forward is .x'   Equate the two expressions for the work done by friction, solve for A,vc  

and use that to find A.v  

 

� � � �

� �
� � � �

21
afterfr final initial A B A2
collision

o
fr fr A B

21
A B A A B A2

0

cos180

    2

k

k k

W K K m m v

W F x m m g x

m m v m m g x v g x

P

P P

c �  � �

 '  � � '

c c� �  � � ' o  '

 

� � � � � �2A B A B
A A

A A

920 kg 2300 kg
2 2 0.80 9.8 m s 2.8 m

920 kg

    23.191m s 23m s

k

m m m m
v v g x

m m
P� � �c  '  

 |
 

 
47. The impulse on the ball is its change in momentum.  Call upwards the positive direction, so that the 

final velocity is positive, and the initial velocity is negative.  The speeds immediately before and 
immediately after the collision can be found from conservation of energy.  Take the floor to be the 
zero level for gravitational potential energy. 

  � � � � � �
� � � � � �

21
bottom top down down down down2

21
bottom top up up up up2

up down up down up down

2

Falling:          2

Rising:          2

2 2 2

  0.012 kg 2 9.80 m s 0.75m 1.5m 0.11kg

K U mv mgh v gh

K U mv mgh v gh

J p m v m v v m gh gh m g h h

 o  o  �

 o  o  

 '  '  �  � �  �

 �  <m s

 

 The direction of the impulse is upwards, so the complete specification of the impulse is 
0.11kg m s, upwards .<  

 

48. 
� � � �

� �

2 22 2 2 21 1
2 2initial final A A B B A B

22 21
2initial A A A

35m s 25m s
Fraction  lost 0.49

35m s

K K m v m v v v
K

K m v v
c c �� � �
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49. (a) For a perfectly elastic collision, Eq. 9-8 says � �.A B A Bv v v vc c�  � �   Substitute that into the  
coefficient of restitution definition. 

� �
1A BA B

B A B A

v vv v
e

v v v v
c c ��

  �  
� �

. 

For a completely inelastic collision, A Bv vc c .  Substitute that into the coefficient of restitution 
definition. 

0A B

B A

v v
e

v v
c c�

  
�

 

(b) Let A represent the falling object and B represent the heavy steel plate.  The speeds of the steel  
plate are 0Bv   and 0.Bvc    Thus .A Ae v vc �   Consider energy conservation during the 
falling or rising path.  The potential energy of body A at height h is transformed into kinetic 
energy just before it collides with the plate.  Choose down to be the positive direction. 

21
A A2     2mgh mv v gh o   

The kinetic energy of body A immediately after the collision is transformed into potential 
energy as it rises.  Also, since it is moving upwards, it has a negative velocity. 

 21
A A2     2mgh mv v ghc c c c o  �  

Substitute the expressions for the velocities into the definition of the coefficient of restitution. 

2
    

2
A A

gh
e v v e h h

gh

c�c c �  � o   

 
50. The swinging motion will conserve mechanical energy.  Take the zero level for gravitational 

potential energy to be at the bottom of the arc.  For the pendulum to swing exactly to the top of the 
arc, the potential energy at the top of the arc must be equal to the kinetic energy at the bottom.   

  � � � � � �21
bottom top bottom bottom2    2     2K U m M V m M g L V gL o �  � o   

 Momentum will be conserved in the totally inelastic collision at the bottom of the arc.  We assume 
that the pendulum does not move during the collision process. 

  � �initial final bottom        2
m M m M

p p mv m M V v gL
m m
� �

 o  � o    

 
51. (a) The collision is assumed to happen fast enough that the bullet–block system does not move  

during the collision.  So the totally inelastic collision is described by momentum conservation.  
The conservation of energy (including the non-conservative work done by friction) can be used 
to relate the initial kinetic energy of the bullet–block system to the spring compression and the 
dissipated energy.  Let m represent the mass of the bullet, M represent the mass of the block, 
and x represent the distance the combination moves after the collision 

   

� �

� � � �
2

2 21 1
2 2

2

collision:     

after collision:     2

2

m M
mv m M v v v

m

kx
m M v kx m M gx v gx

m M

m M kx
v gx

m m M

P P

P

�c c � o  

c c�  � � o  �
�

�
 �

�
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� � � � � � � � � �
2

2

3

120 N m 0.050 m1.000 kg
  2 0.50 9.80 m s 0.050 m 888.8m s

1.0 10 kg 1.000 kg

890 m s  

�
 �  

u

|

 

 (b) The fraction of kinetic energy dissipated in the collision is initial final

initial

,
K K

K
�

where the kinetic  

energies are calculated immediately before and after the collision. 
� � � � � �2 2 2 21 1

2 2initial final
22 21

2initial

1 1

0.0010 kg
1 1 0.999

1.00 kg
                  

mv m M v m M v m M vK K
K mv mv m M

m v
m

m
m M

c c c� � � ��
  �  �

� c

 �  �  
�

§ ·
¨ ¸
© ¹  

 
52. (a) Momentum is conserved in the one-dimensional collision.  Let A represent the baseball and let  

B represent the brick. 

   � � � � � � � �
A A A A B B

A A B B
A

A

  

0.144 kg 28.0 m s 5.25kg 1.10 m s
12.10 m s

0.144 kg

m v m v m v

m v m v
v

m

c c � o

c ��c    �
  

  So the baseball’s speed in the reverse direction is 12.1m s .  

 (b) � � � �221 1
before A A2 2 0.144 kg 28.0 m s 56.4 JK m v    

  � � � � � � � �2 22 21 1 1 1
after A A A B2 2 2 20.144 kg 1.21m s 5.25kg 1.10 m s 13.7 JK m v m vc c   � �  

 
53. In each case, use momentum conservation.  Let A represent the 6.0-kg object and let B represent the 

10.0-kg object.  We have A 5.5 m sv   and B 4.0 m s.v  � . 

 (a) In this totally inelastic case, A B.v vc c  

   

� �
� � � � � � � �

A A B B A B A

2A A B B
B A

A B

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
7.1 10 m s

14.0 kg

m v m v m m v

m v m v
v v

m m
�

c�  � o

� ��c c    u
�

 

 (b) In this case, use Eq. 9-8 to find a relationship between the velocities. 

   

� �
� �

� � � � � � � � � �

� �

A B A B B A B A

A A B B A A B B A A B A B A

A B A B B
A

A B

B A B A

    

  

2 2.0 kg 5.5m s 2 8.0 kg 4.0 m s
5.4 m s

14.0 kg

5.5m s 4.0 m s 5.4 m s 4.1m s

v v v v v v v v

m v m v m v m v m v m v v v

m m v m v
v

m m

v v v v

c c c c�  � � o  � �

c c c c�  �  � � � o

� � � � �c    �
�

c c � �  � � �  

 

 (c) In this case, A 0.vc   

   � � � � � � � �
A A B B B B

A A B B
B

B

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
0.13m s

8.0 kg

m v m v m v

m v m v
v

m

c�  o

� ��c    
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To check for “reasonableness,” first note the final directions of motion.  A has stopped, and B 
has gone in the opposite direction.  This is reasonable.  Secondly, since both objects are moving 
slower than their original speeds, there has been a loss of kinetic energy.  Since the system has 
lost kinetic energy and the directions are possible, this interaction is “reasonable.” 

 (d) In this case, B 0.vc   

   � � � � � � � �
A A B B A A

A A B B
A

A

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
0.17 m s

6.0 kg

m v m v m v

m v m v
v

m

c�  o

� ��c    
 

This answer is not reasonable because A is still moving in its original direction while B has 
stopped.  Thus A has somehow passed through B.  If B has stopped, A should have rebounded 
in the negative direction. 

 (e) In this case, A 4.0 m s.vc  �   

   A A B B A A B B  m v m v m v m vc c�  � o  

� � � � � � � �
B

6.0 kg 5.5m s 4.0 m s 8.0 kg 4.0 m s
3.1m s

8.0 kg
v

� � � �c    

The directions are reasonable, in that each object rebounds.  Secondly, since both objects are 
moving slower than their original speeds, there has been a loss of kinetic energy.  Since the 
system has lost kinetic energy and the directions are possible, this interaction is “reasonable.”  

 
54. (a) A A A A A B B B:    cos cosxp m v m v m vT Tc c c c �  

A A A B B B:    0 sin sinyp m v m vT Tc c c c �  

(b) Solve the x equation for BcosTc  and the y equation for BsinT c , and then 
find the angle from the tangent function.  

� � � �

A A A

B B B A A
B

A A A AB A A A

B B

sin

sin sin
tan

coscos cos

m v
m v v

m v v v v
m v

T
T TT

TT T

c c
c c c c

c    c c�c c c�
c

 

� �
� �

1 1 2.10 m s sin 30.0sin
tan tan 46.9

cos 2.80 m s 2.10 m s cos30.0
A A

B
A A A

v
v v

TT
T

� �c c qc    q
c c� � q

 

With the value of the angle, solve the y equation for the velocity.   
� � � �

� �
A A A

B

B B

0.120kg 2.10 m s sin 30.0sin
1.23m s

sin 0.140 kg sin 46.9

m v
v

m
T
T

c c qc    
c q

 

 
55. Use this diagram for the momenta after the decay.  Since there was no 

momentum before the decay, the three momenta shown must add to 0 in both 
the x and y directions. 

� � � �

� � � � � � � �
nucleus neutrino nucleus electron

2 2 2 2

nucleus nucleus nucleus neutrino electron

          
x y

x y

p p p p

p p p p p

  

 �  �

 � � � �2 223 23 22         6.2 10 kg m s 9.6 10 kg m s 1.14 10 kg m s� � � u � u  u< < <  

BcvG

AcvG

AT c
AvG

Am
Bm

Bm

Am

BTc

T 

electronpG

nucleuspG

neutrinopG
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� �
� �

� �
� �

� �
� �

23
nucleus1 1 1electron

23
nucleus neutrino

9.6 10 kg m s
tan tan tan 57

6.2 10 kg m s
y

x

p p
p p

T
�

� � �
�

u
    q

u

<

<
 

The second nucleus’ momentum is 147o from the electron’s momentum  , and is 123o from the 
neutrino’s momentum  . 

 
56. Write momentum conservation in the x and y directions, and kinetic energy conservation.  Note that 

both masses are the same.  We allow A
cvG  to have both x and y components. 

  
B A B A

A A B A A B

2 2 2 2 2 2 2 21 1 1 1
A B A B A B A B2 2 2 2

:        

:        

:       

x x x

y y y

p mv mv v v

p mv mv mv v v v

K mv mv mv mv v v v v

c c o  
c c c c � o  �

c c c c�  � o �  �

 

Substitute the results from the momentum equations into the kinetic energy equation. 

  
� � � �2 2 2 2 2 2 2 2 2 2

A B A A B A A B B A A B

2 2 2 2 2 2
A A B B A B A B A B

   2   

2     2 0    0 or 0

y x y y y

y y y

v v v v v v v v v v v v

v v v v v v v v v v

c c c c c c c c c c c c� �  � o � � �  � o

c c c c c c c c c c� �  � o  o   
 

Since we are given that B 0,vc z  we must have A 0.yvc    This means that the final direction of A is 

the x direction.  Put this result into the momentum equations to find the final speeds. 

 A A B B A3.7 m s        2.0 m sxv v v v vc c c      

 
57. (a) Let A represent the incoming nucleus, and B represent the target  

particle.    Take the x direction to be in the direction of the initial 
velocity of mass A (to the right in the diagram), and the y direction to be 
up in the diagram.  Momentum is conserved in two dimensions, and 
gives the following relationships. 

A A B B B

A A B B A B

:    cos     2 cos

:    0 sin     2 sin
x

y

p m v m v v v

p m v m v v v

T T
T T

c c o  
c c c c � o  

 

  The collision is elastic, and so kinetic energy is also conserved. 
   2 2 2 2 2 2 2 2 21 1 1

A A A A B B A B A B2 2 2:        2     2K m v m v m v v v v v v vc c c c c c � o  � o �   
  Square the two momentum equations and add them together. 
   2 2 2 2 2 2 2 2 2

B A B B A B A B2 cos  ; 2 sin     4 cos  ; 4 sin     4v v v v v v v v v v vT T T Tc c c c c c c c  o   o �   
  Add these two results together and use them in the x momentum expression to find the angle. 

   

2 2 2 2 2 2 2 2
A B A B B B

B

2  ; 4     2 6     
3

3
cos     30

2 22
3

v
v v v v v v v v v

v v
vv

T T

c c c c c c�  �  o  o  

   o  q
c

 

 (b) From above, we already have B
3

.
v

vc    Use that in the y momentum equation. 

   A B A2 sin 2 sin 30
3 3

v v
v v vTc c c  q    

(c) The fraction transferred is the final energy of the target particle divided by the original kinetic 
energy. 

AvG

T

AcvG

Am
Bm

Am

Bm

BcvG
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� � � �2121
2 Atarget 2 B

2 21 1
2 2original A A A

2 3 2

3
B

m vK m v
K m v m v

c
    

 
58. Let n represent the incoming neutron, and let He represent the helium 

nucleus.  We take He n4 .m m  Take the x direction to be the direction of 
the initial velocity of the neutron (to the right in the diagram), and the y 
direction to be up in the diagram.  Momentum is conserved in two 
dimensions, and gives the following relationships. 

  
n n n n n He He He

n He He n n

n n n He He He He He n n

:    cos cos   

         4 cos cos

:    0 sin sin     4 sin sin

x

y

p m v m v m v

v v v

p m v m v v v

T T
T T
T T T T

c c c c � o
c c c c�  
c c c c c c c c � o  

 

 The collision is elastic, and so kinetic energy is also conserved. 
  2 2 2 2 2 2 2 2 21 1 1

n n n n He He n n He n n He2 2 2:    4 4        K m v m v m v v v v v v vc c c c c c �  �o o  �  

 This is a set of three equations in the three unknowns n He n, , and .v v Tc c c  We can eliminate nT c  by 
squaring and adding the momentum equations.  That can be combined with the kinetic energy 
equation to solve for one of the unknown speeds. 

  

� � � � � � � �2 2 2 2

n He He n n He He n n

2 2 2 2 2 2 2 2 2
n n He He He He He He n n n n

2 2 2 2 2
n n He He He n n He

He n He

4 cos cos  ;   4 sin sin   

8 cos 16 cos 16 sin cos sin   

8 cos 16 4   

0.4 cos 0

v v v v v

v v v v v v v

v v v v v v v

v v

T T T T

T T T T T

T

T

c c c c c c c c�   o

c c c c c c c c c c� � �  � o

c c c c c� �   � o

c c  � �5 5.4 6.2 10 m s cos 45 1.754 10 m su q  u

 

  

� � � �
� �
� �

22 2 2 2 2 5 5 5
n n He n n He

5

1 1He
He He n n n He 5

n

4     4 6.2 10 m s 4 1.754 10 m s 5.112 10 m s

1.754 10 m s
4 sin sin     sin 4 sin sin 4 sin 45 76

5.112 10 m s

v v v v v v

v
v v

v
T T T T� �

c c c c � o  �  u � u  u

uc
c c c c c c o   q  q

c u

§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

 

 To summarize: 5 5
n He n5.1 10 m s ,  1.8 10 m s , 76 .v v Tc c c u  u  q  

 
59. Let A represent the incoming neon atom, and B represent the target  

atom.  A momentum diagram of the collision looks like the first figure.  
The figure can be re-drawn as a triangle, the second figure, since 

A A A A B B.m m mc c �v v vG G G
  Write the law of sines for this triangle, relating  

each final momentum magnitude to the initial momentum magnitude. 

 

A A
A A

A A

B B A
B A

A A B

sin sin
    

sin sin

sin sin
    

sin sin

m v
v v

m v

m v m
v v

m v m

I I
D D
T T
D D

c
c o  

c
c o  

 

 The collision is elastic, so write the kinetic energy conservation equation, 
 and substitute the results from above.  Also note that o o o180.0 55.6 50.0 74.4 .D  � �   

  
22

2 2 2 2 A1 1 1
A A A A B B A A A A B A2 2 2

B

sin sin
      

sin sin

m
m v m v m v m v m v m v

m
I T
D D

c c � o  � o
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
 

AvG

o50.0I  

o55.6T  
AcvG

Am
Bm

Am

Bm

BcvG

A Am vG

B Bm cvGA Am cvG D

IT

nvG

He 45Tc  q

ncvG

nm
Hem

nm

Hem

Hecv
G

nT c



Chapter 9  Linear Momentum 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

283 

� � 2 o2
A

B 2 2 2 2 o

20.0 u sin 55.6sin
39.9 u

sin sin sin 74.4 sin 50.0

m
m

T
D I

   
� �

 

 
60. Use the coordinate system indicated in the diagram.  We start 

with the conditions for momentum and kinetic energy 
conservation. 

  

A A A A A B B B

A A A A A B B B

A A A B B B

A A A B B B

:    cos cos   

          cos cos

:    0 sin sin   

          sin sin

x

y

p m v m v m v

m v m v m v
p m v m v

m v m v

T T
T T

T T

T T

c c c c � o
c c c c�  

c c c c � o

c c c c 

 

  � � � �2 2 2 2 2 2 2 2 2 21 1 1
A A A A B B A A A B B A B A A B B2 2 2:            K m v m v m v m v v m v m m v v m vc c c c c c � o �  o �   

 Note that from the kinetic energy relationship, since the right side of the equation is positive, we 
must have A A 0.v vct t  

 Now we may eliminate BT c by squaring the two momentum relationships and adding them. 

  
� � � � � � � �
� � � � � � � �

2 2 2 2

A A A A A A A A B B B B B B

2 2 22
A A A A A A A A B B

cos sin cos sin   

2 cos

m v m v m v m v m v

m v m v v m v m v

T T T T

T

c c c c c c c c� �  � o

c c c c� �  
 

 
 Combining the previous result with the conservation of energy result gives the following. 
  � � � � � � � � � �2 2 22 2 2

A A A A A A A A B B A B A A2 cos   m v m v v m v m v m m v vTc c c c c� �   � o  

  B A B A1
A A A2

A A A A

cos 1 1  ; still with 0
m v m v

v v
m v m v

T
c

c c � � � t t
c

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

 

(a) Consider A B.m m�   If A A ,v vc   its maximum value, then  

B A B A1
A A2

A A A A

cos 1 1 1    0.
m v m v
m v m v

T T
c

c c � � �  o  
c

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

  As Avc  decreases towards 0, eventually 

the first term in the expression for AcosT c  will dominate, since it has A

A

v
vc

 as a factor.  That term 

will also be negative because A B.m m�   The expression for AcosT c  will eventually become 

negative and approach �f  in a continuous fashion.  Thus AcosT c will for some value of A

A

v
vc

 

have the value of –1, indicating that there is some allowable value of Avc  that causes A 180 ,T c  q  
and so all scattering angles are possible.  

A plot of A

A

v
v
c

vs. AT c is helpful in seeing 

this.  Here is such a plot for A B0.5 .m m  
Note that it indicates that the speed of the 
incident particle will range from a 
minimum of about A0.35v  for a complete 
backscatter (a one-dimensional collision) 
to A1.00v , which essentially means a 

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180

Scattering angle (degrees)

v 1
'/v
1

Before
After

x 

y AvG

AcvG

BcvG

AT c

BT c

Am Am

Bm Bm
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“miss” – no collision.  We also see that the graph is monotonically decreasing, which means 
that there are no analytical extrema to consider in the analysis. 

(b) Now consider A B.m m!   If A A ,v vc   its maximum value, then again we will have  

B A B A1
A A2

A A A A

cos 1 1 1    0.
m v m v
m v m v

T T
c

c c � � �  o  
c

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

  As Avc  decreases towards 0, eventually 

the first term in the expression for AcosT c  will dominate, since it has A

A

v
vc

 as a factor.  But both 

terms in the expression are positive, since A B.m m!   So the expression for AcosT c  will 
eventually approach �f  in a continuous fashion, and will never be negative.  Thus there will 
not be any scattering angles bigger than 90q  in any case.  But is there a maximum angle, 
corresponding to a minimum value of Acos ?T c   We look for such a point by calculating the 

derivative A

A

cos .
d

dv
T c

c
 

  

1/ 2

B

AB A B1
A A A2 2

A A A A A B

A

1
1

cos 1 1 0    

1

m
md m v m

v v
dv m v m v m

m

T
�

c c � � � �  o  
c c

�

ª º§ ·
¨ ¸« »ª º§ · § · © ¹« »¨ ¸ ¨ ¸« » § ·« »© ¹ © ¹¬ ¼
¨ ¸« »© ¹¬ ¼

 

  Using this critical value gives the following value for 1cos ,T c  which we label as cos .I  

   

1/ 2 1/ 2

B B 1/ 22

A AB B B1
2

A A AB B

A A

2

2 B

A

1 1

cos 1 1 1   

1 1

cos 1

m m
m mm m m

m m mm m
m m

m
m

I

I

� �
 � � �  � o

� �

 �

ª ºª º ª º§ · § ·
« »¨ ¸ ¨ ¸« » « » § ·§ · § · § ·© ¹ © ¹« »« » « » ¨ ¸¨ ¸ ¨ ¸ ¨ ¸¨ ¸« »§ · § ·« » « »© ¹ © ¹ © ¹© ¹« »¨ ¸ ¨ ¸« » « »© ¹ © ¹¬ ¼ ¬ ¼« »¬ ¼

§ ·
¨ ¸
© ¹

 

This gives the largest possible scattering 
angle for the given mass ratio.  Again, a 
plot is instructive.  Here is such a plot 
for A B.2m m   We find the maximum 
scattering angle according to the 
equation above. 

   

� �

2

2 B

A

2

1 B

A

21

cos 1   

cos 1

cos 1 0.5 30  

m
m

m
m

I

I �

�

 � o

 �

 �  q

§ ·
¨ ¸
© ¹

ª º§ ·
« »¨ ¸

© ¹« »¬ ¼

ª º¬ ¼

 

The equation and the graph agree.  The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH09.XLS,” on tab “Problem 9.60b.” 
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61. To do this problem with only algebraic manipulations is complicated.  We use 
a geometric approach instead.  See the diagram of the geometry. 

  Momentum conservation:  A A B A A B    m m mc c c c �  �ov v v v v vG G G G G G
 

  Kinetic energy conservation: 2 2 2 2 2 21 1 1
A A B A A B2 2 2     mv mv mv v v vc c c c �  �o  

 The momentum equation can be illustrated as a vector summation diagram, 
and the kinetic energy equation relates the magnitudes of the vectors in that 
summation diagram.  Examination of the energy equation shows that it is 
identical to the Pythagorean theorem.  The only way that the Pythagorean 
theorem can hold true is if the angle D  in the diagram is a right angle.  If D  is 
a right angle, then 90 ,T I�  q  and so the angle between the final velocity 
vectors must be 90 .q  

 
62. Find the CM relative to the front of the car. 

� �� � � �� � � �� �
� � � �

car car front front back back
CM

car front back

1250 kg 2.50 m 2 70.0 kg 2.80 m 3 70.0 kg 3.90 m
      2.71 m

1250 kg 2 70.0 kg 3 70.0 kg

m x m x m x
x

m m m
� �

 
� �

� �
  

� �

 

 
63. Choose the carbon atom as the origin of coordinates.   

� �� � � �� �10

11C C O O
CM

C O

12 u 0 16 u 1.13 10 m
6.5 10 m

12 u 16 u

m x m x
x

m m

�
�

� u�
   u

� �
 from the C atom. 

 
64. By the symmetry of the problem, since the centers of the cubes are along a straight line, the vertical 

CM coordinate will be 0, and the depth CM coordinate will be 0.  The only CM coordinate to 
calculate is the one along the straight line joining the centers.  The mass of each cube will be the 
volume times the density, and so � � � � � �3 3 3

1 0 2 0 3 0, 2 , 3 .m m mU U U   l l l   Measuring from the 

left edge of the smallest block, the locations of the CMs of the individual cubes are 1
1 02 ,x  l  

2 0 3 02  , 4.5 .x x  l l   Use Eq. 9-10 to calculate the CM of the system. 

� � � � � �3 3 31
20 0 0 0 0 01 1 2 2 3 3

CM 3 3 3
1 2 3 0 0 0

0

8 2 27 4.5

8 27

     3.8  from the left edge of the smallest cube

m x m x m x
x

m m m
U U U

U U U
� �� �

  
� � � �

 

l l l l l l

l l l

l

    

 
65. Consider this diagram of the cars on the raft.  Notice that the origin of  

coordinates is located at the CM of the raft.  Reference all distances to that 
location. 

� � � � � � � � � � � �
� �

� � � � � � � � � � � �
� �

1350 kg 9 m 1350 kg 9 m 1350 kg 9 m
1.2 m

3 1350 kg 6200 kg

1350 kg 9 m 1350 kg 9 m 1350 kg 9 m
1.2 m

3 1350 kg 6200 kg

CM

CM

x

y

� � �
  

�

� � � �
  �

�

 

 
 

x

y

AvG

I

T
AcvG

m
m

m

m

BcvG

AvG

BcvGAcvG
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66. Consider the following.  We start with a full circle of radius 2R, with its CM at the 
origin.  Then we draw a circle of radius R, with its CM at the coordinates � �0.80 ,0R .  
The full circle can now be labeled as a “gray” part and a “white” part.  The y 
coordinate of the CM of the entire circle, the CM of the gray part, and the CM of the 
white part are all at 0y   by the symmetry of the system.  The x coordinate of the 

entire circle is at CM 0,x   and can be calculated by gray gray white white
CM

total

.
m x m x

x
m
�

   Rearrange this 

equation to solve for the CM of the “gray” part. 

 

gray gray white white

CM

total

total CM white white total CM white white white white
gray

gray total white total white

  
m x m x

x
m

m x m x m x m x m x
x

m m m m m

�
 o

� � �
   

� �

 

This is functionally the same as treating the white part of the figure as a hole of negative mass.  The 
mass of each part can be found by multiplying the area of the part times the uniform density of the 
plate. 

 
� �

� �

2

white white
gray 2 2

total white

0.80 0.80
0.27

32

R Rm x R
x R

m m R R

US
US US
�� �

    �
� �

 

The negative sign indicates that the CM of the “gray” part is to the left of the center of the circle of 
radius 2R. 

 
67. From the symmetry of the wire, we know that CM 0.x    

Consider an infinitesimal piece of the wire, with mass dm, 
and coordinates � � � �, cos , sin .x y r rT T   If the length of 

that piece of wire is ,dl  then since the wire is uniform, 

we have .
M

dm d
rS

 l  And from the diagram and the 

definition of radian angle measure, we have .d rdT l   

Thus .
M M

dm rd d
r

T T
S S

    Now apply Eq. 9-13. 

    CM

0 0

1 1 2
sin sin

M r r
y y dm r d d

M M

S S

T T T T
S S S

    ³ ³ ³  

Thus the coordinates of the center of mass are � �CM CM

2
, 0, .

r
x y

S
 § ·
¨ ¸
© ¹

 

 
68. From the symmetry of the hydrogen equilateral triangle, and the fact that the nitrogen atom is above 

the center of that triangle, the center of mass will be perpendicular to the plane of the hydrogen 
atoms, on a line from the center of the hydrogen triangle to the nitrogen atom.  We find the height of 
the center of mass above the triangle from the heights of the individual atoms.  The masses can be 
expressed in any consistent units, and so atomic mass units from the periodic table will be used. 

� � � � � � � �
� � � �

H H N N
CM

total

3 1.008u 0 14.007 u 0.037 nm3
0.030 nm

3 1.008u 14.007 u

m z m z
z

m
��

   
�

 

 
And so the center of mass is 0.030 nm above the center of the hydrogen triangle. 

r

x

y

C

dT

T

dm
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69. Let the tip of the cone be at the origin, and the symmetry axis of 
the cone be vertical.  From the symmetry of the cone, we know 
that CM CM 0,x y   and so the center of mass lies on the z axis.  

We have from Eq. 9-13 that CM

1
.z z dm

M
 ³   The mass can be 

expressed as ,M dm ³  and so CM .
z dm

z
dm

 ³
³

  Since the object 

is uniform, we can express the mass as the uniform density 
U times the volume, for any part of the cone.  That results in the 
following. 

CM

z dm z dV
z

dm dV

U

U
  ³ ³
³ ³

 

From the diagram, a disk of radius r and thickness dz has a volume of 2 .dV r dzS   Finally, the 
geometry of the cone is such that ,r z R h  and so .r zR h   Combine these relationships and 
integrate over the z dimension to find the center of mass. 

� �
� �

� �
� �

3
2 22 3 4

0 3
CM 42 2 32 2

2

0

4

3

h

h

z dzz dV z r dz z zR h dz R h z dz h
z h

hdV r dz zR h dz R h z dz z dz

U U S US US

U U S US US
       

³³ ³ ³ ³
³ ³ ³ ³ ³

 

 Thus the center of mass is at � �3
4

ˆ ˆ ˆ0 0 .h� �i j k  

 
70. Let the peak of the pyramid be directly above the origin, 

and the base edges of the pyramid be parallel to the x and 
y axes.  From the symmetry of the pyramid, we know 
that CM CM 0,x y   and so the center of mass lies on the 

z axis.  We have from Eq. 9-13 that CM

1
.z z dm

M
 ³   

The mass can be expressed as ,M dm ³  and so 

CM .
z dm

z
dm

 ³
³

  Since the object is uniform, we can 

express the mass as the uniform density U times the volume, for any part of the pyramid.  That 
results in the following. 

  CM

z dm z dV
z

dm dV

U

U
  ³ ³
³ ³

 

From the diagram, for the differential volume we use a square disk of side l  and thickness dz, 

which has a volume of 2 .dV dz l   The geometry of the pyramid is such that � �.s
h z

h
 �l   That 

can be checked from the fact that l is a linear function of z, s l  for 0,z   and 0 l  for .z h   
We can relate s to h by expressing the length of an edge in terms of the coordinates of the endpoints 

x

y

R

z

dz

r
h

z

s
x

y

L

h

z

s

s dz

l
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y r

R

thickness dr 

of an edge.  One endpoint of each edge is at � �2,  2, 0 ,x s y s z r  r   and the other endpoint of 

each edge is at � �0,  0, .x y z h     Using the Pythagorean theorem and knowing the edge length is 
s gives the following relationship. 
 � � � �2 22 22 2     2s s s h h s � � o   
We combine these relationships and integrate over the z dimension to find the center of mass. 

  

� �

� �

� �> @

� �> @

2
2

2

0 0
CM 22

2

00

h h

hh

s
z h z dz z h z dzz dm z dV z dz h

z
dm dV dz s h z dzh z dz

h

UU U

U U
U

� �
     

��

ª º
« »¬ ¼

ª º
« »¬ ¼

³ ³³ ³ ³
³ ³ ³ ³³

l

l
 

  
� �

� �
� �
� �

2 2 3
2 2 3 41 2 1

2 3 40 0 1 1
4 42 2 31

2 2 3 0

0

2

     
2 4 2

2

h

h

h h

h z hz z dz h z hz z s s
h

h z hz zh hz z dz

� � � �
     

� �� �

³

³
 

 Thus the center of mass is at ˆ ˆ ˆ0 0 .
4 2

s
� �§ ·

¨ ¸
© ¹

i j k  

 
71. Let the radius of the semicircular plate be R, with the center at the origin. 

From the symmetry of the semicircle, we know that CM 0,x  and so  
the center of mass lies on the y axis.  We have from Eq. 9-13 that  

CM

1
.y y dm

M
 ³   The mass can be expressed as ,M dm ³  and  

so CM .
y dm

y
dm

 ³
³

  Since the object is uniform, we can express the mass as a uniform density V  

times the area, for any part of the semicircle.  That results in the following. 

  CM

y dm y dA
y

dm dA

V

V
  ³ ³
³ ³

 

From the diagram, for the differential area we use a semicircular strip of width dr and length ,rS  
which has a differential area of .dA rdrS   And from problem 67, the y coordinate of the center of 

mass of that strip is 
2

.
r
S

  (Note the discussion immediately before Example 9-17 which mentions 

using the center of mass of individual objects to find the center of mass of an extended object.)  We 
combine these relationships and integrate over the z dimension to find the center of mass. 

  

2

32
30 0

CM 21
2

0 0

2
2

4

3

R R

R R

r
rdr r dry dm y dA R R

y
Rdm dA rdr rdr

V SV S
S SV V S S

      
³ ³³ ³

³ ³ ³ ³
 

 Thus the center of mass is at 
4ˆ ˆ0 .
3

R
S

�§ ·
¨ ¸
© ¹

i j  
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72. From Eq. 9-15, we see that CM

1
.i im

M
 ¦v vG G

 

  
� � � � � � � �

� �CM

ˆ ˆ ˆ ˆ35kg 12 16 m s 25kg 20 14 m s

35kg 25kg

� � � �
 

�

i j i j
vG  

  

� � � � � � � �> @ � � � � � � � �> @
� �

� �

ˆ ˆ35 12 25 20 kg m s 35 12 25 24 kg m s
     

60 kg

ˆ ˆ80 kg m s 210 kg m s ˆ ˆ1.3 m s 3.5 m s
60 kg

� � � �
 

� �
  � �

i j

i j
i j

< <

< <
 

 
73. (a) Find the CM relative to the center of the Earth. 

� � � � � � � �24 22 8

24 22

5.98 10 kg 0 7.35 10 kg 3.84 10 m

5.98 10 kg 7.35 10 kg
E E M M

CM
E M

m x m x
x

m m

u � u u�
  

� u � u
 

6      4.66 10 m from the center of the Earth u  

This is actually inside the volume of the Earth, since 66.38 10 m.ER  u  
(b) It is this Earth–Moon CM location that actually traces out the orbit as discussed in an earlier 

chapter.  The Earth and Moon will orbit about this orbit path in (approximately) circular orbits.  
The motion of the Moon, for example, around the Sun would then be a sum of two motions: i) 
the motion of the Moon about the Earth–Moon CM; and ii) the motion of the Earth–Moon CM 
about the Sun.  To an external observer, the Moon’s motion would appear to be a small radius, 
higher frequency circular motion (motion about the Earth–Moon CM) combined with a large 
radius, lower frequency circular motion (motion about the Sun).  The Earth’s motion would be 
similar, but since the center of mass of that Earth-Moon motion is inside the Earth, the Earth 
would be observed to “wobble” about that CM. 

 
74. The point that will follow a parabolic trajectory is the center of mass of the mallet.  Find the CM 

relative to the bottom of the mallet.  Each part of the hammer (handle and head) can be treated as a 
point mass located at the CM of the respective piece.  So the CM of the handle is 12.0 cm from the 
bottom of the handle, and the CM of the head is 28.0 cm from the bottom of the handle.   

� � � � � � � �handle handle head head
CM

handle head

0.500 kg 12.0 cm 2.80 kg 28.0 cm
25.6cm

3.30 kg

m x m x
x

m m
��

   
�

 

 Note that this is inside the head of the mallet.  The mallet will rotate about this point as it flies 
through the air, giving it a wobbling kind of motion. 

 
75. (a) Measure all distances from the original position of the woman.  

� � � � � � � �W W M M
CM

W M

55 kg 0 72 kg 10.0 m
5.669 m

127 kg

     5.7 m from the woman

m x m x
x

m m
��

   
�

|
  

 (b) Since there is no force external to the man–woman system, the CM will not move, relative to  
the original position of the woman.  The woman’s distance will no longer be 0, and the man’s 
distance has changed to 7.5 m. 

� � � � � �WW W M M
CM

W M

55 kg 72 kg 7.5 m
5.669 m  

127 kg

xm x m x
x

m m
��

   o
�
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� � � � � � � �
W

M W

5.669 m 127 kg 72 kg 7.5 m
3.272 m

55 kg

7.5 m 3.272 m 4.228 m 4.2 m

x

x x

�
  

�  �  |

 

 (c) When the man collides with the woman, he will be at the original location of the center of mass. 

M M
final initial

5.669 m 10.0 m 4.331 mx x�  �  �  

He has moved 4.3 m  from his original position. 
 
76. (a) As in Example 9-18, the CM of the system follows the parabolic trajectory.  Part I will again  

fall vertically, the CM will “land” a distance d from part I (as in Fig. 9-32), and part II will land 
a distance x to the right of the CM.  We measure horizontal distances from the point underneath 
the explosion. 

   
� � � � � �CM I II I I I I II I II II 4

CM II 3

I II II I

3 0
    

3

x m m m x d m m mm x m x
x x d

m m m m
� � � ��

 o    
�

 

  Therefore part II lands a total distance 7
3 d  from the starting point. 

 (b) Use a similar analysis for this case, but with I II3 .m m  

   
� � � � � �CM I II I I II II III I II II

CM II

I II II II

3 3 0
    4

x m m m x d m m mm x m x
x x d

m m m m
� � � ��

 o    
�

 

  Therefore part II lands a total distance 5d  from the starting point. 
 
77. Calculate the CM relative to the 55-kg person’s seat, at one end of 

the boat.  See the first diagram.  Be sure to include the boat’s mass. 

� � � � � � � � � � � �

A A B B C C
CM

A B C

55kg 0 78kg 1.5 m 85kg 3.0 m
      1.706 m

218 kg

m x m x m x
x

m m m
� �

 
� �

� �
  

Now, when the passengers exchange positions, the boat will move some distance “d” as shown, but 
the CM will not move.  We measure the location of the CM from the same place as before, but now 
the boat has moved relative to that origin. 

� � � � � � � � � �� �

A A B B C C
CM

A B C

85 kg 78 kg 1.5 m 55 kg 3.0 m 218  kg m 282 kg m
1.706 m

218 kg 218 kg

m x m x m x
x

m m m

d d d d

� �
 

� �

� � � � �
  

< <
 

0.412 md   

 Thus the boat will move 0.41 m towards the initial position of the 85 kg person .  

 
78. Because the interaction between the worker and the flatcar is internal to the worker–flatcar system, 

their total momentum will be conserved, and the center of mass of the system will move with a 
constant velocity relative to the ground.  The velocity of the center of mass is 6.0 m/s.  Once the 
worker starts to move, the velocity of the flatcar relative to the ground will be taken as carv and the 

velocity of the worker relative to the ground will then be car 2.0 m s.v �  Apply Eq. 9-15, in one 
dimension.  Letter A represents the worker, and letter B represents the flatcar. 

75 kg 80 kg 60 kg
d 

55 kg 78 kg 85 kg
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� �

� � � � � �

A BA A B B
CM

A B A B

A
CM

A B

car car

car

2.0 m s
  

95kg
2.0 m s 6.0 m s 2.0 m s 5.493m s

375kg

m v m vm v m v
v

m m m m
m

v v
m m

� ��
  o

� �

 �  �  
�

 

 The flatcar moves this speed while the worker is walking.  The worker walks 25 m along the flatcar 
at a relative speed of 2.0 m/s, and so he walks for 12.5 s. 

  � � � �car car 5.493m s 12.5s 68.66 m 69 mx v t'  '   |  

 
79. Call the origin of coordinates the CM of the balloon, gondola, and person at rest.  Since the CM is at 

rest, the total momentum of the system relative to the ground is 0.  The man climbing the rope cannot 
change the total momentum of the system, and so the CM must stay at rest.  Call the upward 
direction positive.  Then the velocity of the man with respect to the balloon is v� .  Call the velocity 
of the balloon with respect to the ground BG.v  Then the velocity of the man with respect to the 

ground is MG BG.v v v � �  Apply conservation of linear momentum in one dimension. 

  � �MG BG BG BG BG0      , upward
m

mv Mv m v v Mv v v
m M

 �  � � � o  
�

 

 If the passenger stops,  the balloon also stops , and the CM of the system remains at rest. 
 
80. Use Eq. 9-19a.  Call upwards the positive direction.  The external force is gravity, acting downwards.  

The exhaust is in the negative direction, and the rate of change of mass is negative. 

  � � � �
ext rel exhaust

2

exhaust

      

4.0 3500 kg 9.80 m s4.0
5100 m s

27 kg s

d dM dM
M Mg Ma v

dt dt dt

Mg
v

dM dt

 � o �  � o

��
   

�

¦ v
F v

GG G

 

 
81. The external force on the belt is the force supplied by the motor and the oppositely-directed force of 

friction.  Use Eq. 9-19 in one dimension.  The belt is to move at a constant speed, so the acceleration 
of the loaded belt is 0. 

  
� � � �

� � � � � � � �

ext rel motor friction

motor friction

    0   

2.20 m s 75.0 kg s 150N 315 N

dv dM dM
M F v M F F v

dt dt dt
dM

F v F
dt

 � o  � � � o

 �  � �  
 

 The required power output from the motor is then found as the product of the force and the velocity. 

� � � �motor motor

1hp
315 N 2.20 m s 693W 0.93hp

746 W
P F v    

§ ·
¨ ¸
© ¹

 

 When the gravel drops from the conveyor belt, it is not accelerated in the horizontal direction by the 
belt and so has no further force interaction with the belt.  The “new” gravel dropping on the belt 
must still be accelerated, so the power required is constant. 

 

82. The thrust is, in general, given as rel .
dM

v
dt

 

(a) The mass is ejected at a rate of 4.2 kg/s, with a relative speed of 550 m/s opposite to the 
direction of travel. 
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  � � � �fuel
thrust rel
fuel

550 m s 4.2 kg s 2310 N 2300 N
dM

F v
dt

  � �  |  

 (b) The mass is first added at a rate of 120 kg/s, with a relative speed of 270 m/s opposite to the  
direction of travel, and then ejected at a rate of 120 kg/s, with a relative speed of 550 m/s 
opposite to the direction of travel. 

 
� � � � � � � �air

thrust rel
air

4

270 m s 120 kg s 550 m s 120 kg s 33600 N

       3.4 10 N

dM
F v

dt
  � � � �  

| u

 

 (c) The power developed is the force of thrust times the velocity of the airplane. 

   
� � � � 6

thrust thrust
fuel air

4

1hp
2310 N 33600 N 270 m s 9.696 10 W

746 W

1.3 10 hp  

P F F v �  �  u

 u

§ ·§ ·
¨ ¸ ¨ ¸
© ¹ © ¹  

 
83. We apply Eq. 9-19b in one dimension, with “away” from the Earth as the positive direction, and 

“towards” the Earth as the negative direction.  The external force is the force of gravity at that 
particular altitude, found from Eq. 6-1. 

  

� �
� �

� � � �
� �

ext rel

Earth
ext 2

rel rel

11 2 2 24

2

26 6

  

1 1

6.67 10 N m kg 5.98 10 kg25000 kg
      1.5 m s 76 kg s

1300 m s 6.38 10 m 6.4 10 m

dv dM
M F v

dt dt
dM dv dv GM M

M F M
dt v dt v dt r

�

 � o

 �  � �

u � u
 �  �

� u � u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º
« »
« »¬ ¼

 

 The negative sign means that the mass is being ejected rather than absorbed. 
 
84. Because the sand is leaking out of the hole, rather than being pushed out 

the hole, there is no relative velocity of the leaking sand with respect to 
the sled (during the leaking process).  Thus there is no “thrust” in this 
situation, and so the problem is the same as if there were no hole in the 
sled.  From the free body diagram, we see that the acceleration down the 
plane will be sin ,a g T  as analyzed several times in Chapter 4.  Use the 
constant acceleration relationships to find the time. 

� �
� � � �

21
0 0 2 2

2 120 m2
    = 6.8s

9.80 m s sin 32y x
x

x
x x v t a t t

a
 � � o   

q
 

 
85. It is proven in the solution to problem 61 that in an elastic collision 

between two objects of equal mass, with the target object initially 
stationary, the angle between the final velocities of the objects is 90o.    
For this specific circumstance, see the diagram.  We assume that the 
target ball is hit “correctly” so that it goes in the pocket.  Find 1T  from 

the geometry of the “left’ triangle:  1
1

1.0
tan 30

3.0
.T �  q   Find 2T  from 

1.0 m 3.0 m 

3.0 m

1T
2T

y 

x 

T�T�
mgG

NF
G
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the geometry of the “right” triangle:  1
2

3.0
tan 60

3.0
.T �  q   Since the balls will separate at a 90q  

angle, if the target ball goes in the pocket, this does appear to be a good possibility of a scratch shot .  

 
86. The force stopping the wind is exerted by the person, so the force on the person would be equal in 

magnitude and opposite in direction to the force stopping the wind.  Calculate the force from Eq. 9-2, 
in magnitude only. 

� � � �

� � � �

wind
wind2

wind wind wind wind
on person on wind wind

45kg s 1m s
1.60 m 0.50 m 36 kg s       120 km h 33.33m s

m 3.6 km h

36 kg s 33.33m s

         1200 N

m
v

t

p m v m
F F v

t t t

  '   
'

' '
    '  

' ' '
 

§ ·
¨ ¸
© ¹

 

The typical maximum frictional force is � � � � � �2
fr 1.0 75kg 9.80 m s 740 N,sF mgP    and so we 

see that on person fr .F F!   The wind is literally strong enough to blow a person off his feet. 

 
87. Consider conservation of energy during the rising and falling of the ball, between contacts with the 

floor.  The gravitational potential energy at the top of a path will be equal to the kinetic energy at the 
start and the end of each rising-falling cycle.  Thus 21

2mgh mv  for any particular bounce cycle, and 
so for an interaction with the floor, the ratio of the energies before and after the bounce is 

after

before

1.20 m
0.80.

1.50 m

K mgh
K mgh

c
     We assume that each bounce will further reduce the energy to 80% 

of its pre-bounce amount.  The number of bounces to lose 90% of the energy can be expressed as 
follows. 

 � � log 0.1
0.8 0.1    10.3

log 0.8
n n o    

Thus after 11 bounces, more than 90% of the energy is lost. 
 

As an alternate method, after each bounce, 80% of the available energy is left.  So after 1 bounce, 
80% of the original energy is left.  After the second bounce, only 80% of 80%, or 64% of the 
available energy is left.  After the third bounce, 51 %.  After the fourth bounce, 41%.  After the fifth 
bounce, 33 %. After the sixth bounce, 26%.  After the seventh bounce, 21%.  After the eight bounce, 
17%.  After the ninth bounce, 13%.  After the tenth bounce, 11%.  After the eleventh bounce, 9% is 
left.  So again, it takes 11 bounces. 

 
88. Since the collision is elastic, both momentum (in two dimensions) and kinetic energy are conserved.  

Write the three conservation equations and use them to solve for the desired quantities.  The positive 
x direction in the diagram is taken to the right, and the positive y direction is taken towards the top of 
the picture.  

  � �

pin ball pin ball
initial final

pin ball
initial final

pin ball

    0 sin 75 sin     sin 75 5 sin

    13.0 m s cos75 cos   

                            65.0 m s cos75 5 cos

x x

y y

p p mv Mv v v

p p M mv Mv

v v

T T

T

T

 o  q � o q  

 o  q � o

q  �
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� �2 2 2 2 2 2 21 1 1

initial final pin ball pin ball2 2 2

2 2 2 2
pin ball

    13.0 m s     845m s 5

                               845m s 5

  K K M mv Mv v v

v v

 o  � o  � o

�  
 

 Square the two momentum equations and add them to eliminate the dependence on .T  

  

� � � �
� � � �

� �

22 2 2 2 2 2 2 2
pin ball pin pin ball

22 2 2 2 2 2 2 2
pin pin pin ball ball

2 2 2
pin pin ball b

sin 75 25 sin   ;  65.0 2 65.0 cos75 cos 75 25 cos   

sin 75 65.0 2 65.0 cos75 cos 75 25 sin 25 cos   

65.0 130 cos75 25 5 5

v v v v v

v v v v v

v v v v

T T

T T

q  � q � q  o

q � � q � q  � � o

� q �   � �2
all

 

 Substitute from the kinetic energy equation. 

  

� � � �

� � � �� �

2 2 2 2 2
pin pin pin pin pin pin

2
pin pin pin

22 2 21 1
pin ball ball pin5 5

pin ball

65.0 130 cos75 5 845     4225 130 cos75 4225 5

6 130 cos75     5.608m s

845 5     845 845 5.608 12.756 m s

sin 75 5 sin    

v v v v v v

v v v

v v v v

v v T

� q �  � o � q �  �

 q o  

�  o  �  �  

q  o
� �

� �
pin1 1

ball

sin 75 5.608 sin 75
 sin sin 4.87

5 5 12.756

v
v

T � �q q
   q

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

 

 So the final answers are as follows. 
 (a) pin 5.608m s 5.6 m sv  |  

 (b) ball 12.756 m s 13m sv  |  

 (c) 4.87 4.9T  q | q  
 
89. This is a ballistic “pendulum” of sorts, similar to Example 9-11 in the textbook.  There is no 

difference in the fact that the block and bullet are moving vertically instead of horizontally.  The 
collision is still totally inelastic and conserves momentum, and the energy is still conserved in the 
rising of the block and embedded bullet after the collision.  So we simply quote the equation from 
that example. 

  

� �
� � � � 22

2

2   

0.0240 kg 310 m s1 1
1.4 m

2 2 9.80 m s 0.0240 kg 1.40 kg

m M
v gh

m

mv
h

g m M

�
 o

   
� �

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

 

 
90. The initial momentum is 0, and the net external force on the puck is 0.  Thus momentum will be 

conserved in two dimensions. 

  
� �

� � � �

initial initial 3 3

2 2 1
3 3

ˆ ˆˆ ˆ    0 2 2     4

4
4 17      tan 256

mvi m v m vi v

v
v v v v

v
T �

 o  � � o  � �

�
 � � �    q

�

p p j v v jG G G G
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91. The fraction of energy transformed is initial final

initial

.
K K

K
�

 

� � � �
2

2 2A
A A A B A2 21 1

2 2A A A B A Binitial final
2 21

2initial A A A A

A B

A B A B

1
1

2
                  

m
m v m m v

m v m m v m mK K
K m v m v

m m
m m m m

� �
c� � ��

  

 �   
� �

§ ·
¨ ¸
© ¹

 

 
92. Momentum will be conserved in the horizontal direction.  Let A represent the railroad car, and B 

represent the snow.  For the horizontal motion, 0Bv   and .B Av vc c   Momentum conservation in the 
horizontal direction gives the following. 

� �
� � � �

� �

initial final A A A

A A
A

A B

    

4800 kg 8.60 m s
8.210 m s 8.2 m s

3.80 kg
4800 kg 60.0 min

min

p p m v mt mt v

m v
v

m m

c o  �

c    |
� � § ·

¨ ¸
© ¹

 

 
93. (a) We consider only the horizontal direction (the direction of motion of the railroad car).  There is  

no external force in the horizontal direction.  In Eq. 9-19b, the relative velocity (in the 
horizontal direction) of the added mass is the opposite of the horizontal velocity of the moving 
mass, since the added mass is moving straight down. 

   

0 0

ext rel

0

0 0 f

0 0
f 0 0

0

              

ln ln ln   

f fv M

v M

f f

f

dv dM dv dM dv dM dv dM
M F v M v

dt dt dt dt v M v M

v M M
v M M

M M
v v v

dMM M t
dt

 � o  � o  � o  � o

 �  o

  
�

³ ³

 

(b) Evaluate the speed at 60.0 min.t   

  � � � � � �
0

0

0

4800 kg
60.0 8.2 m s

4800 kg 3.80 kg min 60.0 min

M
v t v

dM
M t

dt

    
��

 

This agrees with the previous problem. 
 
94. (a) No, there is no net external force on the system.  In particular, the spring force is internal to the  

system. 
 (b) Use conservation of momentum to determine the ratio of speeds.  Note that the two masses will  

be moving in opposite directions.  The initial momentum, when the masses are released, is 0. 

 initial later A A B B A B B A    0     p p m v m v v v m m o  � o    

 (c) 
2 221

2A A A A A A B
B A21

2B B B B B B A

K m v m v m m
m m

K m v m v m m
    

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
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 (d) The center of mass was initially at rest.  Since there is no net external force on the system, the  
center of mass does not move, and so stays at rest. 

(e) With friction present, there could be a net external force on the system, because the forces of 
friction on the two masses would not necessarily be equal in magnitude.  If the two friction 
forces are not equal in magnitude, the ratios found above would not be valid.  Likewise, the 
center of mass would not necessarily be at rest with friction present. 

 
95. We assume that all motion is along a single direction.  The distance of sliding can be related to the 

change in the kinetic energy of a car, as follows. 

  
� �

� �
2 2 o1

fr fr fr N2

2 21
2

       cos180   f i k k

k f i

W K m v v W F x F x mg x

g x v v

T P P

P

 '  �  '  � '  � ' o

� '  �
 

 For post-collision sliding, 0fv   and iv  is the speed immediately after the collision, vc .  Use this 

relationship to find the speed of each car immediately after the collision. 

  Car A: � �� �� �2 21
A A A A2     2 2 0.60 9.80 m s 18 m 14.55m sk kg x v v g xP Pc c c c� '  � o  '    

  Car B: � � � �� �2 21
B B B B2     2 2 0.60 9.80 m s 30 m 18.78m sk kg x v v g xP Pc c c c� '  � o  '    

 During the collision, momentum is conserved in one dimension.  Note that B 0.v   

  � � � � � � � �
initial final A A A A B B

A A B B

A

    

1500kg 14.55m s 1100kg 18.78m s
28.32 m s

1500kgA

p p m v m v m v

m v m v
v

m

c c o  �

c c ��
   

 

 For pre-collision sliding, again apply the friction–energy relationship, with Afv v  and iv  is the 

speed when the brakes were first applied. 

 
� � � � � �� �� �22 2 2 21

A A2     2 28.32 m s 2 0.60 9.80 m s 15m

1mi h
31.23m s 70 mi h

0.447 m s

k i i A k Ag x v v v v g xP P� '  � o  � '  �

  
§ ·
¨ ¸
© ¹

 

 This is definitely over the speed limit. 
 
96. (a) The meteor striking and coming to rest in the Earth is a totally inelastic collision.  Let A  

represent the Earth and B represent the meteor.  Use the frame of reference in which the Earth is 
at rest before the collision, and so A 0.v    Write momentum conservation for the collision. 

   � �B B B   m v m m v$
c � o  

   � �
8

4 13B
B 24 8

A B

2.0 10 kg
2.5 10 m s 8.3 10 m s

6.0 10 kg 2.0 10 kg

m
v v

m m
�uc   u  u

� u � u
 

  This is so small as to be considered 0. 
 

(b) The fraction of the meteor’s kinetic energy transferred to the Earth is the final kinetic energy of 
the Earth divided by the initial kinetic energy of the meteor. 

   
� �� �
� �� �

224 1312final 1
2Earth 172

221 8 41
initial B B2 2
meteor

6.0 10 kg 8.3 10 m s
3.3 10

2.0 10 kg 2.5 10 m s

K
m v

K m v

�
�$

u uc
   u

u u
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 (c) The Earth’s change in kinetic energy can be calculated directly. 

   � �� �22 24 131 1
Earth final initial 2 2

Earth Earth

0 6.0 10 kg 8.3 10 m s 2.1 JK K K m v �
$
c'  �  �  u u   

 
97. Since the only forces on the astronauts are internal to the 2-astronaut system, their CM will not 

change.  Call the CM location the origin of coordinates.  That is also the original location of the two 
astronauts. 

� �� � � � BA A B B
CM

A B

60 kg 12 m 80 kg
    0     9 m

140 kg

xm x m x
x x

m m
��

 o  o  �
�

 

 Their distance apart is � �A B 12 m 9 m 21m .x x�  � �   

 
98. This is a ballistic “pendulum” of sorts, similar to Example 9-11 in the textbook.  The mass of the 

bullet is m, and the mass of the block of wood is M.  The speed of the bullet before the collision is ,v  
and the speed of the combination after the collision is .vc   Momentum is conserved in the totally 
inelastic collision, and so � � .mv m M vc �  The kinetic energy present immediately after the 
collision is lost due to negative work being done by friction. 

� �
� �

2 2 o1
afterfr fr fr N2
collision

2 2 21 1
2 2

      cos180   

    2

f i k k

k f i k

W K m v v W F x F x mg x

g x v v v v g x

T P P

P P

 '  �  '  � '  � ' o

c c� '  �  � o  '
 

 Use this expression for vc  in the momentum conservation equation in one dimension in order to 
solve for .v  

  

� � � �

� � � �� �2

2

2   

0.022 kg 1.35 kg
2 2 0.28 9.80 m s 8.5 m

0.022 kg

4.3 10 m s 

k

k

mv m M v m M g x

m M
v g x

m

P

P

c �  � ' o

� �
 '  

 u

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

 

 
99. (a) Conservation of mechanical energy can be used to find the velocity  

of the lighter ball before impact.  The potential energy of the ball at 
the highest point is equal to the kinetic energy of the ball just 
before impact.  Take the lowest point in the swing as the zero 
location for gravitational potential energy. 

� � 21
initial final A2A A    1 cos   E E m g m vT o �  ol  

� � � � � � � �2
A 2 1 cos 2 9.80 m s 0.30 m 1 cos66

1.868 m s 1.9 m s  

v g T �  � q

 |

l
 

 
 (b) This is an elastic collision with a stationary target.  Accordingly, the relationships developed in  

Example 9-8 are applicable. 

   � �A B
A A

A B

0.045kg 0.065kg
1.868m s 0.3396 m s 0.34 m s

0.045kg 0.065kg

m m
v v

m m
� �c    �  �
� �

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

   � � � �A
B A

A B

22
1.868m s 1.528m s 1.5m s

0.045kg 0.065kg

0.045kgm
v v

m m
c     

� �
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

cosTl

� �1 cosT�l

Tl
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 (c) We can again use conservation of energy for each ball after the collision.  The kinetic energy of  
each ball immediately after the collision will become gravitational potential energy as each ball 
rises. 

2
21

initial final 2        
2

v
E E mv mgh h

g
 o  o   

� �
� �

� �
� �

2 22 2
3A B

A B2 2

0.3396 m s 1.528 m s
5.9 10 m   ;  0.12 m

2 2 9.80 m s 2 2 9.80 m s

v v
h h

g g
��

   u     

 
100. (a) Use conservation of energy to find the speed of mass m before the collision.  The potential  

energy at the starting point is all transformed into kinetic energy just before the collision. 

� �� �2 21
A A A A2     2 2 9.80 m s 3.60 m 8.40 m smgh mv v gh o     

Use Eq. 9-8 to obtain a relationship between the velocities, noting that 0.Bv   

A B B A B A A    v v v v v v vc c c c�  � o  �  
Apply momentum conservation for the collision, and substitute the result from Eq. 9-8. 

   

� �

� �

A A B A A A

A A

B A A

  

2.20 kg 7.00 kg
8.4 m s 4.38 m s 4.4 m s

9.20 kg

4.4 m s 8.4 m s 4.0 m s

mv mv Mv mv M v v

m M
v v

m M

v v v

c c c c �  � � o

� �c    � | �
�

c c �  � �  

§ ·
¨ ¸
© ¹

 

(b) Again use energy conservation to find the height to which mass m rises after the collision.  The 
kinetic energy of m immediately after the collision is all transformed into potential energy.  Use 
the angle of the plane to change the final height into a distance along the incline. 

   
� �

� �

2
2 A1

A A A2

22
A A

A 2

    
2

4.38m s
1.96 m 2.0 m

sin 30 2 sin 30 2 9.8m s sin 30

v
mv mgh h

g

h v
d

g g

c
c c c o  

c c �c     |
q q q

 

 
101. Let A represent mass m and B represent mass M.  Use Eq. 9-8 to obtain a relationship between the 

velocities, noting that B 0.v   

A B B A A B A    v v v v v v vc c c c�  � o  � . 

After the collision, A 0vc �  since m is moving in the negative direction.  For there to be a second 
collision, then after m moves up the ramp and comes back down, with a positive velocity at the 
bottom of the incline of A ,vc�  the speed of m must be greater than the speed of M so that m can catch 

M.  Thus A Bv vc c� ! , or A B.v vc c� �   Substitute the result from Eq. 9-8 into the inequality. 
1

B A B B A2    v v v v vc c c� � � o �  
 Now write momentum conservation for the original collision, and substitute the result from Eq. 9-8. 

  � �A A B B A B B A

2
    

m
mv mv Mv m v v Mv v v

m M
c c c c c �  � � o  

�
 

 Finally, combine the above result with the inequality from above. 

  1 1
A A2 3

2
   4     2.33 kg

m
v v m m M m M

m M
� o � � o �  

�
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102. Call the final direction of the joined objects the positive x axis.  A diagram of 
the collision is shown.  Momentum will be conserved in both the x and y 
directions.  Note that A Bv v v   and 3.v vc   

� �� �
1 2 1 2 1 2

2
1 2 1 2 3

1 o2 1
1 2 1 1 23 3

o
1 2

:    sin sin 0    sin sin     

:    cos cos 2 3     cos cos

cos cos 2 cos     cos 70.5

141

y

x

p mv mv

p mv mv m v

T T T T T T

T T T T

T T T T T

T T

�

� �  o  o  

�  o �  

�   o    

�  

 

 
103. The original horizontal distance can be found from the range formula from Example 3-10. 

� � � � � �22 2
0 0sin 2 25m s sin 56 9.8 m s 52.87 mR v gT  q   

The height at which the objects collide can be found from Eq. 2-12c for the vertical motion, with 
0yv   at the top of the path.  Take up to be positive. 

� � � � � �> @
� �

22 2
02 2

0 0 0 2

0 25m s sin 28
2     7.028 m

2 2 9.80 m s
y y

y y

v v
v v a y y y y

a
� � q

 � � o �    
�

 

Let m represent the bullet and M the skeet.  When the objects collide, the skeet is moving 
horizontally at � �0 cos 25m s cos 28 22.07 m s ,xv vT    q  and the bullet is moving vertically at 

230 m s.yv    Write momentum conservation in both directions to find the velocities after the 

totally inelastic collision. 

 

� � � � � �
� �

� � � � � �
� �

0.25 kg 22.07 m s
:        20.82 m s

0.25 0.015 kg

0.015 kg 230 m s
:        13.02 m s

0.25 0.015 kg

x
x x x x

y
y y y y

Mv
p Mv M m v v

M m

mv
p mv M m v v

M m

c c � o    
� �

c c � o    
� �

 

(a) The speed yvc  can be used as the starting vertical speed in Eq. 2-12c to find the height that the 

skeet–bullet combination rises above the point of collision.   

 

� �

� � � �
� �

2 2
0 0 extra

22 2
0

0 2extra

2   

0 13.02 m s
8.649m 8.6 m

2 2 9.80 m s

y y

y y

v v a y y

v v
y y

a

 � � o

� �
�    |

�

 

(b) From Eq. 2-12b applied to the vertical motion after the collision, we can find the time for the  
skeet–bullet combination to reach the ground. 

  
� � � �2 2 21 1

0 2 2

2

    0 8.649 m 13.02 m s 9.80 m s   

4.9 13.02 8.649 0    3.207 s , 0.550s

yy y v t at t t

t t t

c � � o  � � � o

� �  o  �
 

The positive time root is used to find the horizontal distance traveled by the combination after 
the collision. 

  � � � �after 20.82 m s 3.207s 66.77 mxx v tc    

 If the collision would not have happened, the skeet would have gone 1
2 R  horizontally from this  

point. 

� �1 1
after 2 266.77 m 52.87 m 40.33m 40 mx x R'  �  �  |  

  Note that the answer is correct to 2 significant figures. 
 

T2 
T1 

AmvG

BmvG
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104. In this interaction, energy is conserved (initial potential energy of mass - compressed spring system 
= final kinetic energy of moving blocks) and momentum is conserved, since the net external force is 
0.  Use these two relationships to find the final speeds. 

  � �
initial final 3 3

22 2 2 2 21 1 1 1 1
initial final spring final 3 3 3 32 2 2 2 2

initial

2 21
3 32

    0 3     3

    3 3 3 6

6       ;  3
12 12

m m m m

m m m m m

m m m

p p mv mv v v

E E U K kD mv mv m v mv mv

k k
kD mv v D v D

m m

 o  � o  

 o  o  �  �  

 o   

 

 
105. The interaction between the planet and the spacecraft is elastic, because the force of gravity is 

conservative. Thus kinetic energy is conserved in the interaction.  Consider the problem a 1-
dimensional collision, with A representing the spacecraft and B representing Saturn.  Because the 
mass of Saturn is so much bigger than the mass of the spacecraft, Saturn’s speed is not changed 
appreciably during the interaction.  Use Eq. 9-8, with A 10.4 km sv   and B B 9.6 km s.v vc  �  

� �A B A B A B A    2 2 9.6 km s 10.4 km s 29.6 km sv v v v v v vc c c�  � � o  �  � �  �   

 Thus there is almost a threefold increase in the spacecraft’s speed, and it reverses direction. 
 
106. Let the original direction of the cars be the positive direction.  We have A 4.50 m sv   and 

B 3.70 m s.v   
(a) Use Eq. 9-8 to obtain a relationship between the velocities. 

   � �A B A B B A B A A    0.80 m sv v v v v v v v vc c c c c�  � � o  � �  �  
Substitute this relationship into the momentum conservation equation for the collision. 

   

� �
� � � � � � � � � �

A A B B A A B B A A B B A A B A

A A B B
A

A B

B A

    0.80 m s   

0.80 m s 450 kg 4.50 m s 490 kg 2.90 m s
3.666 m s

940 kg

3.67 m s 0.80 m s 4.466 m s 4.47 m s     ;  

m v m v m v m v m v m v m v m v

m v m v
v

m m

v v

c c c c�  � o �  � � o

� � �c    
�

c c �  | |
 (b) Calculate p p pc'  �  for each car. 

   

� � � �

� � � �

2
A A A A A

2
B B B B B

450 kg 3.666 m s 4.50 m s 3.753 10 kg m s

      380 kg m s

490 kg 4.466 m s 3.70 m s 3.753 10 kg m s

      380 kg m s

p m v m v

p m v m v

c'  �  �  � u

| �

c'  �  �  u

|

<

<

<

<

 

  The two changes are equal and opposite because momentum was conserved. 
 
107. Let A represent the cube of mass M and B represent the cube of mass m.  Find the speed of A 

immediately before the collision, A ,v  by using energy conservation. 

� � � �2 21
A A2     2 2 9.8m s 0.35 m 2.619 m sMgh Mv v gh o     

Use Eq. 9-8 for elastic collisions to obtain a relationship between the velocities in the collision.  We 
have B 0v   and 2 .M m  

 � �A B A B B A A    v v v v v v vc c c c�  � � o  �  
 Substitute this relationship into the momentum conservation equation for the collision. 
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� �

� �
� � � �

A A B B A A B B A A A A B A A

2

A
A A A A A

4
B A A A3

      

2 9.80 m s 0.35m2
2 2     0.873m s

3 3 3
3.492 m s

m v m v m v m v m v m v m v v

ghv
mv mv m v v v

v v v v

c c c c�  � o  � � o

c c c � � o     

c c �   

 

Each mass is moving horizontally initially after the collision, and so each has a vertical velocity of 0 
as they start to fall.  Use constant acceleration Eq. 2-12b with down as positive and the table top as 
the vertical origin to find the time of fall. 

2 21 1
0 0 2 2    0 0     2y y v t at H gt t H g � � o  � � o   

 Each cube then travels a horizontal distance found by xx v t'  ' . 

  

� � � �

� � � �

2 2
3 3

8 8
3 3

2 2
0.35m 0.95m 0.3844 m 0.38m

3

4 2 2
0.35m 0.95m 1.538m 1.5m

3

m A

M B

gh H
x v t hH

g

gh H
x v t hH

g

c'  '     |

c'  '     |

  

 
108. (a) Momentum is conserved in the z direction.  The initial z-momentum is 0. 

� �

satellite  satellite shuttle  shuttle
before after

3satellite  satellite
 shuttle

shuttle

    0   

850 kg
0.30 m s 2.8 10 m s

92,000 kg

z z z z

z
z

p p m v m v

m v
v

m
�

 o  � o

 �  �  � u
 

And so the component in the minus z direction is 32.8 10 m s .�u  

 (b) The average force is the change in momentum per unit time.  The force on the satellite is in the  
positive z direction. 

   
� � � �

avg

850 kg 0.30 m s
64 N

4.0s

p m v
F

t t
' '

    
' '

 

 
109. (a) The average force is the momentum change divided by the elapsed time. 

� � � �
5 5

avg

1m s
1500 kg 0 45km h

3.6 km h
1.25 10 N 1.3 10 N

0.15s

p m v
F

t t

�
' '

    � u | � u
' '

§ ·
¨ ¸
© ¹  

The negative sign indicates direction – that the force is in the opposite direction to the original 
direction of motion. 

 (b) Use Newton’s second law. 

   
5

avg 2 2
avg avg avg

1.25 10 N
    83.33m s 83m s

1500 kg

F
F ma a

m
� u

 o    � | �  

 
110. (a) In the reference frame of the Earth, the final speed of the Earth–asteroid system is essentially 0,  

because the mass of the Earth is so much greater than the mass of the asteroid.  It is like 
throwing a ball of mud at the wall of a large building – the smaller mass stops, and the larger 
mass doesn’t move appreciably.  Thus all of the asteroid’s original kinetic energy can be 
released as destructive energy. 

 � � � � � �3 22 3 3 4 211 1 4
orig 02 2 33200 kg m 1.0 10 m 1.5 10 m s 1.507 10 JK mv S  u u  uª º

¬ ¼  
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21      1.5 10 J| u  

(b) 21

16

1bomb
1.507 10 J 38,000 bombs

4.0 10 J
u  

u
§ ·
¨ ¸
© ¹

 

 
111. We apply Eq. 9-19b, with no external forces.  We also assume that the motion is all in one 

dimension. 

  rel rel

rel

1 1
          

d dM
M Mdv v dM dv dM

dt dt v M
 o  o  o

v
v

G
G

  

� � � � � �� �

final final

final rel

0

final rel

final final
final 0

rel rel 00

2.0 35
ejected 0 final 0

1 1
    ln       

1 210 kg 1 11.66 kg 12 kg

v M
v v

M

v v

v M
dv dM M M e

v M v M

M M M M e e �

 o  o  o

 �  �  �  |

³ ³
 

 
112. (a) We take the CM of the system as the origin of  

coordinates.  Then at any time, we consider the  
x axis to be along the line connecting the star and the 
planet.  Use the definition of center of mass: 

 

� �A A B B B
CM A B

A B A

0    
m r m r m

x r r
m m m
� �

  o  
�

 

 (b) � �
3

11 8B A
A B

A A

1.0 10
8.0 10 m 8.0 10 m

m m
r r

m m

�u
  u  u  

 (c) The geometry of this situation is illustrated  
in the adjacent diagram.  For small angles in 
radian measure, tan sin .T T T| |  

   
� �

� � � �

8

17A A
15

1 1
1000 3600

2 8.0 10 m2 2 1 ly
tan     3.30 10 m 35ly

9.46 10 m
180

r r
d

d
T T ST

u
| | o    u  

u
§ ·
¨ ¸
© ¹

  

 (d) We assume that stars are distributed uniformly, with an average interstellar distance of 4 ly.  If  
we think about each star having a spherical “volume” associated with it, that volume would 
have a radius of 2 ly (half the distance to an adjacent star).  Each star would have a volume of 

� �334 4
star3 3
to
star

2 ly .rS S   If wobble can be detected from a distance of 35 ly, the volume over which 

wobble can be detected is � �334 4
detectable3 3
wobble

35ly .rS S  

 
� �
� �

34
33 detectable

wobble

334
3 star

to star

35ly
#  stars 5400 stars

2 ly

r

r

S

S
  |  

 
113. This is a totally inelastic collision in one dimension.  Call the direction of the Asteroid A the positive  

direction. 
 � �initial final A A B B A B      p p m v m v m m vc o �  � o  

Am
Bm

ArBr

T A2r
d
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� � � � � � � �12 13

A A B B
12 13

A B

7.5 10 kg 3.3km s 1.45 10 kg 1.4 km s

7.5 10 kg 1.45 10 kg

0.2 km s, in the original direction of asteroid A  

m v m v
v

m m

u � u ��c   
� u � u

 

  

 
114. (a) The elastic, stationary-target one-dimensional collision is analyzed in Example 9-8.  We can use  

the relationships derived there to find the final velocity of the target. 

   A A A A
B A

A B A B B A

2 2 2

1

m m v v
v v

m m m m m m
c    

� � �
§ ·
¨ ¸
© ¹

 

  Note that since B A ,m m�  B A.v vc !  

 (b) In this scenario, the first collision would follow the same calculation as above, giving C.vc   Then  

particle C is incident on particle B, and using the same calculation as above, would give B.vc  

   

� � � �

A
C A

A C

C A C A C
B C A A

B C A C B C A C B C

2

2 2 2
4

m
v v

m m

m m m m m
v v v v

m m m m m m m m m m

c  
�

c c   
� � � � �

§ ·
¨ ¸
© ¹

§ · § ·§ ·
¨ ¸ ¨ ¸¨ ¸
© ¹ © ¹© ¹

 

 (c) To find the value of Cm  that gives the maximum B,vc set B

C

0
dv
dm
c
  and solve for C.m  

   

� � � � � �> @
� � � �

� � � � � �

A C B C C A B CB
A A 2 2

C A C B C

A C B C C A B C

2
A B C C A B

2
4 0  

2 0  

0    

m m m m m m m mdv
v m

dm m m m m

m m m m m m m m

m m m m m m

c � � � � �
  o

� �

� � � � �  o

�  o  

 

(d) The graph is shown here.  The numeric maximum of the graph has B 4.5m svc   and occurs at  

C 6.0 kg .m    According to the analysis from part (c), the value of C A Bm m m    

� � � �18.0 kg 2.0 kg 6.0 kg,  and gives a speed of 
� � � �

A A C
B

A C B C

4v m m
v

m m m m
c  

� �
 

� � � � � �
� � � �

4 2.0 m s 18.0 kg 6.0 kg

24.0 kg 8.0 kg

4.5m s. 

 
. 

The numeric results agree with the 
analytical results.  The spreadsheet 
used for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH09.XLS,” on tab 
“Problem 9.114d.” 

 
 
 
 

 

0

1

2
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4

5
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CHAPTER 10:  Rotational Motion 
 
Responses to Questions 
 
1.  The odometer will register a distance greater than the distance actually traveled. The odometer 

counts the number of revolutions and the calibration gives the distance traveled per revolution (2ʌr). 

The smaller tire will have a smaller radius, and a smaller actual distance traveled per revolution. 

 

2.   A point on the rim of a disk rotating with constant angular velocity has no tangential acceleration 

since the tangential speed is constant. It does have radial acceleration. Although the point’s speed is 

not changing, its velocity is, since the velocity vector is changing direction. The point has a 

centripetal acceleration, which is directed radially inward. If the disk’s angular velocity increases 

uniformly, the point on the rim will have both radial and tangential acceleration, since it is both 

moving in a circle and speeding up. The magnitude of the radial component of acceleration will 

increase in the case of the disk with a uniformly increasing angular velocity, although the tangential 

component will be constant. In the case of the disk rotating with constant angular velocity, neither 

component of linear acceleration will change. 

 

3.  No. The relationship between the parts of a non-rigid object can change. Different parts of the object 

may have different values of Ȧ. 

 

4.  Yes. The magnitude of the torque exerted depends not only on the magnitude of the force but also on 

the lever arm, which involves both the distance from the force to the axis of rotation and the angle at 

which the force is applied. A small force applied with a large lever arm could create a greater torque 

than a larger force with a smaller lever arm.   

 

5. When you do a sit-up, you are rotating your trunk about a horizontal axis through your hips. When 

your hands are behind your head, your moment of inertia is larger than when your hands are 

stretched out in front of you. The sit-up with your hands behind your head will require more torque, 

and therefore will be “harder” to do. 

 

6.  Running involves rotating the leg about the point where it is attached to the rest of the body. 

Therefore, running fast requires the ability to change the leg’s rotation easily. The smaller the 

moment of inertia of an object, the smaller the resistance to a change in its rotational motion. The 

closer the mass is to the axis of rotation, the smaller the moment of inertia. Concentrating flesh and 

muscle high and close to the body minimizes the moment of inertia and increases the angular 

acceleration possible for a given torque, improving the ability to run fast. 

 

7.  No. If two equal and opposite forces act on an object, the net force will be zero. If the forces are not 

co-linear, the two forces will produce a torque. No. If an unbalanced force acts through the axis of 

rotation, there will be a net force on the object, but no net torque.  

 

8.  The speed of the ball will be the same on both inclines. At the top of the incline, the ball has 

gravitational potential energy. This energy becomes converted to translational and rotational kinetic 

energy as the ball rolls down the incline. Since the inclines have the same height, the ball will have 

the same initial potential energy and therefore the same final kinetic energy and the same speed in 

both cases. 

 

9. Roll the spheres down an incline. The hollow sphere will have a great moment of inertia and will 

take longer to reach the bottom of the incline. 
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10.  The two spheres will reach the bottom at the same time with the same speed. The larger, more 

massive sphere will have the greater total kinetic energy at the bottom, since the total kinetic energy 

can be stated in terms of mass and speed. 

 

11.  A tightrope walker carries a long, narrow beam in order to increase his or her moment of inertia, 

making rotation (and falling off the wire) more difficult. The greater moment of inertia increases the 

resistance to change in angular motion, giving the walker more time to compensate for small shifts 

in position. 

 

12.  The moment of inertia of a solid sphere is given by 
22

5
MR and that of a solid cylinder is given 

by
21

2
MR . The solid sphere, with a smaller moment of inertia and therefore a smaller resistance to 

change in rotational motion, will reach the bottom of the incline first and have the greatest speed. 

Since both objects begin at the same height and have the same mass, they have the same initial 

potential energy. Since the potential energy is completely converted to kinetic energy at the bottom 

of the incline, the two objects will have the same total kinetic energy. However, the cylinder will 

have a greater rotational kinetic energy because its greater moment of inertia more than compensates 

for its lower velocity. At the bottom, 10

sphere 7
v gh and 4

cylinder 3
.v gh  Since rotational kinetic 

energy is 
21

rot 2
,K IZ  then 2

rot 7

sphere

K mgh  and 1

rot 3

cylinder

.K mgh  

 

13. The moment of inertia will be least about an axis parallel to the spine of the book, passing through 

the center of the book. For this choice, the mass distribution for the book will be closest to the axis. 

 

14.  Larger. The moment of inertia depends on the distribution of mass. Imagine the disk as a collection 

of many little bits of mass. Moving the axis of rotation to the edge of the disk increases the average 

distance of the bits of mass to the axis, and therefore increases the moment of inertia. (See the 

Parallel Axis theorem.) 

 

15. If the angular velocity vector of a wheel on an axle points west, the wheel is rotating such that the 

linear velocity vector of a point at the top of the wheel points north. If the angular acceleration 

vector points east (opposite the angular velocity vector), then the wheel is slowing down and the 

linear acceleration vector for the point on the top of the wheel points south. The angular speed of the 

wheel is decreasing. 
 

 

Solutions to Problems 
 

1. (a) � � � �45.0 2  rad 360 4 rad 0.785radS Sq q    

 (b) � � � �60.0 2  rad 360 3rad 1.05radS Sq q    

 (c) � � � �90.0 2  rad 360 2 rad 1.57 radS Sq q    

(d) � � � �o
360.0 2  rad 360 2 rad 6.283radS Sq    

(e) � � � �445 2  rad 360 89 36 rad 7.77 radS Sq q    
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2. The subtended angle (in radians) is the diameter of the Sun divided by the Earth – Sun distance. 

   

  

� � � �
Earth Sun

11 8 81 1

Earth Sun2 2

diameter of Sun
  

rad
radius of Sun 0.5 1.5 10 m 6.545 10 m 7 10 m

180

r

r

T

ST

�

�

 o

  q u  u | u
q

§ ·
¨ ¸
© ¹

 

 

3. We find the diameter of the spot from the definition of radian angle measure. 

� � � �5 8

Earth Moon

Earth Moon

diameter
    diameter 1.4 10 rad 3.8 10 m 5300 mr

r
T T �

�
�

 o   u u   

 

4. The initial angular velocity is 
rev 2  rad 1 min

6500 681rad s
min 1 rev 60 sec

.o

SZ   § ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

  Use the   

definition of angular acceleration. 

20 681rad s
170 rad s

4.0 st
ZD ' �

   �
'

 

 

5. (a) 
2500 rev 2 rad 1min

261.8 rad sec 260 rad sec
1min 1rev 60s

SZ   |
§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

 

 (b) � �� �261.8 rad sec 0.175 m 46 m sv rZ    

  � � � �22 4 2

R
261.8 rad sec 0.175 m 1.2 10 m sa rZ   u  

 

6. In each revolution, the wheel moves forward a distance equal to its circumference, .dS  

  � � � �rev

7200 m
    3400 rev

0.68 m

x
x N d N

d
S

S S
'

'  o     

 

7. The angular velocity is expressed in radians per second.  The second hand makes 1 revolution every 

60 seconds, the minute hand makes 1 revolution every 60 minutes, and the hour hand makes 1 

revolution every 12 hours. 

 (a) Second hand: 
11 rev 2  rad rad

rad sec 1.05 10
60sec 1 rev 30 sec

S SZ �  | u
§ ·§ ·

¨ ¸¨ ¸© ¹© ¹
 

 (b) Minute hand: 
31 rev 2 rad 1min rad rad

1.75 10
60 min 1 rev 60 s 1800 sec sec

S SZ �  | u
§ ·§ ·§ ·

¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹
 

 (c) Hour hand: 
41 rev 2 rad 1h rad rad

1.45 10
12 h 1 rev 3600 s 21,600 sec sec

S SZ �  | u
§ ·§ ·§ ·

¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹
 

 (d) The angular acceleration in each case is  0 , since the angular velocity is constant. 

 

8. The angular speed of the merry-go-round is 2 rad 4.0s 1.57 rad s.S   

 (a) � �� �1.57 rad sec 1.2 m 1.9 m sv rZ    
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 (b) The acceleration is radial.  There is no tangential acceleration. 

   � � � �22 2

R
1.57 rad sec 1.2 m 3.0 m s towards the centera rZ    

 

9. Each location will have the same angular velocity (1 revolution per day), but the  

radius of the circular path varies with the location.  From the diagram, we see  

cos ,r R T  where R is the radius of the Earth, and r is the radius at latitude .T  

 (a) � �62 2 rad 1day
6.38 10 m 464 m s

1day 86400s
v r r

T
S SZ   u  

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 (b) � �62 2 rad 1day
6.38 10 m cos66.5 185m s

1day 86400s
v r r

T
S SZ   u q  

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 (c) � �62 2 rad 1day
6.38 10 m cos 45.0 328 m s

1day 86400s
v r r

T
S SZ   u q  

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 

10. (a) The Earth makes one orbit around the Sun in one year. 

   
7

orbit 7

2 rad 1 year
1.99 10 rad s

1year 3.16 10 st
T SZ �'

   u
' u

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

 

 (b) The Earth makes one revolution about its axis in one day. 

   
5

rotation

2 rad 1day
7.27 10 rad s

1day 86,400st
T SZ �'

   u
'

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 

11. The centripetal acceleration is given by 
2

.a rZ    Solve for the angular velocity. 

  
� � � �2

4
100,000 9.80 m s rad 1rev 60s

3741 3.6 10 rpm
0.070 m s 2 rad 1 min

a
r

Z
S

    u
§ · § ·

¨ ¸¨ ¸ © ¹© ¹
 

 

12. Convert the rpm values to angular velocities. 

0

rev 2  rad 1 min
130 13.6 rad s

min 1 rev 60 sec

rev 2  rad 1 min
280 29.3 rad s

min 1 rev 60 sec

SZ

SZ

  

  

§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹
§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

  

(a) The angular acceleration is found from Eq. 10-3a. 

   
2 20

29.3rad s 13.6 rad s
3.93rad s 3.9 rad s

4.0 st
Z ZD � �

   |  

 (b) To find the components of the acceleration, the instantaneous angular velocity is needed. 

� � � �2

0
13.6 rad s 3.93rad s 2.0s 21.5 rad stZ Z D �  �   

The instantaneous radial acceleration is given by 
2

R
.a rZ  

   � � � �22 2

R
21.5rad s 0.35m 160 m sa rZ    

  The tangential acceleration is given by 
tan

a rD . 

   � � � �2 2

tan
3.93rad s 0.35m 1.4 m sa rD    

 

 

T�
T�

R�

r�
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13. (a) The angular rotation can be found from Eq. 10-3a.  The initial angular frequency is 0 and the  

final frequency is 1 rpm. 

   
4 2 4 20

rev 2 rad 1.0 min
1.0 0

min 1 rev 60 s
1.454 10 rad s 1.5 10 rad s

720 st

S
Z ZD � �

�
�

   u | u

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹  

(b) After 7.0 min (420 s), the angular speed is as follows. 

� � � �4 2 2

0
0 1.454 10 rad s 420s 6.107 10 rad stZ Z D � � �  � u  u  

  Find the components of the acceleration of a point on the outer skin from the angular speed and  

the radius. 

   
� � � �

� � � �

4 2 4 2

tan

2
2 2 2 2

rad

1.454 10 rad s 4.25m 6.2 10 m s

6.107 10 rad s 4.25m 1.6 10 m s

a R

a R

D

Z

� �

� �

  u  u

  u  u
 

 

14. The tangential speed of the turntable must be equal to the tangential speed of the roller, if there is no  

slippage. 

  
1 2 1 1 2 2 1 2 2 1

        v v R R R RZ Z Z Z o  o   

 

15. (a) The direction of 
1

Z is along the axle of the wheel, to the left.  That is the ˆ�i direction.  The  

direction of 
2

Z is also along its axis of rotation, so it is straight up.  That is the ˆ�k direction.  

That is also the angular velocity of the axis of the wheel. 

(b) At the instant shown in the textbook, we have the vector relationship  

as shown in the diagram. 

� � � �2 22 2

1 2

1 12

2

44.0 rad s 35.0 rad s 56.2 rad s

35.0
tan tan 38.5

44.0

Z Z Z

ZT
Z

� �

 �  �  

   q
 

(c) Angular acceleration is given by .
d
dt

 
Ȧ

Į
G

G
  Since  

1 2
, �Ȧ Ȧ ȦG G G
 and 

2
ȦG  is a constant 

ˆ35.0 rad s ,k  1 .
d
dt

 
Ȧ

Į
G

G
  

1
ȦG  is rotating counterclockwise about the z axis with the angular 

velocity of 
2
,Z  and so if the figure is at t = 0, then � �1 1 2 2

ˆ ˆcos sin .t tZ Z Z � �Ȧ i jG
  

� � � � � �
� � � � � � � �

1 2 21 2 1

1 2 2 2

2

1 2

ˆ ˆcos sin
ˆ ˆsin cos

ˆ ˆ ˆ0 44.0 rad s 35.0 rad s 1540 rad s

d t tdd d
t t

dt dt dt dt

t

Z Z Z
ZZ Z Z

ZZ

� ��
     �

  �  �  �

ª º¬ ¼i jȦ ȦȦ Ȧ
Į i j

Į j j j

G GG G
G

G
    

 

16. (a) For constant angular acceleration: 

   

22

1200 rev min 3500 rev min 2300 rev min 2  rad 1 min

2.5 s 2.5s 1 rev 60 s

   96.34 96 rad srad s

o

t
Z Z SD � � �

   

 � �

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

|
  

 

 

 

 

x

z

Z 1 

Z 2 
Z 

T 
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 (b) For the angular displacement, given constant angular acceleration: 

� � � � � �1 1

2 2

1 min
3500 rev min 1200 rev min 2.5 s 98 rev

60 s
o tT Z Z �  �  § ·

¨ ¸
© ¹

 

 

17. The angular displacement can be found from Eq. 10-9d. 

    � � � � � � � � 41 1

2 2
0 15000 rev min 220s 1min 60s 2.8 10 revot tT Z Z Z  �  �  u  

 

18. (a) The angular acceleration can be found from Eq. 10-9b with 0.oZ   

� �
� �

1 2

22

2 20 rev2
4.0 10 rev min

1.0 mint
TD    u  

 (b) The final angular speed can be found from � �1

2
,o tT Z Z �  with 0.oZ   

   
� � 1

2 20 rev2
4.0 10 rpm

1.0 min
ot

TZ Z �   u  

 

19. (a) The angular acceleration can be found from Eq. 10-9c. 

   
� �
� �

2 22 2

2 2

0 850 rev min rev 2  rad 1 min rad
267.6 0.47

2 2 1350 rev min 1 rev 60 s s

oZ Z SD
T

��
   �  �§ ·§ ·§ ·

¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

 

(b) The time to come to a stop can be found from � �1

2
.o tT Z Z �  

� �2 1350 rev2 60s
190s

850 rev min 1mino

t
T

Z Z
   

�
§ ·
¨ ¸
© ¹

 

 

20. We start with .
d
dt
ZD    We also assume that D  is constant, that the angular speed at time 0t   is 

0 ,Z  and that the angular displacement at time 0t   is 0. 

  

� � � �

0

0 0

0

21

0 0 0 0 2

0 0

                

            

t

t

d
d dt d dt t t

dt

d
t d t dt d t dt t t

dt

Z

Z

T

ZD Z D Z D Z Z D Z Z D

TZ Z D T Z D T Z D T Z D

 o  o  o �  o  �

 �  o  � o  � o  �

³ ³

³ ³
 

 

21. Since there is no slipping between the wheels, the tangential component of the linear acceleration of 

each wheel must be the same. 

 (a) 
tan tan small small large large

small large

      a a r rD D o  o  

� �2 2 2small

large small

large

2.0 cm
7.2 rad s 0.6857 rad s 0.69 rad s

21.0 cm

r
r

D D   |§ ·
¨ ¸
© ¹

 

 (b) Assume the pottery wheel starts from rest.  Convert the speed to an angular speed, and  

then use Eq. 10-9a. 

   
rev 2  rad 1 min

65 6.807 rad s
min 1 rev 60 s

SZ   § ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹

 

   0

0 2

6.807 rad s
    9.9s

0.6857 rad s
t t

Z ZZ Z D
D
�

 � o     
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22. We are given that 
2 4

8.5 15.0 1.6 .t t tT  � �  

 (a) 
3

8.5 30.0 6.4 ,
d

t t
dt
TZ   � �  where Z  is in rad/sec and t is in sec. 

 (b) 
2

30.0 19.2 ,
d

t
dt
ZD   � �  where D  is in 

2
rad sec and t is in sec. 

 (c) � � � � � �3
3.0 8.5 30.0 3.0 6.4 3.0 91rad sZ  � �   

� � � �2 2
3.0 30.0 19.2 3.0 140 rad sD  � �   

 (d) The average angular velocity is the angular displacement divided by the elapsed time. 

   

� � � �

� � � � � � � � � � � �

avg

2 4 2 4

3.0 2.0

3.0s 2.0s

8.5 3.0 15.0 3.0 1.6 3.0 8.5 2.0 15.0 2.0 1.6 2.0
     

1.0s

38 rad s    

t
T TTZ

�'
  
' �

� � � � �
 

 

ª º ª º¬ ¼ ¬ ¼
 

 (e) The average angular acceleration is the change in angular velocity divided by the elapsed time. 

   

� � � �

� � � � � � � �

avg

3 3

2

3.0 2.0

3.0s 2.0s

8.5 30.0 3.0 6.4 3.0 8.5 30.0 2.0 6.4 2.0
     92 rad s

1.0s

t
Z ZZD

�'
  

' �

� � � � �
  
ª º ª º¬ ¼ ¬ ¼

 

 

23. (a) The angular velocity is found by integrating the angular acceleration function. 

   � �2 3 21 1

3 2

0 0 0

        5.0 8.5     5.0 8.5

t td
d dt d dt t t dt t t

dt

ZZD Z D Z D Z o  o   � o  �³ ³ ³  

 (b) The angular position is found by integrating the angular velocity function. 

   
� �3 21 1

3 2

0 0 0

4 31 1

12 6

        5.0 8.5   

5.0 8.5

t td
d dt d dt t t dt

dt

t t

TTZ T Z T Z

T

 o  o   � o

 �

³ ³ ³
 

 (c) � � � � � �3 21 1

3 2
2.0s 5.0 2.0 8.5 2.0 3.7 rad s 4 rad sZ  �  � | �  

  � � � � � �4 31 1

12 6
2.0s 5.0 2.0 8.5 2.0 4.67 rad 5radT  �  � | �  

 

24. (a) The maximum torque will be exerted by the force of her weight, pushing tangential to the circle  

in which the pedal moves. 

   � � � � � �2 2
0.17 m 62 kg 9.80 m s 1.0 10 m Nr F r mgW A A    u <  

(b) She could exert more torque by pushing down harder with her legs, raising her center of mass.   

She could also pull upwards on the handle bars as she pedals, which will increase the downward 

force of her legs. 
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25. Each force is oriented so that it is perpendicular to its lever arm.  Call counterclockwise torques 

positive.  The torque due to the three applied forces is given by the following. 

� �� � � �� � � �� �applied

forces

28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 1.8 m NW  � �  � <  

Since this torque is clockwise, we assume the wheel is rotating clockwise, and so the frictional  

torque is counterclockwise.  Thus the net torque is as follows. 

� �� � � �� � � �� �net
28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 0.40 m N 1.4 m N

     1.4 m N , clockwise

W  � � �  �

 

< <

<
 

 

26. The torque is calculated by sin .rFW T   See the diagram, from the top view. 

 (a) For the first case, 90 .T  q  

� � � �sin 0.96 m 32 N sin 90 31m NrFW T  q  <  

 (b) For the second case, 60.0 .T  q  

� � � �sin 0.96 m 32 N sin 60.0 27 m NrFW T  q  <  

 

27. There is a counterclockwise torque due to the force of gravity on the left block, and a clockwise 

torque due to the force of gravity on the right block.  Call clockwise the positive direction. 

� �2 1 2 1
, clockwisemg mg mgW  �  �¦ l l l l  

 

28. The lever arm to the point of application of the force is along the x axis.  Thus the perpendicular part 

of the force is the y component.  Use Eq. 10-10b. 

 � � � �0.135m 43.4 N 5.86 m N, counterclockwiseRFW A   <  

 

29. The force required to produce the torque can be found from sin .rFW T   The force is applied  

perpendicularly to the wrench, so 90 .T  q   

  
75m N

270 N
0.28 m

F
r
W

   
<

 

The net torque still must be 75m N.<   This is produced by 6 forces, one at each of the 6 points.  We 

assume that those forces are also perpendicular to their lever arms. 

  � � � �net point point point

75 m N
6     1700 N

6 6 0.0075m
F r F

r
WW  o    

<
 

 

30. For each torque, use Eq. 10-10c.  Take counterclockwise torques to be positive. 

 (a) Each force has a lever arm of 1.0 m. 

� � � � � � � �about

C

1.0 m 56 N sin 30 1.0 m 52 N sin 60 17m NW  � q � q  <  

 (b) The force at C has a lever arm of 1.0 m, and the force at the top has a lever arm of 2.0 m. 

� � � � � � � �about

P

2.0 m 56 N sin 30 1.0 m 65 N sin 45 10 m NW  � q � q  � <  (2 sig fig) 

  The negative sign indicates a clockwise torque. 

 

31. For a sphere rotating about an axis through its center, the moment of inertia is as follows.  

  � � � �22 22 2

5 5
10.8 kg 0.648 m 1.81 kg mI MR   <  

 

T�

r 

F
G
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32. Since all of the significant mass is located at the same distance from the axis of rotation, the moment  

of inertia is given by 
2
.I MR  

  � � � �� �22 21

2
1.1kg 0.67m 0.12 kg mI MR   <  

The hub mass can be ignored because its distance from the axis of rotation is very small, and so it 

has a very small rotational inertia. 

 

33. (a) The torque exerted by the frictional force is 
fr

sin .rFW T   The force of  

friction is assumed to be tangential to the clay, and so 90 .T  q  

� �� � � �1

total fr 2
sin 0.12 m 1.5 N sin 90 0.090 m NrFW T  q  <  

(b) The time to stop is found from ,o tZ Z D �  with a final angular  

velocity of 0.  The angular acceleration can be found from 
total

.IW D   

The net torque (and angular acceleration) is negative since the object is slowing. 

 
� � � �

� � � �2

0 1.6 rev s 2 rad rev
12s

0.090 m N 0.11kg m

o ot
I

SZ Z Z Z
D W

�� �
    

� < <
 

 

34. The oxygen molecule has a “dumbbell” geometry, rotating about the dashed line, as 

shown in the diagram.  If the total mass is M, then each atom has a mass of M/2.  If 

the distance between them is d, then the distance from the axis of rotation to each 

atom is d/2.  Treat each atom as a particle for calculating the moment of inertia. 

  
� �� � � �� � � �� �

� � � �

2 2 2 21

4

46 2 26 10

2 2 2 2 2 2 2   

4 4 1.9 10 kg m 5.3 10 kg 1.2 10 m

I M d M d M d Md

d I M � � �

 �   o

  u u  u<
 

 

35. The torque can be calculated from .IW D   The rotational inertia of a rod about its end is given by 
21

3
.I ML  

  � � � � � � � �221 1

3 3

2.7 rev s 2 rad rev
2.2 kg 0.95m 56 m N

0.20s
I ML

t
SZW D '

    
'

<  

 

36. (a) The moment of inertia of a cylinder is 
21

2
.MR  

   � � � �22 3 2 3 21 1

2 2
0.380 kg 0.0850 m 1.373 10 kg m 1.37 10 kg mI MR � �   u | u< <  

 (b) The wheel slows down “on its own” from 1500 rpm to rest in 55.0s.  This is used to calculate  

the frictional torque. 

   � � � � � � � �3 2

fr fr

0 1500 rev min 2  rad rev 1 min 60 s
1.373 10 kg m

55.0 s
I I

t
SZW D � �'

   u
'

<  

3
   3.921 10 m N

� � u <  

The net torque causing the angular acceleration is the applied torque plus the (negative) 

frictional torque. 

applied fr applied fr fr
    I I I

t
ZW W W D W D W W'

 �  o  �  �
'¦  

� � � � � � � � � �3 2 3

2

1750 rev min 2 rad rev 1 min 60 s
     1.373 10 kg m 3.921 10 m N

5.00 s

     5.42 10 m N

S� �

�

 u � u

 u

�< <

<

 

direction of 

rotation 

frF
G
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37. (a) The small ball can be treated as a particle for calculating its moment of inertia. 

   � � � �22 2
0.650 kg 1.2 m 0.94 kg mI MR   <  

(b) To keep a constant angular velocity, the net torque must be zero, and so the torque needed is the  

same magnitude as the torque caused by friction. 

   � � � � 2

applied fr applied fr fr
0    0.020 N 1.2 m 2.4 10 m NF rW W W W W �  o     u�¦ <  

 

38. (a) The torque gives angular acceleration to the ball only, since the arm is considered massless.   

The angular acceleration of the ball is found from the given tangential acceleration. 

   
� � � � � �2 2 2tan

tan
3.6 kg 0.31m 7.0 m s

  7.812 m N 7.8 m N

a
I MR MR MRa

R
W D D     

 |< <
 

(b) The triceps muscle must produce the torque required, but with a lever arm of only 2.5 cm, 

 perpendicular to the triceps muscle force. 

   � �2
    7.812 m N 2.5 10 m 310 NFr F rW W �

A A o   u  <  

 

39. (a) The angular acceleration can be found from the following. 

� � � � 2 28.5m s 0.31m
78.34 rad s 78 rad s

0.35 s

v r
t t t
Z ZD '

     |
'

 

(b) The force required can be found from the torque, since sin .FrW T   In this situation the force 

is perpendicular to the lever arm, and so 90 .T  q   The torque is also given by ,IW D  where I  

is the moment of inertia of the arm-ball combination.  Equate the two expressions for the torque, 

and solve for the force. 

 

� � � � � � � �
� � � �

2 21

3ball ball arm arm

o

2 2
1

23

sin

sin sin 90

1.00 kg 0.31m 3.7 kg 0.31 m
   78.34 rad s 670 N

0.025m

Fr I

I m d m L
F

r r

T D

D D
T

 

�
  

�
  

 

 

40. (a) To calculate the moment of inertia about the y axis (vertical), use the following. 

   � � � � � � � �2 2 2 22
0.50 m 0.50 m 1.00 m 1.00 mi ixI M R m M m M  � � �¦  

� � � � � � � � � � � �2 2 2 2 2
 0.50 m 1.00 m 5.3kg 0.50 m 1.00 m 6.6 kg mm M � �  �  ª º ª º¬ ¼ ¬ ¼ <  

 (b) To calculate the moment of inertia about the x-axis (horizontal), use the following. 

   � � � �22 2
2 2 0.25m 0.66 kg mi iyI M R m M  �  ¦ <  

(c) Because of the larger I value, it is ten times harder to accelerate the array about  

the vertical axis .  

 

41. The torque required is equal to the angular acceleration times the moment of inertia.  The angular 

acceleration is found using Eq. 10-9a.  Use the moment of inertia of a solid cylinder. 

  
0

    t tZ Z D D Z � o   

  � � � � � � � �
� �

22

2 401

02

31000 kg 7.0 m 0.68 rad s
2.2 10 m N

2 2 24 s

MR
I MR

t t
Z ZW D     u§ ·

¨ ¸
© ¹

<  
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42. The torque supplied is equal to the angular acceleration times the moment of inertia.  The angular 

acceleration is found using Eq. 10-9b, with 0 0.Z    Use the moment of inertia of a sphere. 

  

� �
� � � �
� � � �

2 21 2

0 02 52 2

22

22

0

2 2
      ;    

5 10.8 m N 15.0s5
21kg

4 4 0.36 m 360 rad

t I Mr
t t

t
M

r

T TT Z D D W D

W
T S

 � o    o

   

§ ·
¨ ¸
© ¹

<
  

 

43. The applied force causes torque, which gives the pulley an angular acceleration.  Since the applied 

force varies with time, so will the angular acceleration.  The variable acceleration will be integrated 

to find the angular velocity.  Finally, the speed of a point on the rim is the tangential velocity of the 

rim of the wheel. 

  

� � � �

� � � �
� � � �

0

0 T 0 T 0 T

0

0

0 0

0 T T

0 0 0

2 2 2

2 2 30 0 0 3 0.20

T 2 3

0 0

2

23 0.

22

T 0

              

  

3.00 0.20  N s

0.330 m
8.0s 8.0s

0.385 kg m

t

T

t t

t t

R F d R F R F
R F I d dt d dt

I dt I I

v R R
F dt F dt

R I I

R R R
v R F dt t t dt t t

I I I

v t

Z

Z

ZW D D Z Z

Z Z

Z

  o   o  o  o

  �  o

  �  �

  �

ª º ¬ ¼

¦ ³ ³

³ ³

³ ³ <

<
� �� �320

3
8.0s N s 17.499 m s 17 m s |ª º¬ ¼<

 

 

44. The torque needed is the moment of inertia of the system (merry-go-round and children) times the 

angular acceleration of the system.  Let the subscript “mgr” represent the merry-go-round. 

  

� � � �

� � � �> @� � � � � � � �

2 2 01

mgr children mgr child2

21

2

2

15 rev min 2 rad rev 1min 60 s
 760 kg 2 25kg 2.5 m

10.0s

 422.15m N 420 m N

I I I M R m R
t t
Z Z ZW D

S

' �
  �  �

'

 �

 |< <

 

The force needed is calculated from the torque and the radius.  We are told that the force is directed 

perpendicularly to the radius. 

  sin     422.15m N 2.5 m 170 NF R F RW T WA A o    <  

 

45. Each mass is treated as a point particle.  The first mass is at the 

axis of rotation; the second mass is a distance l  from the axis of 

rotation; the third mass is 2l  from the axis, and the fourth mass 

is 3l from the axis. 

 (a) � � � �2 22 2
2 3 14I M M M M � �  l l l l  

 (b) The torque to rotate the rod is the perpendicular component of force times the lever arm, and is  

also the moment of inertia times the angular acceleration. 

   

2

14

3

14
    

3

I M
I F r F M

r
D DW D DA A  o    

l
l

l
  

 

l l l

F
G
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 (c) The force must be perpendicular to the rod connecting the masses, and perpendicular to the axis  

of rotation.  An appropriate direction is shown in the diagram. 

 

46. (a) The free body diagrams are shown.  Note that only the forces producing  

torque are shown on the pulley.  There would also be a gravity force on 

the pulley (since it has mass) and a normal force from the pulley’s 

suspension, but they are not shown. 

(b) Write Newton’s second law for the two blocks, taking the positive x 

direction as shown in the free body diagrams.  

� �
� � � �

� �

� �

A TA A A A

TA A A

2 2

B B B TB B

TB B B

:   sin   

         sin

              8.0kg 9.80 m s sin 32 1.00 m s 49.55 N

              50 N  2 sig fig

:   sin   

          sin

              10

x

x

m F F m g m a

F m g a

m F m g F m a

F m g a

T

T

T

T

 �  o

 �

 q �  

|

 �  o

 �

 

ª º¬ ¼

¦

¦

� � � �2 2
.0kg 9.80 m s sin 61 1.00 m s 75.71N

              76 N

q �  

|

ª º¬ ¼

 

(c) The net torque on the pulley is caused by the two tensions.  We take clockwise torques as 

positive. 

� � � � � �TB TB
75.71N 49.55 N 0.15m 3.924m N 3.9m NF F RW  �  �  |¦ < <  

Use Newton’s second law to find the rotational inertia of the pulley.  The tangential acceleration 

of the pulley’s rim is the same as the linear acceleration of the blocks, assuming that the string 

doesn’t slip. 

   

� �

� � � � � �

TB TB

22

2TB TB

2

  

75.71N 49.55 N 0.15m
0.59 kg m

1.00 m s

a
I I F F R

R

F F R
I

a

W D   � o

� �
   

¦

<
 

 

47. (a) The moment of inertia of a thin rod, rotating about its end, is 
21

3
.ML   There are three blades to  

add together. 

 � � � � � �22 2 2 3 21

total 3
3 135kg 3.75m 1898kg m 1.90 10 kg mI M M    | u< <l l  

 

 (b) The torque required is the rotational inertia times the angular acceleration, assumed constant. 

   � � � � � �20

total total

5.0 rev/sec 2 rad rev
1898 kg m 7500 m N

8.0s
I I

t
SZ ZW D �

    < <  

 

48.  The torque on the rotor will cause an angular acceleration given by .ID W  The torque and angular  

acceleration will have the opposite sign of the initial angular velocity because the rotor is being 

brought to rest.  The rotational inertia is that of a solid cylinder.  Substitute the expressions for 

angular acceleration and rotational inertia into the equation 
2 2

2 ,oZ Z DT �  and solve for the 

angular displacement. 

NAF
G TAF

G

Am gG
AT

xy

AT

BT

Bm gG

TBF
G

BT

NBF
G

x

y

TAF
G

TBF
G
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� � � �

2 2

2 2

21

2

0
2

2 2 2 4
    o

MR
I MR

R R R RZ Z Z Z ZZ Z DT T
D W W W

� � � �� � � �
 �     o  

  

� � � �

� �

2

2 rev 2 rad 1min
3.80 kg 0.0710 m 10,300

min 1rev 60s 1rev
  4643rad

4 1.20 N m 2 rad

  739 rev

S

S

�
  

�

 

ª º§ ·§ ·§ ·
¨ ¸ ¨ ¸¨ ¸« » § ·© ¹ © ¹© ¹¬ ¼

¨ ¸
© ¹<

 

The time can be found from � �1

2
.o tT Z Z �  

� �2 739 rev2 60s
8.61s

10,300 rev min 1mino

t
T

Z Z
   

�
§ ·
¨ ¸
© ¹

 

 

49. (a) Thin hoop, radius 
0

R     
2 2

0 0
    I Mk MR k R  o   

(b) Thin hoop, radius 
0

R , width w 2 2 2 2 21 1 1 1

0 02 12 2 12
    I Mk MR Mw k R w  � o  �  

(c) Solid cylinder     
2 21 1

0 02 2
    I Mk MR k R  o   

(d) Hollow cylinder    � � � �1 1

2 2

2 2 2 2 2
    

1 2 1 2
I Mk M R R k R R  � o  �  

 (e) Uniform sphere    
2 22

05

2
05

    I Mk Mr k r  o   

 (f) Long rod, through center  
2 1

12

2 1
12

    I Mk M k  o  l l  

 (g) Long rod, through end   
2 1

3

2 1
3

    I Mk M k  o  l l  

 (h) Rectangular thin plate   � � � �2 2 2 2 21 1

12 12
    I Mk M w k w  � o  �l l  

 

50. The firing force of the rockets will create a net torque, but no net force.  Since each rocket fires 

tangentially, each force has a lever arm equal to the radius of the satellite, and each force is 

perpendicular to the lever arm.  Thus 
net

4 .FRW    This torque will cause an angular acceleration 

according to ,IW D  where 
2 21

2
4 ,I MR mR �  combining a cylinder of mass M and radius R with 

4 point masses of mass m and lever arm R each.  The angular acceleration can be found from the 

kinematics by .
t
ZD '

 
'

  Equating the two expressions for the torque and substituting enables us to 

solve for the force.  

� � � �1
2 21

2

4
4 4

4
    

M m R
FR I M m R F

t
ZZD

W
� ''

  �  
' '

o     

� � � �� � � � � � � � � �
� � � �

1

2
3600kg 4 250 kg 4.0 m 32 rev min 2  rad rev 1 min 60 s

31.28 N
4 5.0 min 60s min

31N

S�
  

|
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51. We assume that 
B A

,m m!  and so 
B

m  will accelerate down, 
A

m  will 

accelerate up, and the pulley will accelerate clockwise.  Call the direction of 

acceleration the positive direction for each object.  The masses will have the 

same acceleration since they are connected by a cord.  The rim of the pulley 

will have that same acceleration since the cord is making it rotate, and so 

pulley
.a RD    From the free-body diagrams for each object, we have the 

following. 

  
A TA A A TA A A

B B TB B TB B B

    

    

y

y

F F m g m a F m g m a

F m g F m a F m g m a

 �  o  �

 �  o  �
¦
¦

 

  
TB TA

a
F r F r I I

R
W D �   ¦  

Substitute the expressions for the tensions into the torque equation, and solve for the acceleration. 

  

� � � �

� �
� �

TB TA B B A A

B A

2

A B

      
a a

F R F R I m g m a R m g m a R I
R R

m m
a g

m m I R

�  o � � �  o

�
 

� �

 

If the moment of inertia is ignored, then from the torque equation we see that 
TB TA

,F F  and the 

acceleration will be 
� �
� �

B A

0

A B

.I

m m
a g

m m 

�
 

�
  We see that the acceleration with the moment of inertia 

included will be smaller than if the moment of inertia is ignored. 

 

52. (a) The free body diagram and analysis from problem 51 are applicable here, for the no-friction  

case. 

� �
� �

� �
� �

� �
� �

� �
� � � �

B A B A B A

2 2 21 1

2 2A B A B P A B P

2 2 23.80 kg 3.15kg
 9.80 m s 0.8667 m s 0.87 m s

3.80 kg 3.15kg 0.40 kg

m m m m m m
a g g g

m m I r m m m r r m m m
� � �

   
� � � � � �

�
  |

� �

 

 (b) With a frictional torque present, the torque equation from problem 51 would be modified, and  

the analysis proceeds as follows. 

� � � �

� � � � � �

TB TA fr B B A A fr

1

fr B A B A B A B A p22

     
a a

F r F r I I m g m a r m g m a r I
r r

I
r m m g m m a r m m g m m m a

r

W W D W

W

 � �   o � � � �  o

 � � � �  � � � �ª º§ · ª º¨ ¸ ¬ ¼« »© ¹¬ ¼

¦
 

  The acceleration can be found from the kinematical data and Eq. 2-12a. 

� � � �
� � � � � � � � � �

20

0

1

fr B A B A p2

2 2

0 0.20 m s
    0.03226 m s

6.2s

   0.040 m 0.65kg 9.80 m s 7.35kg 0.03226 m s 0.26 m N

v v
v v at a

t

r m m g m m m aW

� �
 � o    �

 � � � �

 � �  

ª º¬ ¼

ª º¬ ¼ <
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tanaG

radaG
T

netaG

53. A top view diagram of the hammer is shown, just at the instant of release, 

along with the acceleration vectors. 

 (a) The angular acceleration is found from Eq. 10-9c. 

   

� �

� � � �> @
� �

22 2

2 2 0

0

2

2 2

0
2     

2 2

26.5m s 1.20 m
             9.702 rad s 9.70 rad s

2 8 rad

v rZ ZZ Z D T D
T T

S

��
 � ' o   

' '

  |

 

 (b) The tangential acceleration is found from the angular acceleration and the radius. 

   � � � �2 2 2

tan
9.702 rad s 1.20 m 11.64 m s 11.6 m sa rD   |  

 (c) The centripetal acceleration is found from the speed and the radius. 

   � � � �22 2 2

rad
26.5m s 1.20 m 585.2 m s 585m sa v r   |  

 (d) The net force is the mass times the net acceleration.  It is in the same direction as the net  

acceleration. 

   � � � � � �2 2
2 2 2 2

net net tan rad
7.30 kg 11.64 m s 585.2 m s 4270 NF ma m a a  �  �   

 (e) Find the angle from the two acceleration vectors. 

   

2

1 1tan

2

rad

11.64 m s
tan tan 1.14

585.2 m s

a
a

T � �   q  

 

54. (a) See the free body diagram for the falling rod.  The axis of rotation would  

be coming out of the paper at the point of contact with the floor.  There are 

contact forces between the rod and the table (the friction force and the 

normal force), but they act through the axis of rotation and so cause no 

torque.  Thus only gravity causes torque.  Write Newton’s second law for 

the rotation of the rod.  Take counterclockwise to be the positive direction 

for rotational quantities.  Thus in the diagram, the angle is positive, but the 

torque is negative. 

   

� � 21 1

2 3
cos   

3 3
cos cos

2 2
     

d
I mg m

dt
g d d d d g

d d
dt d dt d

ZW D I

Z Z I Z Z Z
I I

I I I I

  �  o

�     �o o

¦ l l

l l

 

   � � � �21

2

/ 2 0

3 3 3
cos     sin 1     1 sin

2 2

g g g
d d

I Z

S

I I Z Z I Z Z I � o �  � o  �³ ³
l l l

 

(b) The speed of the tip is the tangential speed of the tip, since the rod is rotating.  At the tabletop, 
0.I   

   � � � �3 1 sin     0 3v g v gZ I  � o  l l l  

 

55. The parallel axis theorem is given in Eq. 10-17.  The distance from the center of mass of the rod to 

the end of the rod is 1

2
.h  l  

  � � � �22 2 2 21 1 1 1 1

CM 12 2 12 4 3
I I Mh M M M M �  �  �  l l l l  

 

mgG

I

l

NF
G

frF
G
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56. We can consider the door to be made of a large number of thin horizontal rods, 

each of length 1.0 m, l and rotating about one end.  Two such rods are shown 

in the diagram.  The moment of inertia of one of these rods is 
21

3
,im l  where 

im  is the mass of a single rod.  For a collection of identical rods, then, the 

moment of inertia would be 
2 21 1

3 3
.i

i

I m M  ¦ l l   The height of the door 

does not enter into the calculation directly. 

  � � � �22 21 1

3 3
19.0 kg 1.0 m 6.3kg mI M   <l  

 

57. (a) The parallel axis theorem (Eq. 10-17) is to be applied to each sphere.  The distance from the  

center of mass of each sphere to the axis of rotation is 01.5 .h r  

  � �22 2 2 22

for one CM 0 0 0 total 05

sphere

1.5 2.65     5.3I I Mh Mr M r Mr I Mr �  �  o   

(b) Treating each mass as a point mass, the point mass would be a distance of 01.5r  from the axis of 

rotation.  

  

� �

� � � � � �

2 2

approx 0 0

2 2

approx exact 0 0

2

exact 0

2 1.5 4.5

4.5 5.3 4.5 5.3
% error 100 100 100

5.3 5.3

15%           

I M r Mr

I I Mr Mr
I Mr

  

� � �
   

 �

ª º¬ ¼
§ · ª º ª º
¨ ¸ « » « »¬ ¼© ¹ ¬ ¼

 

  The negative sign means that the approximation is smaller than the exact value, by about 15%. 

 

58. (a) Treating the ball as a point mass, the moment of inertia about AB is 
2

0
.I MR  

 (b) The parallel axis theorem is given in Eq. 10-17.  The distance from the center of mass of the  

ball to the axis of rotation is 0.h R  

   
2 2 22

CM 1 05
I I Mh Mr MR �  �  

 (c) � � � � � � � �
2 2 22 22

50 1 0approx exact 5 1

2 2 2 22 2

5 5exact 1 0 1 0

% error 100 100 100
MR Mr MRI I Mr

I Mr MR Mr MR

� �� �
   

� �

ª º§ ·
« »¨ ¸
« »© ¹ ¬ ¼

 

  
� �

� �
� �

� �
2 2

5 5

2 20 1

1 1
100 100 0.32295 0.32

1 1 1.0 0.090
           

R r
� �

  �  � | �
� �

 

  The negative sign means that the approximation is smaller than the exact value, by about 0.32%. 

 

 

59. The 1.50-kg weight is treated as a point mass.  The origin is placed at  

the center of the wheel, with the x direction to the right.  Let A represent the 

wheel and B represent the weight. 

(a)  
� � � � � � � �

A A B B

CM

A B

7.0 kg 0 1.50 kg 0.22 m

8.50 kg

m x m x
x

m m
��

  
�

 

2
3.88 10 m 0.039 m

� u |  

 

 

0.22 m

0.32 m

l
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(b) The moment of inertia of the wheel is found from the parallel axis  

theorem. 

  

� �

� �

22

wheel weight wheel wheel CM weight weight CM

CM

22 21

wheel wheel CM weight weight CM2
  

I I I I M x M x x

M R M x M x x

 �  � � �

 � � �
 

� � � � � �� � � � � �2 2 2 21

2
  7.0 kg 0.32 m 0.0388 m 1.50 kg 0.22 m 0.0388 m 0.42 kg m � � �  <  

 

60. We calculate the moment of inertia about one end, and then 

use the parallel axis theorem to find the moment of inertia 

about the center.  Let the mass of the rod be M, and use Eq. 

10-16.  A small mass dM can be found as a small length dx 

times the mass per unit length of the rod. 

  

� � � �

3

2 2 21

end 3

0

2 2 2 2 21 1 1 1 1

end CM CM end2 2 3 4 12

3

    

M M
I R dM x dx M

I I M I I M M M M

    

 � o  �  �  

³ ³
l

l
l

l l

l l l l l

 

 

61. (a) We choose coordinates so that the center of the plate is at the  

origin.  Divide the plate up into differential rectangular elements, 

each with an area of .dA dxdy   The mass of an element is 

.
M

dm dxdy
w

 § ·
¨ ¸
© ¹l

  The distance of that element from the axis of 

rotation is 
2 2 .R x y �   Use Eq. 10-16 to calculate the 

moment of inertia. 

   

� � � �

� � � �

� � � � � �

/ 2 / 2 / 2 / 2

2 2 2 2 2

center

/ 2 / 2 0 0

/ 2 / 2
3 2 2 21 1 1 1

3 2 2 12

0 0

32 2 21 1 1 1 1

12 2 3 2 12

4

4 2
      

2
     

w w

w

w w

M M
I R dM x y dxdy x y dxdy

w w

M M
y dy y dy

w w

M
w w M w

w

� �

  �  �

 �  �

 �  �

ª º ª º¬ ¼¬ ¼

ª º¬ ¼

³ ³ ³ ³ ³

³ ³

l l

l
l l

l l l
l

l l

 

(b) For the axis of rotation parallel to the w  dimension (so the rotation axis 

is in the y direction), we can consider the plate to be made of a large 

number of thin rods, each of length ,l  rotating about an axis through 

their center.  The moment of inertia of one of these rods is 
21

12
,im l  

where im  is the mass of a single rod.  For a collection of identical rods, 

then, the moment of inertia would be 
2 21 1

12 12
.y i

i

I m M  ¦ l l   A similar argument would 

give 
21

12
.xI Mw   This illustrates the perpendicular axis theorem, Eq. 10-18, .z x yI I I �  

 

dx

x

y
¬

x
x dx

dy

y
w

l

w
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62. Work can be expressed in rotational quantities as ,W W T '  and so power can be expressed in 

rotational quantities as .
W

P
t t

TW WZ'
   
' '

 

  � � rev 2 rad 1min 1hp
255m N 3750 134 hp

min 1rev 60s 746 W
P

SWZ   
§ ·§ ·§ ·§ ·

¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹© ¹
<  

 

63. The energy required to bring the rotor up to speed from rest is equal to the final rotational kinetic 

energy of the rotor. 

  � �
2

2 2 2 41 1

rot 2 2

rev 2 rad 1min
4.25 10 kg m 9750 2.22 10 J

min 1rev 60s
K I

SZ �  u  u
ª º§ ·§ ·

¨ ¸¨ ¸« »
© ¹© ¹¬ ¼

<  

 

64. To maintain a constant angular speed 
steady

Z  will require a torque motorW  to oppose the frictional 

torque.  The power required by the motor is 
motor steady friction steady

.P W Z W Z  �  

� � � �
� �

021

friction friction 2

2

202 51 1

motor steady2 2

5

  

2 rad
3.8 rev s

rev
220 kg 5.5m 1.186 10 W

16s

1hp
        1.186 10 W 158.9 hp 160 hp

746 W

f

f

I MR
t

P MR
t

Z Z
W D

S
Z Z

Z

�
  o

�
   u

 u  |

§ ·
¨ ¸
© ¹

ª º§ ·
¨ ¸« »§ · © ¹¬ ¼

¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

 

65. The work required is the change in rotational kinetic energy.  The initial angular velocity is 0. 

  � � � � � �
2

22 2 2 2 41 1 1 1 1

rot 2 2 2 2 4

2 rad
1640 kg 7.50 m 1.42 10 J

8.00 s
f i fW K I I MR

SZ Z Z '  �    u§ ·
¨ ¸
© ¹

 

 

66. Mechanical energy will be conserved.  The rotation is about a 

fixed axis, so 
21

tot rot 2
.K K IZ    For gravitational potential 

energy, we can treat the object as if all of its mass were at its 

center of mass.  Take the lowest point of the center of mass as the 

zero location for gravitational potential energy.   

  
� � � �

initial final initial final

2 2 21 1 1 1

bottom bottom2 2 2 3

      

1 cos   

E E U K

Mg I MT Z Z

 o  o

�   ol l
 

� � � �bottom bottom bottom

3
1 cos   ;  3 1 cos

g
v gZ T Z T �   �l l

l
 

 

67. The only force doing work in this system is gravity, so mechanical energy is conserved.  The initial 

state of the system is the configuration with 
A

m  on the ground and all objects at rest.  The final state 

of the system has 
B

m  just reaching the ground, and all objects in motion.  Call the zero level of 

gravitational potential energy to be the ground level.  Both masses will have the same speed since  

 

T
2l

2l

� �2 1 cosT�l
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they are connected by the rope.  Assuming that the rope does not slip on the 

pulley, the angular speed of the pulley is related to the speed of the masses 

by .v RZ    All objects have an initial speed of 0. 

  i fE E o  

2 2 2 2 2 21 1 1 1 1 1

A B A 1 B 2 A B2 2 2 2 2 2

A 1 B 2
                                                                    

i i i i i f f f

f f

m v m v I m gy m gy m v m v I

m gy m gy

Z Z� � � �  � �

� �
 

� �
2

2 2 21 1 1 1

B A B A2 2 2 2 2

f
f f

v
m gh m v m v MR m gh

R
 � � �

§ ·
¨ ¸
© ¹

 

 

� �
� �

� � � � � �
� �� �

2

B A

1 1

2 2A B

2 38.0 kg 35.0 kg 9.80 m s 2.5m2
1.4 m s

38.0 kg 35.0 kg 3.1 kg
f

m m gh
v

m m M

��
   

� � � �
 

 

68. (a) The kinetic energy of the system is the kinetic energy of the two masses, since the rod is treated  

as massless.  Let A represent the heavier mass, and B the lighter mass. 

 
� �

� � � � � �

2 2 2 2 2 2 2 21 1 1 1 1

A A B B A A A B B A A B2 2 2 2 2

2 21

2
   0.210 m 5.60 rad s 7.00 kg 4.84 J

K I I m r m r r m mZ Z Z Z Z �  �  �

  
  

(b) The net force on each object produces centripetal motion, and so can be expressed as 
2.mrZ  

� � � � � �
� � � � � �

22

A A A A

22

B B B B

4.00 kg 0.210 m 5.60 rad s 26.3 N

3.00 kg 0.210 m 5.60 rad s 19.8 N

F m r

F m r

Z

Z

   

   
 

These forces are exerted by the rod.  Since they are unequal, there would be a net horizontal 

force on the rod (and hence the axle) due to the masses.  This horizontal force would have to be 

counteracted by the mounting for the rod and axle in order for the rod not to move horizontally.  

There is also a gravity force on each mass, balanced by a vertical force from the rod, so that 

there is no net vertical force on either mass. 

 (c) Take the 4.00 kg mass to be the origin of coordinates for determining the center of mass. 

� � � � � � � �
A A B B

CM

A B

4.00 kg 0 3.00 kg 0.420 m
0.180 m from mass A

7.00 kg

m x m x
x

m m
��

   
�

 

So the distance from mass A to the axis of rotation is now 0.180 m, and the distance from mass 

B to the axis of rotation is now 0.24 m.  Re-do the above calculations with these values. 

 

� �
� � � � � � � � � �

� � � � � �
� � � � � �

2 2 2 2 2 2 2 2 21 1 1 1 1

A A B B A A A B B A A A B B2 2 2 2 2

2 2 21

2

22

A A A A

22

B B B B

   5.60 rad s 4.00 kg 0.180 m 3.00 kg 0.240 m 4.74 J

4.00 kg 0.180 m 5.60 rad s 22.6 N

3.00 kg 0.240 m 5.60 rad s 22.6 N

K I I m r m r m r m r

F m r

F m r

Z Z Z Z Z

Z

Z

 �  �  �

 �  

   

   

ª º¬ ¼
 

Note that the horizontal forces are now equal, and so there will be no horizontal force on the rod 

or axle. 

 

69. Since the lower end of the pole does not slip on the ground, the friction does no work, and so 
mechanical energy is conserved.  The initial energy is the potential energy, treating all the mass as if 

it were at the CM.  The final energy is rotational kinetic energy, for rotation about the point of 

contact with the ground.  The linear velocity of the falling tip of the rod is its angular velocity  

mA 

mB 

h 

R 
M 
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 divided by the length. 

   
� � � �

� � � �

22 21 1 1

intial final initial final end2 2 3

2

end

            2   

3 3 9.80 m s 2.30 m 8.22 m s

E E U K mgh I mg L mL v L

v gL

Z o  o  o  o

   

  

70. Apply conservation of mechanical energy.  Take the bottom of the incline to be the zero location for 
gravitational potential energy.  The energy at the top of the incline is then all gravitational potential 

energy, and at the bottom of the incline, there is both rotational and translational kinetic energy.  

Since the cylinder rolls without slipping, the angular velocity is given by .v RZ     

  

� � � �

2

2 2 2 2 231 1 1 1 1

top bottom CM2 2 2 2 2 42

24 4

3 3

      

9.80 m s 7.20 m 9.70 m s

v
E E Mgh Mv I Mv MR Mv

R

v gh

Z o  �  �  o

   
 

 

71. The total kinetic energy is the sum of the translational and rotational kinetic energies.  Since the ball  

is rolling without slipping, the angular velocity is given by .v RZ    The rotational inertia of a 

sphere about an axis through its center is 
22

5
.I mR  

  

� � � �

2

2 2 2 2 271 1 1 1 2

total trans rot 2 2 2 2 5 102

2 1
       0.7 7.3 kg 3.7 m s 7.0 10 J

v
K K K mv I mv mR mv

R
Z �  �  �  

  u
 

 

72. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  

frequency of one revolution per day. 

 � �2 2 21 1 2

daily daily Earth daily2 2 5
K I MRZ Z   

� � � �
2

2
24 6 291

5

2 rad 1day
          6.0 10 kg 6.4 10 m 2.6 10 J

1day 86,400s

S
 u u  u

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

 

 (b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  

of one revolution per year. 

   
2 2 21 1

yearly yearly Sun- yearly2 2

Earth

K I MRZ Z  § ·
¨ ¸
© ¹

 

   � � � �
2

2
24 11 331

2

2 rad 1day
          6.0 10 kg 1.5 10 m 2.7 10 J

365day 86,400s

S
 u u  u

ª º§ · § ·
¨ ¸ ¨ ¸« »
© ¹ © ¹¬ ¼

 

Thus the total kinetic energy is 
29 33 33

daily yearly
2.6 10 J 2.7 10 J 2.7 10 J .K K�  u � u  u   The 

kinetic energy due to the daily motion is about 10,000 times smaller than that due to the yearly 

motion. 

 

73. (a) Mechanical energy is conserved as the sphere rolls  

without slipping down the plane.  Take the zero 

level of gravitational potential energy to the level of 
the center of mass of the sphere when it is on the 

level surface at the bottom of the plane.  All of the 

energy is potential energy at the top, and all is 

kinetic energy (of both translation and rotation) at the bottom. 

sinTl l

T
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� �
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intial final initial final CM rot

2

2 2 2 2 bottom1 1 1 1 2

bottom bottom bottom 02 2 2 2 5

0

210 10 10

bottom 7 7 7

b

bottom

      

sin   

sin 9.80 m s 10.0 m sin 30.0 8.367 m s

       8.37 m s

E E U K K K

v
mgh mg mv I mv mr

r

v gh g

v

T Z

T

Z

 o  o

  �  � o

   q  

|

 

 �

§ ·
¨ ¸
© ¹

l

l

ottom

0

8.367 m s
32.9 rad s

0.254 mr
  

  

 (b) 

� �

2 21 1

2 2CM bottom bottom

221

2rot bottom 2 bottom1 2

2 5 0

0

5

2

K mv mv
K I v

mr
r

Z
   

§ ·
¨ ¸
© ¹

 

 (c) The translational speed at the bottom, and the ratio of kinetic energies, are both independent of  
the radius and the mass.  The rotational speed at the bottom depends on the radius. 

 

74. (a) Since the center of mass of the spool is stationary, the net force must be 0.  Thus the force on  

the thread must be equal to the weight of the spool and so 
thread

.F Mg  

(b) By the work–energy theorem, the work done is the change in kinetic energy of the spool   The 
spool has rotational kinetic energy. 

  � �2 2 2 2 21 1 1 1

final initial 2 2 2 4
W K K I MR MRZ Z Z �     

 

75. Use conservation of mechanical energy to equate the energy at points 

A and B .  Call the zero level for gravitational potential energy to be 

the lowest point on which the ball rolls.  Since the ball rolls without 

slipping, 
0
.v rZ   

A B A B B final B B CM B rot

2 21 1

0 0 B B2 2

      E E U U K U K K

mgR mgr mv IZ

 o  �  � � o

 � �
 

� � � �
2

2 2 B 101 1 2

0 B 0 B 0 02 2 5 7

0

           
v

mgr mv mr v g R r
r

 � � o  �
§ ·
¨ ¸
© ¹

 

 

76. (a) We work in the accelerating reference frame of the car.  In the  

accelerating frame, we must add a fictitious force of magnitude 

train rel

ground

,Ma  in the opposite direction to the acceleration of the train.  This 

is discussed in detail in section 11-8 of the textbook.  Since the ball is 

rolling without slipping, 
ball rel

train

.a RD    See the free-body diagram for 

the ball in the accelerating reference frame.  Write Newton’s second law 

for the horizontal direction and for torques, with clockwise torques as 

positive.   Combine these relationships to find 
ball rel
train

,a  the acceleration of 

the ball in the accelerated frame. 

MgG
R

frF
G

NF
G

x

y

trainMaG

y = 0 

R0 

A

B 

C
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ball rel

train 2

fr fr ball rel5

train

2

fr train rel ball rel ball rel train rel ball rel5

ground train train ground train

5

ball rel train rel7

train ground

    

     x

a
F R I I F Ma

R

F F Ma Ma Ma Ma Ma

a a

W D �   o  �

 �  o � �  o

 �

¦

¦  

  And so as seen from inside the train, the ball is accelerating backwards. 

 (b) Use the relative acceleration relationship. 
5 2

ball rel ball rel train rel train rel train rel train7 7

ground train ground ground ground

a a a a a a �  � �   

And so as seen from outside the train, the ball is accelerating forwards, but with a smaller 
acceleration than the train. 

 

77. (a) Use conservation of mechanical energy.  Call the zero level for  

gravitational potential energy to be the lowest point on which 

the pipe rolls.  Since the pipe rolls without slipping, .v RZ    

See the attached diagram. 

� �

initial final initial final CM rot

2 21 1

bottom bottom2 2

2

2 2 2bottom1 1

bottom bottom2 2 2

    

sin

              

E E U K K K

mgD mv I

v
mv mR mv

R

T Z

 o   �

 �

 �  o
§ ·
¨ ¸
© ¹

 

� � � �2

bottom
sin 9.80 m s 5.60 m sin17.5 4.06 m sv gD T  q   

 (b) The total kinetic energy at the base of the incline is the same as the initial potential energy. 

   � � � � � �2

final initial
sin 0.545kg 9.80 m s 5.60 m sin17.5 8.99 JK U mgD T   q   

(c) The frictional force supplies the torque for the object to roll without slipping, and the frictional 

force has a maximum value.  Since the object rolls without slipping, .a RD    Use Newton’s 

second law for the directions parallel and perpendicular to the plane, and for the torque, to solve 

for the coefficient of friction. 

   

2

fr fr

N N

    

cos     cos

a
F R I mR maR F ma

R
F F mg F mg

W D

T TA

    o  

 � o  

¦
¦

 

1

fr fr 2

1 1

fr static s s s2 2

max

1 1

s 2 2

min

sin     sin

    sin cos     tan   

tan tan17.5 0.158

N

F mg F ma F mg

F F mg F mg

T T

T P P T P T

P T

 �  o  

d o d  o t o

  q  

¦ &

 

 

78. (a) While the ball is slipping, the acceleration of the center of mass is constant, and so constant  

acceleration relationships may be used.  Use Eq. 2-12b with results from Example 10-20. 

   � �
2

2

2 0 0 01 1

0 0 0 k2 2

2 2 12

7 7 49k k k

v v v
x x v t at v g

g g g
P

P P P
�  �  � �  

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 

T
y = 0

DR

Ffr

mg

FN
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 (b) Again make use of the fact that the acceleration is constant.  Once the final speed is reached, the  

angular velocity is given by 
0
.v rZ   

   � � 0 5

0 0 k 07

5
0 07

2
 ; 

7 k

v
v v at v g v

g
v rP Z

P
 �  � �   

§ ·
¨ ¸
© ¹

 

 

79. (a) The total kinetic energy included the translational kinetic energy of the car’s total mass, and the  

rotational kinetic energy of the car’s wheels.  The wheels can be treated as one cylinder.  We 

assume the wheels are rolling without slipping, so that 
CM wheels

.v RZ  

   

� �

� � � � � �

2

2 2 2 2 CM1 1 1 1 1

tot CM rot tot CM wheels tot CM wheels wheels2 2 2 2 2 2

wheels

2

2 51 1 1

tot wheels CM2 2 2

5

1m s
     1170 kg 95km h 4.074 10 J

3.6 km h

     4.1 10 J

v
K K K M v I M v M R

R

M M v

Z �  �  �

 �   u

| u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 (b) The fraction of kinetic energy in the tires and wheels is 
rot trans

wheels

tot

.

K K

K

�
 

   

� �
� �

� �
� �

22 2 31 11 1
2 2 2wheels wheels CM wheels2 2rot wheels wheels CM

2 2 21 1 1 1 1

2 2 2 2 2tot tot CM wheels tot wheels CM tot wheels

210 kg
0.18

1170 kg
      

M M v MK I M v
K M v I M M v M M

Z
Z

��
   

� � �

  

 

 (c) A free body diagram for the car is shown, with the frictional force of  

frF
G

at each wheel to cause the wheels to roll.  A separate diagram of one 

wheel is also shown.  Write Newton’s second law for the horizontal 
motion of the car as a whole, and the rotational motion of one wheel.  

Take clockwise torques as positive.  Since the wheels are rolling without 

slipping, 
CM wheels

.a RD  

   

2 CM1

fr wheels wheels wheels2

wheels

1

fr wheels CM8

4   

       

a
F R I M R

R

F M a

W D   o

 

¦
 

   � �

� � � �

tow fr tot CM

1

tow wheels CM tot CM8

2 2tow

CM 1

2tot wheels

4   

       4   

1500 N
       1.282 m s 1.3m s

1170 kg

xF F F M a

F M a M a

F
a

M M

 �  o

�  o

   |
�

¦
 

 (d) If the rotational inertia were ignored, we would have the following. 

   

2tow

tow tot CM CM

tot

2 2

CM

2

CM

1500 N
    1.364 m s

1100 kg

1.364 m s 1.282 m s
% error 100 100 6%

1.282 m s

x

F
F F M a a

M

a
a

  o    

' �
 u  u  

¦
 

 

 

friction4F
G

mgG

NF
G
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G

frictionF
G

R



Chapter 10  Rotational Motion 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

327 

80. (a) The friction force accelerates the center of mass  of the wheel.  If the  

wheel is spinning (and slipping) clockwise in the diagram, then the 

surface of the wheel that touches the ground is moving to the left, and 

the friction force is to the right or forward.  It acts in the direction of 

motion of the velocity of the center of mass of the wheel. 

(b) Write Newton’s second law for the x direction, the y direction, and the 

rotation.  Take clockwise torques (about the center of mass) as positive.  

   

N N

fr k N k

fr k

fr k

fr 21

2

0    

    

2 2
    

y

x

F F Mg F Mg

F F Mg
F F Ma a g

M M M
F R Mg g

F R I
MR MR R

P P P

PW D D

 �  o  

  o     

 �  o  �  �  �

¦

¦

¦

 

Both the acceleration and angular acceleration are constant, and so constant acceleration 

kinematics may be used to express the velocity and angular velocity. 

   k

0 k 0 0

2
  ;  

g
v v at gt t t

R
PP Z Z D Z �   �  �  

Note that the velocity starts at 0 and increases, while the angular velocity starts at 
0

Z  and 

decreases.  Thus at some specific time ,T the velocity and angular velocity will be v RZ  , 

and the ball will roll without slipping.  Solve for the value of T  needed to make that true.   

 k 0

0 k

k

2
        

3

g R
v R T gT R T

R g
P ZZ Z P

P
 o �  o   

 (c) Once the ball starts rolling without slipping, there is no more frictional sliding force, and so the  

velocity will remain constant. 

 0 1

final k k 03

k
3

R
v gT g R

g
ZP P Z
P

    

 

81. (a)  Use conservation of mechanical energy to  

equate the energy at point A to the energy at 

point C.  Call the zero level for gravitational 

potential energy to be the lowest point on 

which the ball rolls.  Since the ball rolls 

without slipping, 
0
.v rZ    All locations 

given for the ball are for its center of mass.  

A C

A C C C C C

CM rot

  

 

E E

U U K U K K

 o

 �  � � o  

   

� �> @

� �> @ � �

� � � � � �

2 21 1

0 0 0 0 C C2 2

2

2 2 C1 1 2

0 0 0 C 02 2 5 2

0

210 10

C 0 07 7

cos

       cos   

cos 9.80 m s 0.245m cos 45 1.557 m s 1.6 m s

mgR mg R R r mv I

v
mg R R r mv mr

r

v g R r

T Z

T

T

 � � � �

 � � � � o

 �  q  |

 

 (b) Once the ball leaves the ramp, it will move as a projectile under the influence of gravity, and the  

constant acceleration equations may be used to find the distance.  The initial location of the ball 

is given by � �0 0 0
sin 45x R r � q  and � �0 0 0 0

cos 45 .y R R r � � q   The initial velocity of the ball 

MgG
R

frF
G

NF
G

x

y

y = 0

T

D

R0

A

B

C

x = 0
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is given by 
0 C

cos 45xv v q and 
0 C

sin 45 .yv v q   The ball lands when 
0

0.015m.y r    Find 

the time of flight from the vertical motion, and then find D from the horizontal motion.  Take 

the upward direction as positive for the vertical motion. 

   
� �2 21 1

0 0 0 0 0 C2 2

2

cos 45 sin 45   

4.90 1.101 0.07178 0    0.277s, 0.0528s

yy y v t at R R r v t gt

t t t

 � �  � � q � q � o

� �  o  �
 

  We use the positive time. 

   
� �

� � � � � �
0 0 0 0 C

sin 45 cos 45

   0.245m sin 45 1.557 m s cos 45 0.277s 0.4782 m 0.48 m

xD x x v t R r v t  �  � q � q

 q � q  |
 

 

82. Write the rotational version of Newton’s second law, with counterclockwise torques as positive. 

 
22

net N fr N CN CM CM5
F FR I MRW W W D D �  �   l  

Newton’s second law for the translational motion, with left as the positive direction, gives the 

following. 

  
net

    
F

F F ma a
m

  o   

If the sphere is rolling without slipping, we have 
CM

.a RD    Combine these relationships to 

analyze the relationship between the torques. 

  

2 2 72 2 2 2

N CM5 5 5 5 5

7

N fr5

  
a

F FR MR FR MR FR MaR FR FR FR
R

D

W W

 �  �  �  �  o

 

l
 

And since the torque due to the normal force is larger than the torque due to friction, the sphere has a 

counterclockwise angular acceleration, and thus the rotational velocity will decrease. 

 

83. Since the spool rolls without slipping, each point on the edge of the spool moves with a speed of  

CM
v r vZ   relative to the center of the spool, where 

CM
v  is the speed of the center of the spool 

relative to the ground.  Since the spool is moving to the right relative to the ground, and the top of 

the spool is moving to the right relative to the center of the spool, the top of the spool is moving with 

a speed of 
CM

2v  relative to the ground.  This is the speed of the rope, assuming it is unrolling 

without slipping and is at the outer edge of the spool.  The speed of the rope is the same as the speed 

of the person, since the person is holding the rope.  So the person is walking with a speed of twice 

that of the center of the spool.  Thus if the person moves forward a distance ,l  in the same time the 

center of the spool, traveling with half the speed, moves forward a distance 2 .l   The rope, to stay 

connected both to the person and to the spool, must therefore unwind by an amount 2l  also.  

 

84. The linear speed is related to the angular velocity by ,v RZ  and the angular velocity (rad / sec) is 

related to the frequency (rev / sec) by Eq. 10-7, 2 .fZ S   Combine these relationships to find 

values for the frequency. 

  
� �

� �

1

1

2

2

1.25m s 60s
2       ;  480 rpm

2 2 2 0.025m 1min

1.25m s 60s
210 rpm

2 2 0.058 m 1min

v v v
f f f

R R R

v
f

R

Z S
S S S

S S

  o     

   

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
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85. (a) There are two forces on the yo-yo: gravity and string  

tension.  If the top of the string is held fixed, then the tension 

does no work, and so mechanical energy is conserved.  The 

initial gravitational potential energy is converted into 

rotational and translational kinetic energy.  Since the yo-yo 

rolls without slipping at the point of contact of the string, the 

velocity of the CM is related to the angular velocity of the 

yo-yo by 
CM

v rZ , where r is the radius of the inner hub.  Let m be the mass of the inner hub, 

and M and R be the mass and radius of each outer disk.  Calculate the rotational inertia of the 

yo-yo about its CM, and then use conservation of energy to find the linear speed of the CM.  

We take the 0 of gravitational potential energy to be at the bottom of its fall. 

   

� �
� �� � � �� �

� �

2 2 2 21 1 1

CM 2 2 2

2 2
3 3 2 2 5 21

2

3 2

total

2

     5.0 10 kg 5.0 10 m 5.0 10 kg 3.75 10 m 7.038 10 kg m

2 5.0 10 kg 2 5.0 10 kg 0.105 kg

I mr MR mr MR

m m M

� � � � �

� �

 �  �

 u u � u u  u

 �  u � u  

<  

initial final

2 2 2 2 2CM CM1 1 1 1 1 1

total total CM CM total CM CM total CM2 2 2 2 2 22 2

  

  

U K

I I
m gh m v I m v v m v

r r
Z

 o

 �  �  � o§ ·
¨ ¸
© ¹

 

� �� �� �

� � � �
� �

2

total

CM
5 2

CM1
1total2 2
2 2

3

0.105 kg 9.80 m s 1.0 m
0.8395 0.84 m s

7.038 10 kg m
0.105 kg

5.0 10 m

m gh
v

I
m

r
�

�

    
u� �
u

§ · ª º
¨ ¸ « »© ¹ « »¬ ¼

<
 

 (b) Calculate the ratio 
rot tot

.K K  

   

� � � �
� � � � � � � �

2CM1
2 21 2 CM2

2rot rot CM CM CM

2

tot initial total total total

25 2

2
3 2

2

7.038 10 kg m 0.8395m s
         0.96 96%

2 5.0 10 m 0.105 kg 9.8 m s 1.0 m

I
vK K I I vr

K U m gh m gh r m gh
Z

�

�

    

u
   

u

<
 

 

86. As discussed in the text, from the reference frame of the axle of the wheel, the points on the wheel  

are all moving with the same speed of ,v rZ  where v  is the speed of the axle of the wheel relative 

to the ground.  The top of the tire has a velocity of v  to the right relative to the axle, so it has a 

velocity of 2v  to the right relative to the ground. 

  

� � � �

� � � � � �

top rel top rel center rel

ground center ground

2

top rel 0

ground

 to the right  to the right 2  to the right

2 2 2 2 1.00 m s 2.5s 5.0 m s

v v v

v v v at at

 �  �  

  �    

v v vG G G

 

 

87. Assume that the angular acceleration is uniform.  Then the torque required to whirl the rock is the 

moment of inertia of the rock (treated as a particle) times the angular acceleration. 

  � � � � � �2

2 0
0.50 kg 1.5m rev 2 rad 1min

85 2.0 m N
5.0s min rev 60s

I mr
t

Z Z SW D �
    

ª º§ ·§ · § ·§ ·
¨ ¸ ¨ ¸¨ ¸¨ ¸« »© ¹ © ¹© ¹© ¹¬ ¼

<  

 That torque comes from the arm swinging the sling, and so comes from the arm muscles. 

mgG

TF
G
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88. The torque is found from .IW D   The angular acceleration can be found from o tZ Z D � , with an  

initial angular velocity of 0.  The rotational inertia is that of a cylinder. 

  � � � � � � � �221

2

1800 rev s 2 rad rev
0.5 1.4 kg 0.20 m 53m N

6.0s

oI MR
t

SZ ZW D �
    § ·

¨ ¸
© ¹

<  

 

89. (a) The linear speed of the chain must be the same as it passes over both sprockets.  The linear  

speed is related to the angular speed by ,v RZ  and so .R R F FR RZ Z   If the spacing of the 

teeth on the sprockets is a distance d, then the number of teeth on a sprocket times the spacing 

distance must give the circumference of the sprocket. 

2Nd RS  and so 
2

Nd
R

S
 .  Thus      

2 2

R F R F
R F

F R

N d N d N
N

ZZ Z
S S Z

 o   

 (b) 52 13 4.0R FZ Z    

 

 (c) 42 28 1.5R FZ Z    

 

90. The mass of a hydrogen atom is 1.01 atomic mass units.  The atomic mass unit 

is 
27

1.66 10 kg.
�u  Since the axis passes through the oxygen atom, it will have 

no rotational inertia. 

(a) If the axis is perpendicular to the plane of the molecule, then each 

hydrogen atom is a distance l from the axis of rotation. 

� � � � � �2
2 27 9

perp

45 2

2 2 1.01 1.66 10 kg 0.96 10 m

      3.1 10 kg m

HI m � �

�

  u u

 u <

l
 

(b) If the axis is in the plane of the molecule, bisecting the H-O-H bonds, 

each hydrogen atom is a distance of � �10 o
sin 9.6 10 m sin 52y T �  ul l  

10
7.564 10 m.

� u  Thus the moment of inertia is as follows. 

   � � � � � �2
2 27 10 45 2

plane
2 2 1.01 1.66 10 kg 7.564 10 m 1.9 10 kg mH yI m � � �  u u  u <l  

 

91. (a) The initial energy of the flywheel is used for two purposes – to give the car translational kinetic  

energy 20 times, and to replace the energy lost due to friction, from air resistance and from 

braking.  The statement of the problem leads us to ignore any gravitational potential energy 

changes. 

� � � � � � � � � �

o 21

fr final initial fr car car flywheel2

21

flywheel fr car car2

2

5 1

2

8 8

   cos180

1m s
          450 N 3.5 10 m 20 1100 kg 95km h

3.6 km h

          1.652 10 J 1.7 10 J

W K K F x M v K

K F x M v

 � o '  �

 ' �

 u �

 u | u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 (b) 
21

flywheel 2
K IZ  

� �
� � � �

8

221 1
2 flywheel flywheel 2

2 1.652 10 J2 2
2200 rad s

240 kg 0.75m

KE KE
I M R

Z
u

     

yl

T

l
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 (c) To find the time, use the relationship that 
work

power
time

 , where the work done by the motor  

will be equal to the kinetic energy of the flywheel. 

   
� �

� � � �

8

3
1.652 10 J

    1.476 10 s 25min
150 hp 746 W hp

W W
P t

t P

u
 o    u |  

 

92. (a) Assuming that there are no dissipative forces doing work,  

conservation of mechanical energy may be used to find the final 

height h of the hoop.  Take the bottom of the incline to be the 

zero level of gravitational potential energy.  We assume that the 

hoop is rolling without sliding, so that .v RZ    Relate the 

conditions at the bottom of the incline to the conditions at the top by conservation of energy.  

The hoop has both translational and rotational kinetic energy at the bottom, and the rotational 

inertia of the hoop is given by 
2.I mR  

� �

2

2 2 2 21 1 1 1

bottom top 2 2 2 2 2

22

2

            

3.3m s
1.111 m

9.80 m s

v
E E mv I mgh mv mR mgh

R

v
h

g

Z o �  o �  o

   
 

  The distance along the plane is given by 
o

1.111 m
4.293 m 4.3 m

sin sin15

h
d

T
   |  

 (b) The time can be found from the constant acceleration linear motion.  

� � � �
1

2

2 4.293 m2
    2.602 s

0 3.3m s
o

o

x
x v v t t

v v
'

'  � o    
� �

 

This is the time to go up the plane.  The time to come back down the plane is the same, and so 

the total time is 5.2s .  

 

93. The wheel is rolling about the point of contact with the step, and so 

all torques are to be taken about that point.  As soon as the wheel is 

off the floor, there will be only two forces that can exert torques on 

the wheel – the pulling force and the force of gravity.  There will 

not be a normal force of contact between the wheel and the floor 

once the wheel is off the floor, and any force on the wheel from the 

point of the step cannot exert a torque about that very point.  

Calculate the net torque on the wheel, with clockwise torques 

positive.  The minimum force occurs when the net torque is 0. 

  

� � � �

� �

22

22 2

0

2

F R h mg R R h

Mg R R h Mg Rh h
F

R h R h

W  � � � �  

� � �
  

� �

¦
 

 

94. Since frictional losses can be ignored, energy will be conserved for the marble.  Define the 0 position 

of gravitational potential energy to be the bottom of the track, so that the bottom of the ball is 

initially a height h above the 0 position of gravitational potential energy.  We also assume that the 

h
T�

� �22R R h� �mgG

F
G

R h� R

h
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marble is rolling without slipping, so ,v rZ   and that the marble is released from rest.  The marble 

has both translational and rotational kinetic energy. 

(a) Since ,r R�  the marble’s CM is very close to the surface of the track.  While the marble is on 

the loop, we then approximate that its CM will be moving in a circle of radius R.   When the 

marble is at the top of the loop, we approximate that its CM is a distance of 2R above the 0 

position of gravitational potential energy.  For the marble to just be on the verge of leaving the 

track means the normal force between the marble and the track is zero, and so the centripetal 

force at the top must be equal to the gravitational force on the marble.  

   

2

top of

loop 2

top of

loop

    

mv
mg v gR

R
 o   

Use energy conservation to relate the release point to the point at the top of the loop. 

   � �

release top of release release top of top of

loop loop loop

2

top of

loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7

top of10 10
loop

    

0 2 2

2 2 2.7     

E E K U K U

v
mgh mv I mg R mv mr mgR

r

mgh mv mgR mgR mgR mgR

Z

 o �  �

�  � �  � �

 �  �  o 2.7h R 

 

(b) Since we are not to assume that ,r R�  then while the marble is on the loop portion of the 

track, it is moving in a circle of radius ,R r�  and when at the top of the loop, the bottom of the 

marble is a height of � �2 R r�  above the 0 position of gravitational potential energy (see the 

diagram).  For the marble to just be on the verge of leaving the track means the normal force 

between the marble and the track is zero, and so the centripetal force at the top must be equal to 

the gravitational force on the marble.   

� �
2

top of

loop 2

top of

loop

    

mv
mg v g R r

R r
 o  �

�
 

Use energy conservation to equate the energy at the release point to  

the energy at the top of the loop. 

� � � � � �

� � � � � �

release top of release release top of top of

loop loop loop

2

top of

loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7

top of10 10

loop

    

0 2 2

2 2 2

E E K U K U

v
mgh mv I mg R r mv mr mg R r

r

mgh mv mg R r mg R r mg R r

Z

 o �  �

�  � � �  � � �

 � �  � � �  � �

� �

.7

2.7

mg R r

h R r

�

 �

 

 

95. We calculate the moment of inertia about an axis through 

the geometric center of the rod.  Select a differential 

element of the rod of length ,dx  a distance x from the 

center of the rod.  Because the mass density changes 

uniformly from 0O  at 1

2
x  � l to 03O  at 1

2
,x  l the mass density function is 

0
2 1 .

xO O �§ ·
¨ ¸
© ¹l

 

2 2R r�

0y  

dx

x1

2
� l 1

2
l
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The mass of the differential element is then 
0

2 1 .
x

dM dx dxO O  �§ ·
¨ ¸
© ¹l

  Use Eq. 10-16 to calculate 

the moment of inertia. 

  

/ 2/ 2 / 2 3 4

2 2 2 3 31 1 1

end 0 0 0 03 4 6

/ 2 / 2 / 2

2 1 2 2
x x x

I R dM x dx x dx xO O O O
� � �

  �  �  �  
§ · § ·§ ·

¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹ © ¹
³ ³ ³

ll l

l l l

l
l l l

 

 

96. A free body diagram for the ball while the stick is in contact is shown.  

Write Newton’s second law for the x direction, the y direction, and the 

rotation.  Take clockwise torques (about the center of mass) as positive. 

 
� � � �
� �

N N

fr N k k

fr k

k

0    

    

  

     

y

x k

F F Mg F Mg

F
F F F F F F Mg Ma a g

M
F h r F r F h r Mgr I

F h r Mgr
I

P P P

W P D

P
D

 �  o  

 �  �  �  o  

 � �  � �  o

� �
 

�

¦

¦
¦

 

The acceleration and angular acceleration are constant, and so constant acceleration kinematics may 

be used to find the velocity and angular velocity as functions of time.  The object starts from rest. 

  
� � k

0 k 0CM   ;  
F h r MgrF

v v at g t t t
M I

P
P Z Z D

� �
 �  �  �  § ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
 

At a specific time release ,t  when the ball loses contact with the pushing stick, the ball is rolling 

without slipping, and so at that time 
CM

.v rZ    Solve for the value of h needed to make that true.  

The moment of inertia is 
22

5
.I Mr  

  

� �

� �

k

CM release k release

7

k k k5

1
      

1

F h r Mgr F
v r t g t

I r M

I F r
h g Mgr Fr F Mg

F r M F

P
Z P

P P P

� �
 o  � o

 � � �  �

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

ª º§ ·
¨ ¸« »© ¹¬ ¼

 

 

97. Each wheel supports ¼ of the weight of the car.  For rolling without 

slipping, there will be static friction between the wheel and the pavement.  

So for the wheel to be on the verge of slipping, there must be an applied 

torque that is equal to the torque supplied by the static frictional force.  We 

take counterclockwise torques to the right in the diagram.  The bottom 

wheel would be moving to the left relative to the pavement if it started to 

slip, so the frictional force is to the right.  See the free-body diagram. 

  

� � � � � � � �

1

applied static fr s N s 4

min friction

2 21

4
        0.33m 0.65 950 kg 9.80 m s 5.0 10 m N

RF R F R mgW W P P    

  u <
 

 

98. (a) If there is no friction, then conservation of mechanical energy can be used to find the speed of  

the block.  We assume the cord unrolls from the cylinder without slipping, and so 

block cord cord
.v v RZ    We take the zero position of gravitational potential energy to be the 

1
4
mgG

R
appliedW

frF
G

NF
G

MgG
r

frF
G

NF
G

F
G

h

x

y
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bottom of the motion of the block.  Since the cylinder does not move vertically, we do not have 

to consider its gravitational potential energy. 

   � �

� �
� � � � � �

� �

initial final initial final block cylinder

2

2 2 2 21 1 1 1 1

2 2 2 2 2 2

2

1

2

      

    sin   

2 3.0 kg 9.80 m s 1.80 m sin 272 sin
1.570 m s 1.6 m s

19.5kg

E E U K K K

v
mgh mv I mgD mv MR

R

mgD
v

m M

Z T

T

 o   � o

 � o  � o

q
   |

�

§ ·
¨ ¸
© ¹

  

 

 (b) The first printing of the textbook has 0.055,P   while later printings  

will have 0.035.P    The results are fundamentally different in the 

two cases.  Consider the free body diagrams for both the block and the 

cylinder.  We make the following observations and assumptions.  Note 

that for the block to move down the plane from rest, 
T

.F mg�   Also 

note that 0.1mg Mg�  due to the difference in masses.  Thus 

T
0.1 .F Mg�   Accordingly, we will ignore 

T
F  when finding the net 

vertical and horizontal forces on the cylinder, knowing that we will make less than 

a 10% error.  Instead of trying to assign a specific direction for the force of 

friction between the cylinder and the depression � �fr 2
,F  we show a torque in the 

counterclockwise direction (since the cylinder will rotate clockwise).  Finally, we 

assume that 
fr 2 N2

.F F MgP P     
 

Write Newton’s second law to analyze the linear motion of the block and the rotational motion 

of the cylinder, and solve for the acceleration of the block.  We assume the cord unrolls without 

slipping. 

N N

T fr 1 T

1

T fr 2 T N2 T 2

1

T 2

cos 0    cos

sin sin cos

  

              

y

x

F F mg F mg

F mg F F mg F mg ma

a
F R F R F R F R MgR I I MRa

R
F Mg Ma

T T

T T P T

W W P P D

P

 �  o  

 � �  � �  

 �  �  �    o

�  

¦
¦

¦
 

  Add the x equation to the torque equation. 

   

� �
� �

1

T T 2

1

2

1

2

sin cos   ;  

sin cos

sin cos

 

  

mg F mg ma F Mg Ma

mg Mg mg ma Ma

m M
m M

a g

T P T P
T P P T

T P T P

� �  �  

� �  �

� �
�

o
o

 

 

If 0.055,P   
� � � � � � � �

� �
23.0 kg sin 27 0.055cos 27 0.055 33kg

0.302 m s
19.5kg

.a g
q � q �

  �   But the 

object cannot accelerate UP the plane from rest.  So the conclusion is that object will not move 

with 0.055.P    The small block is not heavy enough to move itself, rotate the cylinder, and 

overcome friction. 
 

If 0.035,P   
� � � � � � � �

� �
23.0 kg sin 27 0.035cos 27 0.035 33kg

0.057 m s
19.5kg

.a g
q � q �

   

mgG

N1F
G

TT

TF
G

fr 1F
G

x

y

MgG

TF
G

fr 2W

N2F
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Use Eq. 2-12c to find the speed after moving 1.80 m. 

� � � �2 2 2

0
2     2 0.057 m s 1.80 m 0.45m sv v a x v � ' o   . 

 

99. (a) See the free body diagram.  Take clockwise torques as positive.  Write  

Newton’s second law for the rotational motion.  The angular acceleration is 

constant, and so constant acceleration relationships can be used.  We also 

use the definition of radian angles, .
s

R
T '

'   

   
2 21 1

fr 1 1 0 1 1 1 1 1 1 12 2
  ;    ;  FR I t t t s RW W D T Z D D T �  '  �  '  '¦  

  Combine the relationships to find the length unrolled, 1.s'  

   

� � � �

� � � �
� � � � � � � �> @

2

2 11

1 1 1 1 fr2

2

3 2

2

0.076 m 1.3s
   2.5 N 0.076 m 0.11m N 1.557m 1.6 m

2 3.3 10 kg m

Rt
s R R t FR

I
T D W

�

'  '   �

 �  |
u

<
<

 

 (b) Now the external force is removed, but the frictional torque is still present.  The analysis is very  

similar to that in part (a), except that the initial angular velocity is needed.  That angular 

velocity is the final angular velocity from the motion in part (a). 

   
� � � � � �> @

� � � �fr
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2 2 2

fr 2 2 1 2 2 1 2 2
  ;  2   ;  I s RW W D Z Z D T Z T �  �  '  � '  '¦  

  Combine the relationships to find the length unrolled, 
2
.s'  

   

� � � � � �
� �

2 3 22 2

1 1

2 2

2 fr
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100. (a) The disk starts from rest, and so the velocity of the center of mass is in the direction of the net  

force:  
0 net

    .
t

t
m

 � o  v v a v F
GGG G G

  Thus the center of mass moves to the right. 

(b) For the linear motion of the center of mass, we may apply constant acceleration equations, 

where the acceleration is .
F
m

 

   
� �
� � � �2 2

0

35 N
2     2 2 5.5m 4.282 m s 4.3m s

21.0 kg

F
v v a x v x

m
 � ' o  '   |  

(c) The only torque is a constant torque caused by the constant string tension.  That can be used to 

find the angular velocity. 

   0

21

2

2
    

I Frt Frt Ft
I I Fr

t t I mr mr
Z Z ZW D Z�

    o    § ·
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  The time can be found from the center of mass motion under constant acceleration. 
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   � �
� � � �
� �

� �

2 35.0 N 5.5m2 2 2 2 2 2

0.850 m 21.0 kg

  10.07 rad s 10 rad s  2 sig fig

Ft F m x F x
mr mr F r m

Z ' '
    

 |

 

  Note that v rZz since the disk is NOT rolling without slipping. 

(d) The amount of string that has unwrapped is related to the angle through which the disk has 

turned, by the definition of radian measure, .s r T '   The angular displacement is found from 

constant acceleration relationships. 
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2 11m

m x
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101. (a) We assume that the front wheel is barely lifted off the ground, so  

that the only forces that act on the system are the normal force on the 

bike’s rear wheel, the static frictional force on the bike’s wheel, and 

the total weight of the system.  We assume that the upward 

acceleration is zero and the angular acceleration about the center of 

mass is also zero.  Write Newton’s second law for the x direction, the y 

direction, and rotation.  Take positive torques to be clockwise. 

N N

fr

fr

fr

NCM

0    

    

0

y

x

F F Mg F Mg

F
F F Ma a

M
F x F yW

 �  o  

  o  

  �

¦

¦
¦

 

Combine these equations to solve for the acceleration. 

 
N fr

0        
x

F x F y Mgx May a g
y

�  o  o   

(b) Based on the form of the solution for the acceleration, ,
x

a g
y

 to minimize the acceleration    

x should be as small as possible and y should be as large as possible.  The rider should move 

upwards and towards the rear of the bicycle. 

 (c) � �2 20.35m
9.80 m s 3.6 m s

0.95m

x
a g

y
    

 

102. We follow the hint given in the problem.  The mass of the cutout piece is proportional by area to the 

mass of the entire piece. 
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  � �4 4 2 21

0 1 12 2

0

          2
M

R R R h
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103. Since there is no friction at the table, there are no horizontal forces on the rod, and so the center of 

mass will fall straight down.  The moment of inertia of the rod about its center of mass is 
21

12
.M l   

Since there are no dissipative forces, energy will be conserved during the fall.  Take the zero level of 

gravitational potential energy to be at the tabletop.   The angular velocity and the center of mass 

velocity are related by 
� �

CM

CM 1

2

.
vZ  
l

 

  o

� �
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2 21 1 1

initial final release final CM CM2 2 2

2

2 2 2CM 31 1 1 1 4

CM CM CM2 2 2 12 3 41
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 � o  o  
ª º
« »
¬ ¼

l
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104. (a) The acceleration is found in Example 10-19 to be a constant value, 2

3
,a g  and so constant  

acceleration kinematics can be used.  Take downward to be the positive direction. 

   
2 2 2 4

0 3 3
2     2 2y y y y yv v a y v a y gh gh � ' o  '    

(b) We take the zero level for gravitational potential energy to be the starting height of the yo-yo.  

Then the final gravitational potential energy is negative. 
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105. From the diagram, we see that the torque about the support A 

is as follows. 

  
� �

� �> @� �
1 2
cos
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R F FW T
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l l

 

 The graph of torque as a function of angle is shown. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 

“PSE4_ISM_CH10.XLS,” on tab “Problem 10.105.” 
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106. From problem 51, the acceleration is as follows. 

  
� �

� �
� �

� �� � � �2B A

22

A B

0.200 kg
9.80 m s

0.500 kg 0.040 m

m m
a g

m m I R I

�
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(a) The graph is shown here.  The 

spreadsheet used for this 

problem can be found on the 

Media Manager, with 

filename 

“PSE4_ISM_CH10.XLS,” on 

tab “Problem 10.106a.” 

 (b) The value of the acceleration 

with a zero moment of inertia 

is found as follows. 

  

 

 

 

 

 (c) A 2.0% decrease in the acceleration means the acceleration is as follows. 

� �2 2
3.92 m s 0.98 3.84 m s .a     Looking at the graph, that would occur roughly for a 

moment of inertia of 
5 2

1.6 10 kg m .�u <  
 

 (d) Using the value above gives the following pulley mass. 
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CHAPTER 11:  Angular Momentum; General Rotation 
 
Responses to Questions 
 
1.  (a) With more people at the equator, more mass would be farther from the axis of rotation, and the 

moment of inertia of the Earth would increase. Due to conservation of angular momentum, the 
Earth’s angular velocity would decrease. The length of the day would increase. 

 
2.   No. Once the diver is in the air, there will be no net torque on her and therefore angular momentum 

will be conserved. If she leaves the board with no initial rotation, her initial angular momentum will 
be zero. Conservation of angular momentum requires that her final angular momentum will also be 
zero, so she will not be able to do a somersault. 

 
3.  Your angular velocity will stay the same. The angular momentum of the system of you and the stool 

and the masses is conserved. The masses carry off their angular momentum (until they hit 
something); you and the stool continue to rotate as before.  

  
4.  Once the motorcycle leaves the ground, there is no net torque on it and angular momentum must be 

conserved. If the throttle is on, the rear wheel will spin faster as it leaves the ground because there is 
no torque from the ground acting on it. The front of the motorcycle must rise up, or rotate in the 
direction opposite the rear wheel, in order to conserve angular momentum. 

 
5. As you walk toward the center, the moment of inertia of the system of you + the turntable will 

decrease. No external torque is acting on the system, so angular momentum must be conserved, and 
the angular speed of the turntable will increase. 

 
6.  When the player is in the air, there is no net torque on him so his total angular momentum must be 

conserved. If his upper body rotates one direction, his lower body will rotate the other direction to 
conserve angular momentum. 

 
7.  The cross product remains the same. 1 2 1 2( ) ( )u  � u �V V V V

G G G G
 

 
8.  The cross product of the two vectors will be zero if the magnitude of either vector is zero or if the 

vectors are parallel or anti-parallel to each other. 
 
9. The torque about the CM, which is the cross product between r and F, depends on x and z, but not on 

y. 
 
10.  The angular momentum will remain constant. If the particle is moving in a straight line at constant 

speed, there is no net torque acting on it and therefore its angular momentum must be conserved. 
  
11.  No. If two equal and opposite forces act on an object, the net force will be zero. If the forces are not 

co-linear, the two forces will produce a torque. No. If an unbalanced force acts through the axis of 
rotation, there will be a net force on the object, but no net torque. 

 
12.  At the forward peak of the swinging motion, the child leans forward, increasing the gravitational 

torque about the axis of rotation by moving her center of mass forward. This increases the angular 
momentum of the system. At the back peak of the swinging motion, the child leans backward, 
increasing the gravitational torque about the axis of rotation by moving her center of mass backward. 
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This again increases the angular momentum of the system. As the angular momentum of the system 
increases, the swing goes higher. 

 
13. A force directed to the left will produce a torque that will cause the axis of the rotating wheel to 

move directly upward. 
 
14.  In both cases, angular momentum must be conserved. Assuming that the astronaut starts with zero 

angular momentum, she must move her limbs so that her total angular momentum remains zero. The 
angular momentum of her limbs must be opposite the angular momentum of the rest of her body. 
(a) In order to turn her body upside down, the astronaut could hold her arms straight out from her 

sides and rotate them from the shoulder in vertical circles. If she rotates them forward, her body 
will rotate backwards. 

(b) To turn her body about-face, she could hold her arms straight out from her sides and then pull 
one across the front of her body while she pulls the other behind her back. If she moves her 
arms counterclockwise, her body will twist clockwise.  

 
15. Once the helicopter has left the ground, no external torques act on it and angular momentum must be 

conserved. If there were only one propeller, then when the angular velocity of the propeller changed, 
the body of the helicopter would begin to rotate in a direction so as to conserve angular momentum. 
The second propeller can be in the same plane as the first, but spinning in the opposite direction, or 
perpendicular to the plane of the first. Either case will stabilize the helicopter. 

 
16. The rotational speed of the wheel will not change. Angular momentum of the entire system is 

conserved, since no net torque operates on the wheel. The small parts of the wheel that fly off will 
carry angular momentum with them. The remaining wheel will have a lower angular momentum and 
a lower rotational kinetic energy since it will have the same angular velocity but a smaller mass, and 
therefore a smaller moment of inertia. The kinetic energy of the total system is not conserved. 

 
17. (a) Displacement, velocity, acceleration, and momentum are independent of the choice of origin. 

(b) Displacement, acceleration, and torque are independent of the velocity of the coordinate system. 
 
18.  Turning the steering wheel changes the axis of rotation of the tires, and makes the car turn. The 

torque is supplied by the friction between the tires and the pavement. (Notice that if the road is 
slippery or the tire tread is worn, the car will not be able to make a sharp turn.) 

 
19. The Sun will pull on the bulge closer to it more than it pulls on the opposite bulge, due to the 

inverse-square law of gravity. These forces, and those from the Moon, create a torque which causes 
the precession of the axis of rotation of the Earth. The precession is about an axis perpendicular to 
the plane of the orbit. During the equinox, no torque exists, since the forces on the bulges lie along a 
line. 

 
20. Because of the rotation of the Earth, the plumb bob will be slightly deflected by the Coriolis force, 

which is a “pseudoforce.”  
 
21. Newton’s third law is not valid in a rotating reference frame, since there is no reaction to the 

pseudoforce. 
 
22. In the Northern Hemisphere, the shots would be deflected to the right, with respect to the surface of 

the Earth, due to the Coriolis effect. In the Southern Hemisphere, the deflection of the shots would 
be to the left. The gunners had experience in the Northern Hemisphere and so miscalculated the 
necessary launch direction.  
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Solutions to Problems 
 
1. The angular momentum is given by Eq. 11-1. 

  � � � � � �22 20.210 kg 1.35m 10.4 rad s 3.98 kg m sL I MRZ Z    <  

 
2. (a) The angular momentum is given by Eq. 11-1. 

   
� �� �221 1

2 2

2 2

1300 rev 2  rad 1 min
2.8 kg 0.18 m

1 min 1 rev 60 s

  6.175 kg m s 6.2 kg m s

L I MR
S

Z Z   

 |

ª º§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸« »© ¹© ¹© ¹¬ ¼

< <

 

 (b) The torque required is the change in angular momentum per unit time.  The final angular  
momentum is zero. 

   
2

0 0 6.175 kg m s
1.0 m N

6.0 s
L L

t
W

� �
   �

'
<

<  

  The negative sign indicates that the torque is used to oppose the initial angular momentum. 
 
3. (a) Consider the person and platform a system for angular momentum analysis.  Since the force and  

torque to raise and/or lower the arms is internal to the system, the raising or lowering of the 
arms will cause no change in the total angular momentum of the system.  However, the 
rotational inertia increases when the arms are raised.  Since angular momentum is conserved, an 
increase in rotational inertia must be accompanied by a decrease in angular velocity. 

 (b) 
0.90 rev s

        1.286 1.3
0.70 rev s

i
i f i i f f f i i i i

f

L L I I I I I I I
ZZ Z
Z

 o  o    |  

  The rotational inertia has increased by a factor of 1.3 .  
 
4. The skater’s angular momentum is constant, since no external torques are applied to her.   

� �2 21.0 rev 1.5s
        4.6 kg m 1.2 kg m

2.5rev s
i

i f i i f f f i
f

L L I I I I
ZZ Z
Z

 o  o    < <   

She accomplishes this by starting with her arms extended (initial angular velocity) and then  
pulling her arms in to the center of her body  (final angular velocity). 

 
5. There is no net torque on the diver because the only external force (gravity) passes through the center 

of mass of the diver.  Thus the angular momentum of the diver is conserved.  Subscript 1 refers to 
the tuck position, and subscript 2 refers to the straight position. 

  1
1 2 1 1 2 2 2 1

2

2 rev 1
        0.38 rev s

1.5 sec 3.5
I

L L I I
I

Z Z Z Z o  o    § ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 
6. The angular momentum is the total moment of inertia times the angular velocity. 

  � � � �22 21 1 1 1
12 2 12 22L I M m M mZ Z Z  �  �ª º¬ ¼l l l  

 
7. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  

frequency of one revolution per day. 
� �22

daily daily Earth daily5L I MRZ Z   
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60o 

LW = IW ZW 

� � � �224 6 33 22
5

2  rad 1 day
       6.0 10 kg 6.4 10 m 7.1 10 kg m s

1 day 86,400 s
S

 u u  u
ª º§ · § ·

¨ ¸¨ ¸« »© ¹© ¹¬ ¼
<  

 (b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  
of one revolution per year. 

   

� �� �

2
daily daily Sun- daily

Earth

224 11 40 22  rad 1 day
          6.0 10 kg 1.5 10 m 2.7 10 kg m s

365 day 86,400 s

L I MRZ Z

S

  

 u u  u

§ ·
¨ ¸
© ¹

ª º§ ·§ ·
¨ ¸¨ ¸« »© ¹© ¹¬ ¼

<
 

 

8. (a) � �� �22 2 21 1
2 2

rev 2 rad
48kg 0.15m 2.8 9.50 kg m s 9.5kg m s

s 1rev
L I MR

S
Z Z    |

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

< <  

 (b) If the rotational inertia does not change, then the change in angular momentum is strictly due to  
a change in angular velocity. 

2
final 0 0 9.50 kg m s

1.9 m N
5.0 s

I IL
t t

Z Z
W

�' �
    �
' '

<
<  

  The negative sign indicates that the torque is in the opposite direction as the initial angular  
momentum. 

 
9. When the person and the platform rotate, they do so about the vertical axis.  Initially there is no 

angular momentum pointing along the vertical axis, and so any change that the person–wheel–
platform undergoes must result in no net angular momentum along the vertical axis. 
(a) If the wheel is moved so that its angular momentum points upwards, then the person and 

platform must get an equal but opposite angular momentum, which will point downwards.  
Write the angular momentum conservation condition for the vertical direction to solve for the 
angular velocity of the platform. 

   W
W W P P P W

P

    0     i f

I
L L I I

I
Z Z Z Z o  � o  �  

The negative sign means that the platform is rotating in the opposite direction of the wheel.  If 
the wheel is spinning counterclockwise when viewed from above, the platform is spinning 
clockwise. 

(b) If the wheel is pointing at a 60o angle to the vertical, then the component 
of its angular momentum that is along the vertical direction is 

W W cos60I Z q .  See the diagram.  Write the angular momentum 
conservation condition for the vertical direction to solve for the angular 
velocity of the platform. 

  W
W W P P P W

P

    0 cos60     
2i f

I
L L I I

I
Z Z Z Z o  q � o  �  

Again, the negative sign means that the platform is rotating in the opposite direction of the 
wheel. 

(c) If the wheel is moved so that its angular momentum points downwards, then the person and  
platform must get an equal but opposite angular momentum, which will point upwards.  Write 
the angular momentum conservation condition for the vertical direction to solve for the angular 
velocity of the platform. 

   W W P P P W W P    0     i fL L I I I IZ Z Z Z o  � � o   
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The platform is rotating in the same direction as the wheel.  If the wheel is spinning 
counterclockwise when viewed from above, the platform is also spinning counterclockwise. 

(d) Since the total angular momentum is 0, if the wheel is stopped from rotating, the platform will 
also stop.  Thus P 0Z  . 

 
10. The angular momentum of the disk–rod combination will be conserved because there are no external 

torques on the combination.  This situation is a totally inelastic collision, in which the final angular 
velocity is the same for both the disk and the rod.  Subscript 1 represents before the collision, and 
subscript 2 represents after the collision.  The rod has no initial angular momentum. 

  1 2 1 1 2 2      L L I IZ Z o  o  

  
� �

� �
21

disk1 2
2 1 1 1 221 1

2 disk rod 2 12

3
3.7 rev s 2.2 rev s

52

MRII
I I I MR M R

Z Z Z Z     
� �

ª º § ·
« » ¨ ¸

© ¹« »¬ ¼
 

 
11. Since the person is walking radially, no torques will be exerted on the person–platform system, and 

so angular momentum will be conserved.  The person will be treated as a point mass.  Since the 
person is initially at the center, they have no initial rotational inertia. 

 (a) � �platform platform person    i f i fL L I I IZ Z o  �  

� � � �
� �

2
platform

22 2
platform

920 kg m
0.95rad s 0.548rad s 0.55rad s

920 kg m 75kg 3.0 mf i

I
I mR

Z Z   |
� �

<
<

 

 (b) � � � �22 21 1
platform2 2 920 kg m 0.95rad s 420Ji iKE I Z   <  

� � � �
� � � � � �

2 2 21 1
platform person platform person person2 2

2 221
2       920 kg m 75kg 3.0 m 0.548rad s 239 J 240 J

f f fKE I I I m rZ Z �  �

 �  |ª º¬ ¼<
 

 
12. Because there is no external torque applied to the wheel–clay system, the angular momentum will be 

conserved.  We assume that the clay is thrown with no angular momentum so that its initial angular 
momentum is 0.  This situation is a totally inelastic collision, in which the final angular velocity is 
the same for both the clay and the wheel.  Subscript 1 represents before the clay is thrown, and 
subscript 2 represents after the clay is thrown.   

  1 2 1 1 2 2      L L I IZ Z o  o   

  

� � � �� �
� �� � � �� �

2 21
wheel wheelwheel wheel wheel1 2

2 1 1 12 2 2 21 1
2 wheel clay wheel wheel clay clay wheel wheel clay clay2 2

2

22 2

5.0 kg 0.20 m
   1.5 rev s 1.385 rev s

5.0 kg 0.20 m 2.6 kg 8.0 10 m

M RI M RI
I I I M R M R M R M R

Z Z Z Z

�

    
� � �

  
� u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º
« »
« »¬ ¼

1.4 rev s|

 

 
13. The angular momentum of the merry-go-round and people combination will be conserved because 

there are no external torques on the combination.  This situation is a totally inelastic collision, in 
which the final angular velocity is the same for both the merry-go-round and the people.  Subscript 1 
represents before the collision, and subscript 2 represents after the collision.  The people have no 
initial angular momentum. 

1 2 1 1 2 2      L L I IZ Z o  o  
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� �
� � � �

m-g-r m-g-r1
2 1 1 1 2

2 m-g-r people m-g-r person

2

22

4

1760 kg m
    0.80 rad s 0.48 rad s

1760 kg m 4 65kg 2.1m

I II
I I I I M R

Z Z Z Z   
� �

  
�

ª º
« »
¬ ¼

ª º
« »
¬ ¼

<
<

 

 If the people jump off the merry-go-round radially, then they exert no torque on the merry-go-round, 
and thus cannot change the angular momentum of the merry-go-round.  The merry-go-round would 
continue to rotate at 0.80 rad s .  

 
14. (a) The angular momentum of the system will be conserved as the woman walks.  The woman’s  

distance from the axis of rotation is .r R vt �   

   

� �

� � � �� �
� �

� �� �
� �

platform 0 0 platform woman
woman

22 2 21 1
02 2

2 21 1
2 0 2 0

2221
2 1

2

      

  

1

i fL L I I I I

MR mR MR m R vt

MR mR M m
vtMR m R vt M m
R

Z Z

Z Z

Z Z
Z

 o �  � o

�  � � o

� �
  

� � � �

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

 (b) Evaulate at 0    .r R vt R vt �  o   

   
� �1

2 0
01

2

2
1

M m m
M M

Z
Z Z

�
  �§ ·

¨ ¸
© ¹

 

 
15. Since there are no external torques on the system, the angular momentum of the 2-disk system is 

conserved.  The two disks have the same final angular velocity. 
  � � 1

2    0 2     i f f fL L I I IZ Z Z Z o �  o   

 
16. Since the lost mass carries away no angular momentum, the angular momentum of the remaining 

mass will be the same as the initial angular momentum. 

  
� �� �

2 22
45

222
5

4 4 2 2

        2.0 10
0.5 0.01

2 rad 1 d
2.0 10 2.0 10 4.848 10 rad s 5 10 rad s

30 day 86400 s

f i ii i i
i f i i f f

i f f f i f

f i

M RI M R
L L I I

I M R M R

Z
Z Z

Z

SZ Z � �

 o  o     u

 u  u  u | u§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

 

 The period would be a factor of 20,000 smaller, which would make it about 130 seconds. 
 The ratio of angular kinetic energies of the spinning mass would be as follows. 

  

� � � � � �
� �

22 41 221
2 52 4final

2 2 21 1 2
2 2 5initial

4
final initial

0.5 0.01 2.0 10
2.0 10   

2 10

i i if f

i i i i i

M RIK
K I M R

K K

ZZ
Z Z

u
   u o

 u

ª º¬ ¼
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17. For our crude estimate, we model the hurricane as a rigid cylinder of air.  Since the “cylinder” is 
rigid, each part of it has the same angular velocity.  The mass of the air is the product of the density 
of air times the volume of the air cylinder. 

  � � � � � �22 3 4 3 141.3kg m 8.5 10 m 4.5 10 m 1.328 10 kgM V R hU US S   u u  u  

 (a) � � � �22 2 21 1 1 1
edge edge2 2 2 4K I MR v R MvZ    

  � � � �
2

14 16 161
4

1m s
     1.328 10 kg 120 km h 3.688 10 J 3.7 10 J

3.6 km h
 u  u | u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 (b) � �� �21 1
edge edge2 2L I MR v R MRvZ    

� � � � � �14 4 20 21
2

20 2

1m s
  1.328 10 kg 8.5 10 m 120 km h 2.213 10 kg m s

3.6 km h

  1.9 10 kg m s

 u u  u

| u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

<

<

 

 
18. Angular momentum will be conserved in the Earth–asteroid system, since all forces and torques are 

internal to the system.  The initial angular velocity of the satellite, just before collision, can be found 
from asteroid asteroid Earth .v RZ    Assuming the asteroid becomes imbedded in the Earth at the surface, 
the Earth and the asteroid will have the same angular velocity after the collision.  We model the 
Earth as a uniform sphere, and the asteroid as a point mass. 

  � �Earth Earth asteroid asteroid Earth asteroid    i f fL L I I I IZ Z Z o �  �  
 The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of 

the above equation, and so the percent  change in Earth’s angular velocity is found as follows. 

  
� �Earth asteroid asteroid

Earth Earth asteroid asteroid Earth
Earth Earth Earth

    f
f

I
I I I

I

Z Z Z
Z Z Z

Z Z
�

�  o   

  

� � � � � �

� �� �
� �� �

asteroid
2

Earth asteroid Earth Earth asteroid asteroid
22 2

Earth Earth Earth Earth Earth Earth Earth5 5

5 4

24

% change 100 100

1.0 10 kg 3.5 10 m s
                    

2  rad
0.4 5.97 10 kg 6.38 10

86400s

f

v
m R R m v
M R M R

Z Z
Z Z Z

S

�
   

u u
 

u u
§ ·
¨ ¸
© ¹

� �
� � 16

6

100 3.2 10 %
m

� u

 

 
19. The angular momentum of the person–turntable system will be conserved.  Call the direction of the 

person’s motion the positive rotation direction.  Relative to the ground, the person’s speed will be 
T ,v v�  where v  is the person’s speed relative to the turntable, and Tv  is the speed of the rim of the 

turntable with respect to the ground.  The turntable’s angular speed is T T ,v RZ   and the person’s 

angular speed relative to the ground is T
P T.v v v

R R
Z Z�

  �   The person is treated as a point 

particle for calculation of the moment of inertia. 

  2
T T P P T T T    0   i f

v
L L I I I mR

R
Z Z Z Z o  �  � � o§ ·

¨ ¸
© ¹
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  � � � � � �
� � � �T 22 2

T

65 kg 3.25 m 3.8 m s
0.32 rad s

1850 kg m 65 kg 3.25 m
mRv

I mR
Z  �  �  �

� �<
 

 
20. We use the determinant rule, Eq. 11-3b. 

 (a) � � � � � � � �> @ � � � � � � � �> @ � � � � � � � �> @
ˆ ˆ ˆ

ˆ ˆ ˆ0 0 0 0 0 0 0 0 0 0
0 0
A B A B A

B
u  �  � � � � � � �

i j k
A B i j k
G G

 

  ˆ        AB j  

  So the direction of uA B
G G

 is in the ĵ  direction. 
(b) Based on Eq. 11-4b, we see that interchanging the two vectors in a cross product reverses the 

direction.  So the direction of uB A
GG

 is in the ˆ�j  direction. 

 (c) Since A
G

 and B
G

are perpendicular, we have sin 90 .AB ABu  u  q  A B B A
G GG G

 
 
21. (a) For all three expressions, use the fact that sin .AB Tu  A B

G G
  If both vectors in the cross  

product point in the same direction, then the angle between them is 0 .T  q   Since sin 0 0q  , a 

vector crossed into itself will always give 0.  Thus ˆ ˆ ˆ ˆ ˆ ˆ 0 .u  u  u  i i j j k k  
 (b) We use the determinant rule (Eq. 11-3b) to evaluate the other expressions. 

   

� � � � � � � �> @ � � � � � � � �> @ � � � � � � � �> @

� � � � � � � �> @ � � � � � � � �> @ � � � � � � � �> @

� � � � � � � �> @ � � � � � � � �> @ � � � � � � � �> @

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ1 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 1 0

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

0 0 1

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ0 1 0 1 1 0 0 0 0 0 1 0 0 0 1

0 0 1

u   � � � � �  

u   � � � � �  �

u   � � � � �  

i j k
i j i j k k

i j k
i k i j k j

i j k
j k i j k i

 

 
22. (a) East cross south is into the ground.  
 (b) East cross straight down is north. 
 (c) Straight up cross north is west. 
 (d) Straight up cross straight down is 0 (the vectors are anti-parallel). 
 
23. Use the definitions of cross product and dot product, in terms of the angle between the two vectors. 

    sin cos     sin cosAB ABT T T Tu  o  o  A B A B
G GG G

<  
 This is true only for angles with positive cosines, and so the angle must be in the first or fourth 

quadrant.  Thus the solutions are 45 ,315 .T  q q   But the angle between two vectors is always taken 

to be the smallest angle possible, and so 45 .T  q  
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24. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

� � � � � � � �> @ � � � � � � � �> @ � � � � � � � �> @^ `
� �

ˆ ˆ ˆ

4.0 3.5 6.0 m N
0 9.0 4.0

ˆ ˆ ˆ  3.5 4.0 6 9 6 0 4 4 4 9 3 5 m N

ˆ ˆ ˆ  68 16 36 m N

 u  

�

 � � � � � � �

 � � �

i j k
Ĳ r F

i j k

i j k

GGG <

<

<

 

 
25. We choose coordinates so that the plane in which the particle 

rotates is the x-y plane, and so the angular velocity is in the z 
direction.  The object is rotating in a circle of radius sinr T , 
where T is the angle between the position vector and the axis of 
rotation.  Since the object is rigid and rotates about a fixed axis, 
the linear and angular velocities of the particle are related by 

sin .v rZ T   The  magnitude of the tangential acceleration is 
tan sin .a rD T   The radial acceleration is given by 

2

R .
sin sin
v v

a v v
r r

Z
T T

     We assume the object is gaining 

speed.  See the diagram showing the various vectors involved. 
 

The velocity and tangential acceleration are parallel to each other, and the angular velocity and 
angular acceleration are parallel to each other.  The radial acceleration is perpendicular to the 
velocity, and the velocity is perpendicular to the angular velocity. 

 

 We see from the diagram that, using the right hand rule, the direction of RaG is in the direction of 

.uȦ vG G   Also, since ȦG  and  vG  are perpendicular, we have vZu  Ȧ vG G  which from above is 

R .v aZ    Since both the magnitude and direction check out, we have R . ua Ȧ vG G G  
 

 We also see from the diagram that, using the right hand rule, the direction of tanaG is in the direction 

of .uĮ rG G
  The magnitude of uĮ rG G

is sin ,rD Tu  Į rG G
 which from above is tansin .r aD T    Since 

both the magnitude and direction check out, we have tan . ua Į rG G G
 

 
26. (a) We use the distributive property, Eq. 11-4c, to obtain 9 single-term cross products. 

   

� � � �
� � � � � � � � � � � �
� � � � � �

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ         

ˆ ˆˆ ˆ ˆ ˆ            

x y z x y z

x x x y x z y x y y y z

z x z y z z

A A A B B B

A B A B A B A B A B A B

A B A B A B

u  � � u � �

 u � u � u � u � u � u

� u � u � u

A B i j k i j k

i i i j i k j i j j j k

k i k j k k

G G

 
 Each of these cross products of unit vectors is evaluated using the results of Problem 21 and Eq.  

11-4b. 

   

� � � � � � � �
� � � �

ˆ ˆˆ ˆ0 0

ˆ ˆ                           0

ˆ ˆ ˆ ˆˆ ˆ         

x x x y x z y x y y y z

z x z y z z

x y x z y x y z z x z y

A B A B A B A B A B A B

A B A B A B

A B A B A B A B A B A B

u  � � � � � � �

� � � �

 � � � � �

A B k j k i

j i

k j k i j i

G G

 

ȦG rG

vG

ĮG

tanaG

RaG

T
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   � � � � � �ˆ ˆ ˆ         y z z y z x x z x y y xA B A B A B A B A B A B � � � � �i j k  

 (b) The rules for evaluating a literal determinant of a 3 x 3 matrix are as follows.  The indices on  
the matrix elements identify the row and column of the element, respectively. 

   � � � � � �
11 12 13

21 22 23 11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

31 32 33

a a a
a a a a a a a a a a a a a a a a a a
a a a

 � � � � �  

  Apply this as a pattern for finding the cross product of two vectors. 

   � � � � � �
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

A A A A B A B A B A B A B A B
B B B

u   � � � � �

i j k
A B i j k
G G

 

  This is the same expression as found in part (a). 
 
27. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

  � � � �> @ � � � �> @ � � � �> @^ `
� � � � 4

ˆ ˆ ˆ

0 8.0 6.0 m kN
2.4 4.1 0

ˆ ˆ ˆ             6.0 4.1 6.0 2.4 8.0 2.4 m kN

ˆ ˆ ˆ ˆˆ ˆ             24.6 14.4 19.2 m kN 2.5 1.4 1.9 10 m N

 u  

r �

 � � � r � � r

 r | r u

i j k
Ĳ r F

i j k

i j k i j k

GGG <

<

B < B <

 

 The magnitude of this maximum torque is also found. 

  � � � � � �2 2 2 4 42.46 1.44 1.92 10 m N 3.4 10 m N � � u  uĲG < <  

 
28. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

  � � � � � � � �> @

ˆ ˆ ˆ

0.280 0.335 0 m N
215cos33.0 215sin 33.0 0

ˆ             0.280 215sin 33.0 0.335 215cos33.0 m N

ˆ             27.6 m N 27.6 m N in the  directionz

 u  

q q

 q � q

 �  �

i j k
Ĳ r F

k

k

GGG <

<

< <

 

 This could also be calculated by finding the magnitude and direction of rG , and then using Eq. 11-3a 
and the right-hand rule. 

 
29. (a) We use the determinant rule, Eq. 11-3b, to evaluate the cross product. 

   

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ5.4 3.5 0 7.0 10.8 0.49 7.0 11 0.5

8.5 5.6 2.0
u  �  � � � | � � �

�

i j k
A B i j k i j k
G G

 

 (b) Now use Eq. 11-3a to find the angle between the two vectors. 

   � � � � � �2 2 27.0 10.8 0.49 12.88u  � � � �  A B
G G
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� � � � � � � � � �

� � � �

2 2 2 2 2

1 1

5.4 3.5 6.435 ; 8.5 5.6 2.0 10.37

12.88
sin     sin sin 11.1 or 168.9

6.435 10.37

A B

AB
AB

T T � �

 �  � � �  

u
u  o    q q

A B
A B

G G
G G  

  Use the dot product to resolve the ambiguity. 
   � � � � � � � � � �5.4 8.5 3.5 5.6 0 2.0 26.3 � � �  �A B

G G
<  

  Since the dot product is negative, the angle between the vectors must be obtuse, and so  
168.9 170 .T  q | q  

 
30. We choose the z axis to be the axis of rotation, and so ˆ .Z Ȧ kG   We describe the location of the 

point as 0
ˆ ˆ ˆcos sin .R t R t zZ Z � �r i j kG   In this description, the point is moving counterclockwise in a 

circle of radius R centered on the point � �00,0, ,z  and is located at � �0,0,R z  at t = 0. 

ˆ ˆsin cos
d

R t R t
dt

Z Z Z Z  � �
r

v i j
G

G
 

  

0

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin
R t R t

R t R t z
Z Z Z Z Z

Z Z
u   � �  

i j k
Ȧ r i j vG G G  

 And so we see that . uv Ȧ rG GG  
 

If the origin were moved to a different location on the axis of rotation (the z axis) that would simply 
change the value of the z coordinate of the point to some other value, say 1z .  Changing that value 
will still lead to . uv Ȧ rG GG    
 
But if the origin is moved from the original point to something off the rotation axis, then the position 
vector will change.  If the new origin is moved to � �22 2, , ,x y z  then the position vector will change 

to � � � � � �2 2 0 2
ˆ ˆ ˆcos sin .R t x R t y z zZ Z � � � � �r i j kG   See how that affects the relationships. 

 ˆ ˆsin cos
d

R t R t
dt

Z Z Z Z  � �
r

v i j
G

G  

 � � � �
0

2 2

2 2 2

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin
R t y R t x

R t x R t y z z
Z Z Z Z Z Z Z

Z Z
u   � � � �  

� � �

i j k
Ȧ r i j vG G G  

We see that with this new off-axis origin, .z uv Ȧ rG GG  
 
31. Calculate the three “triple products” as requested. 

� � � � � �
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

A A A A B A B A B A B A B A B
B B B

u   � � � � �

i j k
A B i j k
G G

 

  � � � � � �
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

B B B B C B C B C B C B C B C
C C C

u   � � � � �

i j k
B C i j k

GG
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  � � � � � �
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

C C C C A C A C A C A C A C A
A A A

u   � � � � �

i j k
C A i j k
G G

 

  

� � � � � � � � � �
� � � � � �
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

A A A B C B C B C B C B C B C

A B C B C A B C B C A B C B C

A B C A B C A B C A B C A B C A B C

u  � � � � � � �

 � � � � �

 � � � � �

ª º¬ ¼A B C i j k i j k
G GG
< <

 

  

� � � � � � � � � �
� � � � � �
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

B B B C A C A C A C A C A C A

B C A C A B C A C A B C A C A

B C A B C A B C A B C A B C A B C A

u  � � � � � � �

 � � � � �

 � � � � �

ª º¬ ¼B C A i j k i j k
G GG

< <

 

  

� � � � � � � � � �
� � � � � �
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

C C C A B A B A B A B A B A B

C A B A B C A B A B C A B A B

C A B C A B C A B C A B C A B C A B

u  � � � � � � �

 � � � � �

 � � � � �

ª º¬ ¼C A B i j k i j k
G G G
< <

 

 A comparison of three results shows that they are all the same. 
 
32. We use the determinant rule, Eq. 11-3b, to evaluate the angular momentum. 

  � � � � � �
ˆ ˆ ˆ

ˆ ˆ ˆ
z y x z y x

x y z

x y z yp zp zp xp xp yp
p p p

 u   � � � � �

i j k
L r p i j k
G G G  

 
33. The position vector and velocity vectors are at right angles to each other for circular motion.  The 

angular momentum for a particle moving in a circle is sin sin 90 .L rp rmv mrvT  q    The moment 
of inertia is 2.I mr  

  � �22 2 2 2 2
21

22 22 2 2 2
mrvL m r v mv

mv K
I mr mr
      

 This is analogous to 
2

2
p

K
m

  relating kinetic energy, linear momentum, and mass. 

 
34. (a) See Figure 11-33 in the textbook.  We have that .L r p dmvA    The direction is into the plane  

of the page. 
 

 (b) Since the velocity (and momentum) vectors pass through Oc , rG  and pG  are parallel, and so  
0 u  L r p

G G G .  Or, 0rA  , and so 0.L   
 
35. See the diagram.  Calculate the total angular momentum about the origin. 
  � � � �1 2 1 2 u � u �  � uL r p r p r r p

G G G G G G G G  
The position dependence of the total angular momentum only depends on 
the difference in the two position vectors.  That difference is the same no 
matter where the origin is chosen, because it is the relative distance 
between the two particles. 

�pG

pG

1r
G

2rG
1 2�r rG G
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36. Use Eq. 11-6 to calculate the angular momentum. 

  
� � � �

� � � � � �

2

2 2

ˆ ˆ ˆ

0.075kg 4.4 6.0 0 m s
3.2 0 8.0

ˆ ˆ ˆ ˆˆ ˆ0.075 48 35.2 19.2 kg m s 3.6 2.6 1.4 kg m s  

m u  u  �

�

 � �  � �

i j k
L r p r v

i j k i j k

G G G G G

< <

 

 
37. Use Eq. 11-6 to calculate the angular momentum. 

  
� � � �

� � � � � �

2

2 2

ˆ ˆ ˆ

3.8kg 1.0 2.0 3.0 m s
5.0 2.8 3.1

ˆ ˆ ˆ ˆˆ ˆ  3.8 14.6 11.9 12.8 kg m s 55 45 49 kg m s

m u  u  

� �

 � � �  � � �

i j k
L r p r v

i j k i j k

G G G G G

< <

 

 

38. (a) From Example 11-8, 
� �

� �
B A

2
A B 0

.m m g
a

m m I R
�

 
� �

 

� �
� �

� �
� �

� �

� � � �

B A B A B A
2 2 21 1

2 2A B 0 A B 0 0 A B

2
2 2

1.2 kg 9.80 m s
0.7538m s 0.75m s

15.6 kg
 

m m g m m g m m g
a

m m I R m m mR R m m m
� � �

   
� � � � � �

  |

 

(b) If the mass of the pulley is ignored, then we have the following. 

� �
� �

� � � �2
2B A

A B

2 2

2

1.2 kg 9.80 m s
0.7737 m s

15.2 kg

0.7737 m s 0.7538m s
% error 100 2.6%

0.7538m s

m m g
a

m m
�

   
�

�
 u  
§ ·
¨ ¸
© ¹

 

 
39. The rotational inertia of the compound object is the sum of the individual moments of inertia. 
  � � � � � � � �2 22 2 2 21 2 1 14 1

particles rod 3 3 3 9 30I I I m m m m M m M �  � � � �  �l l l l l  

 (a) � � � �2 2 2 2 271 1 14 1 1
2 2 9 3 9 6K I m M m MZ Z Z  �  �l l   

 (b) � � 214 1
9 3L I m MZ Z  � l   

 
40. (a) We calculate the full angular momentum vector about the center of mass of the system.  We  

take the instant shown in the diagram, with the positive x axis to the right, the positive y axis up 
along the axle, and the positive z axis out of the plane of the diagram towards the viewer.  We 
take the upper mass as mass A and the lower mass as mass B.  If we assume that the system is 
rotating counterclockwise when viewed from above along the rod, then the velocity of mass A 
is in the positive z direction, and the velocity of mass B is in the negative z direction.  The speed 
is given by � � � �4.5rad s 0.24 m 1.08 m s.v rZ    

   ^ `A A B B A A B Bm u � u  u � uL r p r p r v r v
G G G G G G GG G  
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   � � � �^ ` � � � �^ `
� � � � � � � �^ ` � � � � 2

ˆ ˆ ˆ ˆˆ ˆ

  0.24 m 0.21m 0 0.24 m 0.21m 0
0 0 0 0

ˆ ˆ ˆ ˆ  2 0.21m 2 0.24 m 2 0.21m 0.24 m

ˆ ˆ ˆ ˆ  2 0.48 kg 1.08m s 0.21m 0.24 m 0.2177 0.2488 kg m s

m
v v

m v v mv

 � � �

�

 �  �

 �  �

 ½
° °
® ¾
° °
¯ ¿

ª º¬ ¼

i j k i j k

i j i j

i j i j <

 

  The component along the axis is the ĵ component, 20.25kg m s .<  

 (b) The angular momentum vector will precess about the axle.  The tip of the  
angular momentum vector traces out the dashed circle in the diagram.   

   
2

1 1
2

0.2177 kg m s
tan tan 41

0.2488kg m s
x

y

L
L

T � �   q
<
<

 

 
 
41. (a) We assume the system is moving such that mass B is moving down, mass A is moving to the  

left, and the pulley is rotating counterclockwise.  We take those as positive directions.  The 
angular momentum of masses A and B is the same as that of a point mass.  We assume the rope 
is moving without slipping, so pulley 0.v RZ  

   

� �

A B pulley A 0 B 0 A 0 B 0
0

A B 0
0

  

v
L L L L M vR M vR I M vR M vR I

R

I
M M R v

R

Z � �  � �  � �

 � �
§ ·
¨ ¸
© ¹

  

 (b) The net torque about the axis of the pulley is that provided by gravity, B 0.M gR   Use Eq. 11-9,  
which is applicable since the axis is fixed. 

   

� � � �

� �

B 0 A B 0 A B 0
0 0

B 0 B

A B 2A B 0
00

     
dL d I I

M gR M M R v M M R a
dt dt R R

M gR M g
a

II M MM M R RR

W  o  � �  � � o

  
� �� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
¨ ¸
© ¹

¦
 

 
42. Take the origin of coordinates to be at the rod’s center, and the axis of  

rotation to be in the z direction.  Consider a differential element 
M

dm dr 
l

of the rod, a distance r from the center.  That element rotates 

in a circle of radius sinr I , at a height of cos .r I   The position and 
velocity of this point are given by the following. 

ˆ ˆ ˆsin cos sin sin cos
ˆ ˆ ˆ  sin cos sin sin cos

r t r t r

r t t

I Z I Z I

I Z I Z I

 � �

 � �ª º¬ ¼

r i j k

i j k

G
 

T L
G

Z

dm

rG

dL
H

I

I
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ˆ ˆsin sin sin cos

ˆ ˆ  sin sin sin cos

d
r t r t

dt
r t t

Z I Z Z I Z

Z I Z I Z

  � �

 � �ª º¬ ¼

r
v i j

i j

G
G

 

 Calculate the angular momentum of this element. 

  

� �

� � � � � �

� � � �

2

2 2 2 2

2

ˆ ˆ ˆ

sin cos sin sin cos
sin sin sin cos 0

ˆ ˆ ˆ    sin cos cos sin cos sin sin cos sin sin

sin ˆ ˆ ˆ    cos cos cos sin sin

M
d dm r dr t t

t t

M
dr t t t t

Mr
dr t t

Z I Z I Z I
I Z I Z

I I Z I I Z I Z I Z

Z I I Z I Z I

 u  

�

 � � � � �

 � � � �

ª º¬ ¼

ª º¬ ¼

i j k
L r v

i j k

i j k

G G G
l

l

l

 

 Note that the directional portion has no r dependence.  Thus dL
G

for every piece of mass has the same 
direction.  What is that direction?  Consider the dot product .dr L

GG<  

  � � � �

� � � �> @

2

3

ˆ ˆ ˆsin cos sin sin cos

sin ˆ ˆ ˆ              cos cos cos sin sin

sin
      sin cos cos cos sin sin cos sin cos sin 0

d r t t

Mr dr
t t

Mr dr
t t t t

I Z I Z I

Z I I Z I Z I

Z I I Z I Z I Z I Z I I

 � �

� � � �

 � � � �  

ª º¬ ¼
ª º

ª º¬ ¼« »¬ ¼

r L i j k

i j k

GG<

<
l

l

 

Thus d AL r
G G for every point on the rod.  Also, if I is an acute angle, the z component of dL

G
 is 

positive.  The direction of dL
G

is illustrated in the diagram. 
 

 Integrate over the length of the rod to find the total angular momentum.  And since the direction of 
dL
G

is not dependent on r, the direction of L
G

 is the same as the direction of .dL
G

 

� � � �

� � � �

/ 2
2

/ 2

2

sin ˆ ˆ ˆcos cos cos sin sin

sin ˆ ˆ ˆ   cos cos cos sin sin
12

M
d t t r dr

M
t t

Z I I Z I Z I

Z I I Z I Z I

�

  � � � �

 � � � �

ª º¬ ¼

ª º¬ ¼

³ ³L L i j k

i j k

G G l

l
l

l

 

Find the magnitude using the Pythagorean theorem. 

 � � � �
2 21/ 22 2 2sin sin

cos cos cos sin sin
12 12

M M
L t t

Z I Z II Z I Z I � � � �  ª º¬ ¼
l l

  

L
G

 is inclined upwards an angle of I  from the x-y plane, perpendicular to the rod. 
 
43. We follow the notation and derivation of Eq. 11-9b.  Start with the general definition of angular 

momentum, .i i
i

 u¦L r p
G G G   Then express position and velocity with respect to the center of mass. 

  *
CMi i �r r rG G G

, where *
irG is the position of the ith particle with respect to the center of mass 

  *
CMi i �v v vG G G

, which comes from differentiating the above relationship for position 

  � � � �* *
CM CMi i i i i i i i

i i i

m m u  u  � u �¦ ¦ ¦L r p r v r r v v
G G G G G GG G G  
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  * * * *
CM CM CM CM  i i i i i i i i

i i i i

m m m m u � u � u � u¦ ¦ ¦ ¦r v r v r v r vG G G GG G G G  

Note that the center of mass quantities are not dependent on the summation subscript, and so they 
may be taken outside the summation process. 

  � � * * * *
CM CM CM CMi i i i i i i i

i i i i

m m m m � � � u§ ·u u u¨ ¸
© ¹

¦ ¦ ¦ ¦L v r r vr v r v
G G GG GG GG G

 

 In the first term, .i
i

m M ¦   In the second term, we have the following. 

� �*
CM CM CM 0i i i i i i i i i

i i i i i

m m m m m M �  �  �  ¦ ¦ ¦ ¦ ¦v v v v v v vG G G G G G G  

 This is true from the definition of center of mass velocity:  CM

1 .i i
i

m
M

 ¦v vG G  

 Likewise, in the third term, we have the following. 
  � �*

CM CM CM 0i i i i i i i i i
i i i i i

m m m m m M �  �  �  ¦ ¦ ¦ ¦ ¦r r r r r r rG G G G G G G  

 This is true from the definition of center of mass:  CM

1 .i i
i

m
M

 ¦r rG G  

 Thus � � � �* * *
CM CM CM CMi i i

i

M m M u � u  � u¦L r v r v L r v
G GG G GG G G  as desired. 

 
44. The net torque to maintain the rotation is supplied by the forces at the bearings.  From Figure 11-18 

we see that the net torque is 2Fd, where d is the distance from the bearings to the center of the axle.  
The net torque is derived in Example 11-10. 

  
� � � �2 2 2 22 2

A A B B
net

sin
2     

tan 2 tan 2 tan

m r m rI I
Fd F

d d

Z IZ ZW
I I I

�
  o     

 
45. As in problem 44, the bearings are taken to be a distance d from point 

O.  We choose the center of the circle in which Am  moves as the 
origin, and label it Oc  in the diagram.  This choice of origin makes the 
position vector and the velocity vector always perpendicular to each 
other, and so makes L

G
 point along the axis of rotation at all times.  So 

L
G

 is parallel to .ȦG   The magnitude of the angular momentum is as 
follows. 

� � � � 2 2
A A A A A A Asin sin sinL m r v m r r m rI Z I Z IA    

 L
G

is constant in both magnitude and direction, and so net 0
d
dt

  
L

Ĳ
G

G .  

Be careful to take torques about the same point used for the angular momentum. 

  � � � � � �
� �

A
net A A B A B A

A

cos
0 cos cos 0    

cos
d r

F d r F d r F F
d r

I
W I I

I
�

  � � �  o  �
�

 

 The mass is moving in a circle and so must have a net centripetal force pulling in on the mass (if 
shown, it would point to the right in the diagram).  This force is given by 2

C A A sinF m rZ I .  By 
Newton’s third law, there must be an equal but opposite force (to the left) on the rod and axle due to 
the mass.  But the rod and axle are massless, and so the net force on it must be 0. 

O

Oc d

d

AF
G

BF
G

CF
G

Am
Ar I



Chapter 11  Angular Momentum; General Rotation 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

355 
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2
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B A
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sin cos
2

cos sin cos
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d r
F F F F F F m r

d r

m r d r
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d

d r m r d r
F F

d r d

I
Z I

I

Z I I

I Z I I
I

�
 � �  � � �  o

�
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� �
 �  �

�

§ ·
¨ ¸
© ¹

 

 We see that BF
G

 points in the opposite direction as shown in the free-body diagram. 
 
46. We use the result from Problem 44, 

  

� � � � � � � � � �
� �

2 2 2 2 2 2 22 2 2
A A B B sin 0.60 kg 0.30 m 11.0 rad s sin 34.0sin

2 tan tan 0.115m tan 34.0

26 N   

m r m r mr
F

d d

Z I Z I
I I

� q
   

q

 

 

 
47. This is a variation on the ballistic pendulum problem.  Angular momentum is conserved about the 

pivot at the upper end of the rod during the collision, and this is used to find the angular velocity of 
the system immediately after the collision.  Mechanical energy is then conserved during the upward 
swing.  Take the 0 position for gravitational potential energy to be the original location of the center 
of mass of the rod.  The bottom of the rod will rise twice the distance of the center of mass of the 
system, since it is twice as far from the pivot. 
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� �
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1
before after rod putty2
collision collision rod putty

21
after top of after top of rod putty2
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2
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2

          

2

m v
L L m v I I
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E E K U I I m M gh

I I I I
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m M g

Z Z
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 o  � o  
�

 o  o �  � o

� �
  

�

l
l

� �
� � � � � � � �

� � � �� � � � � �

� � � �
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y
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22 41 1
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2 2 8

  
28

2
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g m M M m
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l
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48. Angular momentum about the pivot is conserved during this collision.  Note that both objects have 

angular momentum after the collision. 

  

� � � �

� � � � � � � � � �

1 1
before after bullet stick bullet bullet 0 stick bullet f4 4
collision collision initial final final

1 1
4 4bullet 0 f bullet 0 f bullet 0 f

21
12stick stick stick stick stick

          

3 3

L L L L L m v I m v

m v v m v v m v v
I M M

Z

Z

 o  � o  � o

� � �
    

l l

l l

l l

� � � �
� � � �

0.0030 kg 110 m s
0.27 kg 1.0 m

3.7 rad s   
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49. The angular momentum of the Earth–meteorite system is conserved in the collision.  The Earth is 
spinning counterclockwise as viewed in the diagram.  We take that direction as the positive direction 
for rotation about the Earth’s axis, and so the initial angular momentum of the meteorite is negative.   

� �

� � � �

� � � �

initial final Earth 0 E Earth meteorite

22
5Earth 0 E E E 0 E

2 22
5Earth meteorite E E E

22 2 22
5 5E E E5 E E E

0 E0
2 22 2

5 50 E E E E

    sin 45     
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1
22

L L I mR v I I

I mR v M R mR v
I I M R mR

mvv R M MM R mR
R

R M m R m M
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ZZ Z
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 o � q  � o

� q � q
  

� �

� ��
   

� �
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50. (a) Linear momentum of the center of mass is conserved in the totally inelastic collision. 

   
� �

� �
� � � �

� �

initial final beam 0 beam man final

beam 0
final

beam man

      

230 kg 18m s
14 m s

295kg

p p m v m m v

m v
v

m m

 o  � o

   
�

  

 (b) Angular momentum about the center of mass of the system is conserved.  First  
we find the center of mass, relative to the center of mass of the rod, taking down 
as the positive direction.  See the diagram. 

   
� � � �

� �
� � � �

� �
1
2beam man

CM
beam man

0 65kg 1.35m
295kg

      0.2975m below center of rod

m m
y

m m
�

  
�

 

l

 

  We need the moment of inertia of the beam about the center of mass of the entire  
system.  Use the parallel axis theorem. 

� �22 21 1
beam beam beam beam man man beam12 2  ;  I m m r I m r �  �l l  

� �

� � � � � �
� � � � � �

� � � � � � � � � � � �
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beam 0 beam beam 0 beam
final 2 221 1 1
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2 2 21
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230 kg 18m s 0.2975m
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L L m v r I I
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I I m m r m r
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 o  � o
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NF
G

mgG
frF
G

O

CMvG

r

Z
R

51. Linear momentum of the center of mass is conserved in the totally inelastic collision. 

  � �initial final CM CM
final final

        
mv

p p mv m M v v
m M

 o  � o  
�

  

Angular momentum about the center of mass of the system is conserved.  First we find the center of 
mass, relative to the center of mass of the rod, taking up as the positive direction.  See the diagram. 

  � � � �
� � � �
1
4

CM

0
4

m M m
y

m M m M
�

  
� �

l l  

 The distance of the stuck clay ball from the system’s center of mass is found. 

� � � �
1 1

clay CM4 4 4 4
m M

y y
m M m M

 �  �  
� �
l l

l l  

We need the moment of inertia of the rod about the center of mass of the entire system.  Use the 
parallel axis theorem.  Treat the clay as a point mass. 

� �

2

21
rod 12 4

m
I M M

m M
 �

�
ª º
« »
¬ ¼

l
l  

 Now express the conservation of angular momentum about the system’s center of mass. 
� �
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52. (a) See the free-body diagram for the ball, after it has moved  

away from the initial point.  There are three forces on the 
ball.  NF

G
 and mgG  are in opposite directions and each has 

the same lever arm about an axis passing through point 
O perpendicular to the plane of the paper.  Thus they 
cause no net torque.  frF

G
 has a 0 lever arm about an axis  

through O, and so also produces no torque.  Thus the  
net torque on the ball is 0.  Since we are calculating  
torques about a point fixed in an inertial reference frame,  

we may say that 0
d
dt

  ¦ L
Ĳ

G
G  and so L

G
 is constant.  Note that the ball is initially slipping 

while it rolls, and so we may NOT say that 0 0v RZ  at the initial motion of the ball.   
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(b) We follow the hint, and express the total angular momentum as a sum of two terms.  We take  
clockwise as the positive rotational direction. 

  
CM CMv mRv IZ Z �  �L L L

G G G
 

The angular momentum is constant.  We equate the angular momentum at the initial motion, 
with 

CM 0v v  and 0 C,Z Z Z   to the final angular momentum, with 
CM

0v   and 0.Z   

  � � � � 0 0 0
initial final    0 C 22

5CM

5
0 0 0    

2C

mRv mRv v
mRv I mR I

I mR R
Z Zo  �  �  o    L L

G G
 

(c) Angular momentum is again conserved.  In the initial motion, 
CM 0v v  and C0 0.90 .Z Z   Note  

that in the final state, CM ,v RZ   and the final angular momenta add to each other. 

 � � � �

CM
initial final 0 C CM

2 20 CM 72 2 1
0 CM 0 CM5 5 10 5

1
CM 014

    0.90   

5
0.90       

2

v
L L mRv I mRv I

R
v v

mRv mR mRv mR v v
R R

v v

Z o �  � o

�  � o  o

 

§ ·
¨ ¸
© ¹

 

This answer is reasonable.  There is not enough “backspin” since C0 ,Z Z�  and so the ball’s 
final state is rolling forwards. 

(d) Angular momentum is again conserved.  In the initial motion, 
CM 0v v  and C0 1.10 .Z Z   Note  

that in the final state, CM ,v RZ   and the final angular momenta add to each other. 
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CM
initial final 0 C CM

2 20 CM 72 2 1
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5
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2

v
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mRv mR mRv mR v v
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 �

§ ·
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This answer is reasonable.  There is more than enough “backspin” since C0 ,Z Z!  and so the 
ball’s final state is rolling backwards. 

 
53. Use Eq. 11-13c for the precessional angular velocity. 

  
� � � � � �2

4 2
0.22 kg 9.80 m s 0.035m

    8.3 10 kg m
1rev 2 rad 15rev 2 rad
6.5s rev 1s rev

Mgr Mgr
I

IZ Z S S
�:  o    u

: ª º ª º§ · § ·
¨ ¸ ¨ ¸« » « »© ¹ © ¹¬ ¼ ¬ ¼

<  

 
54. (a) The period of precession is related to the reciprocal of the angular precessional frequency. 
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 (b) Use the relationship 
2 2

disk2 fr
T

gr
S

  derived above to see the effect on the period. 

   

2 2 2
disk disk

2new new
2disk

newnew new new
2 2 2

disk diskoriginal disk new
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2 1
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2 1 2

fr r
r

T rgr r
fr rT r r

gr r

S

S
     

§ ·
§ ·¨ ¸ ¨ ¸¨ ¸ © ¹¨ ¸

© ¹

  

  So the period would double, and thus be � �new original2 2 2.611s 5.222s 5.2s .T T   |  

 
55. Use Eq. 11-13c for the precessional angular velocity. 
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� �

2

axle
22 21

2 wheel wheel

1
2 axle 9.80 m s 0.25m
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:      
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56. The mass is placed on the axis of rotation and so does not change the moment of inertia.  The 

addition of the mass does change the center of mass position r, and it does change the total mass, M, 
to 3

2 .M  
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2 2axle axle axle 2
new axle331

2 2

M
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M M
M M M
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l l l
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57. The spinning bicycle wheel is a gyroscope.  The angular frequency of  

precession is given by Eq. 11-13c.   

  

� � � �
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2

22 2
wheel wheel

9.80 m s 0.20 m

0.325m 4.0 rad s

1rev 60s
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In the figure, the torque from gravity is directed back into the paper.  This gives the direction of 
precession.  When viewed from above, the wheel will precess counterclockwise. 

 
58. We assume that the plant grows in the direction of the local “normal” force.  In 

the rotating frame of the platform, there is an outward fictitious force of 

magnitude 
2

2.v
m mr

r
Z   See the free body diagram for the rotating frame of 

reference.  Since the object is not accelerated in that frame of reference, the 
“normal” force must be the vector sum of the other two forces.  Write Newton’s 
second law in this frame of reference. 

mg

2mrZ
N" "F T

Z

L
G

mgG
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vertical N N

2
2

horizontal N N

2 2 2
1

cos 0    
cos

sin 0    
sin

    tan     tan
cos sin

mg
F F mg F

mr
F F mr F

mg mr r r
g g

T
T
ZT Z
T

Z Z ZT T
T T

�

 �  o  

 �  o  

 o  o  

¦

¦  

In the inertial frame of reference, the “normal” force still must point inward.  The horizontal 
component of that force is providing the centripetal acceleration, which points inward. 

 
59. (a) At the North Pole, the factor  2m rZ is zero, and so there is no effect from the rotating reference  

frame.   
2 20 9.80 m s , inward along a radial lineg g r gZc  �  �   

 (b) To find the direction relative to a radial line, we orient  
the coordinate system along the tangential (x) and radial 
(y, with inward as positive) directions.  See the diagram.  
At a specific latitude I , the “true” gravity will point 

purely in the positive y direction, ˆ.g g jG   We label the 
effect of the rotating reference frame as rot .gG  The effect 
of rotgG can be found by decomposing it along the axes.  
Note that the radius of rotation is not the radius of the 
Earth, but E cos .r R I    

� �
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2 2 2
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The angle of deflection from the vertical � �T  can be found from the components of .cgG    
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  The magnitude of cgG is found from the Pythagorean theorem. 

   � � � �2 22 2 2 2 2 21.687 10 m s 9.783m s 9.78m sx yg g g �c c c �  u �   

  And so 29.78m s , 0.0988  south from an inward radial line .gc  q  
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(c) At the equator, the effect of the rotating reference frame is directly opposite to the “true”  
acceleration due to gravity.  Thus the values simply subtract. 

   � �
2

2 2 2 6
Earth

2 rad
9.80 m s 6.38 10 m

86.400s
g g r g R

SZ Zc  �  �  � u
§ ·
¨ ¸
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   29.77 m s , inward along a radial line    

 
60. (a) In the inertial frame, the ball has the tangential speed of point B,  

B B .v r Z   This is greater than the tangential speed of the women at 
A, A A ,v r Z  so the ball passes in front of the women.  The ball 
deflects to the right of the intended motion.  See the diagram. 

(b) We follow a similar derivation to that given in section 11-9.  In the 
inertial frame, the ball is given an inward radial velocity v by the 
man at B.  The ball moves radially inward a distance B Ar r�  during 
a short time t, and so B A .r r vt�    During this time, the ball moves sideways a distance  

B B ,s v t  while the woman moves a distance A A .s v t   The ball will pass in front of the woman 
a distance given by the following. 

� � � � 2
B A B A B As s s v v t r r t v tZ Z �  �  �   

This is the sideways displacement as seen from the noninertial frame, and so the deflection is 
2 .v tZ   This has the same form as motion at constant acceleration, with 2 21

Cor2 .s v t a tZ    

Thus the Coriolis acceleration is Cor 2 .a vZ  
 
61. The footnote on page 302 gives the Coriolis acceleration as Cor 2 . ua Ȧ vG G G

  The angular velocity 
vector is parallel to the axis of rotation of the Earth.  For the Coriolis acceleration to be 0, then, the 
velocity must be parallel to the axis of rotation of the Earth.  At the equator this means moving either 
due north or due south. 

 
62. The Coriolis acceleration of the ball is modified to Cor 2 2 cos ,a v vZ Z OA   where v is the vertical 

speed of the ball.  The vertical speed is not constant as the ball falls, but is given by 0 .v v gt �   
Assuming the ball starts from rest, then Cor 2 cos .a gtZ O   That is not a constant acceleration, and so 
to find the deflection due to this acceleration, we must integrate twice. 
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  o  o  o
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  31
Cor 3 cosx gtZ O  

So to find the Coriolis deflection, we need the time of flight.  The vertical motion is just uniform 
acceleration, for an object dropped from rest.  Use that to find the time. 

� �2 01
0 0 2

2 2
    y

y y h
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 The ball is deflected by about 2 cm in falling 110 meters. 
 
63. The diagram is a view from above the wheel.  The ant is 

moving in a curved path, and so there is a fictitious outward 
radial force of 2 ˆ.m rZ i   The ant is moving away from the axis 
of rotation, and so there is a fictitious Coriolis force of  

ˆ2 .m vZ� j   The ant is moving with a constant speed, and so in 
the rotating reference frame the net force is 0.  Thus there 
must be forces that oppose these fictitious forces.  The ant is 
in contact with the spoke, and so there can be components of 
that contact force in each of the coordinate axes.  The force 
opposite to the local direction of motion is friction, and so is 

fr
ˆ.F� i   The spoke is also pushing in the opposite direction to 

the Coriolis force, and so we have spoke
ˆ.F j   Finally, in the vertical direction, there is gravity � �ˆmg� k  

and the usual normal force � �N
ˆ .F k   These forces are not shown on the diagram, since it is viewed 

from above. 

  � � � � � �2
rotating Fr spoke N
frame

ˆ ˆ ˆ2m r F F m v F mgZ Z � � � � �F i j k
G

 

 
64. (a) Because the hoop is rolling without slipping, the acceleration of the center of  

the center of mass is related to the angular acceleration by CM .a RD   From the 
free-body diagram, write Newton’s second law for the vertical direction and for 
rotation.  We call down and clockwise the positive directions.  Combine those 
equations to find the angular acceleration. 

� �

� � � �

vertical T CM T CM

2 CM
T CM

1 1
CM CM CM CM CM 2 2

2 1 1 1
2 2 2

    

        

    

F Mg F Ma F M g a

a
F R I MR MRa

R
g

M g a R MRa g a a a g
R

g dL
I MR MRg L MRgt

R dt

W D

D

W D

 �  o  �

    

�  o �  o  o  

    o  

¦

¦
 

(b) � � 1
T CM 2 ,F M g a Mg �   and is constant in time. 

 
65. (a) Use Eq. 11-6 to find the angular momentum. 

  � � � � � �2 2

ˆ ˆ ˆ
ˆ ˆ ˆ1.00 kg 0 2.0 4.0 kg m s 24 28 14 kg m s

7.0 6.0 0
m u  u   � � �

i j k
L r p r v i j k
G G G G G < <  

ˆm rZ� i
fr
ˆF� i

spoke
ˆF j

ˆ2m vZ� jZ

x

y

mgG

TF
G

R
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 (b) � �
ˆ ˆ ˆ

ˆ ˆ0 2.0 4.0 m N 16 8.0 m N
4.0 0 0

 u   �

i j k
Ĳ r F j k

GGG < <  

 
66. Angular momentum is conserved in the interaction between the child and the merry-go-round. 

� � � �
� � � � � �

� � � �

2
initial final 0 f f mgr 0 mgr child mgr child mgr

mgr child mgr

2
mgr 0

child 22
mgr

           

1260 kg m 0.45rad s
73kg

2.5m 1.25rad s

L L L L L I I I I m R

I
m

R

Z Z Z

Z Z
Z

 o  � o  �  � o

�
   

<  

 
67. (a) See the free-body diagram for the vehicle, tilted up on 2 wheels, on the  

verge of rolling over.   The center of the curve is to the left in the 
diagram, and so the center of mass is accelerating to the left.  The force 
of gravity acts through the center of mass, and so causes no torque about 
the center of mass, but the normal force and friction cause opposing 
torques about the center of mass.  The amount of tilt is exaggerated.  
Write Newton’s second laws for the horizontal and vertical directions 
and for torques, taking left, up, and counterclockwise as positive. 

� � � �

� �

vertical N N

2
C

horizontal fr

1 1
N fr N fr2 2

2
C1

C2

0    

0    

    
2

F F Mg F Mg

v
F F M

R
F w F h F w F h

v w
Mg w M h v Rg

R h

W

 �  o  

  

 �  o  

 o  § ·
¨ ¸
© ¹

¦

¦
¦  

 (b) From the above result, we see that 
� �

2 2
C C2

SSF
v h v

R
g w g

  . 

   
� �

� �

� �
� �

2
C

car car SUV
2
CSUV car

SUV

SSF SSF 1.05
0.750

SSF 1.40
SSF

v
gR

vR
g

     

 
68. The force applied by the spaceship puts a torque on the asteroid which changes  

its angular momentum.  We assume that the rocket ship’s direction is adjusted to 
always be tangential to the surface.  Thus the torque is always perpendicular to 
the angular momentum, and so will not change the magnitude of the angular 
momentum, but only its direction, similar to the action of a centripetal force on 
an object in circular motion.  From the diagram, we make an approximation. 

22
5

  

2
5

dL L L
dt t t
L I mr mr

t
Fr Fr F

TW

T Z T Z T Z T
W

' '
 | | o

' '
' ' ' '

'     
 

L
G

L
G

'L
G

T

mgG

NF
G

frF
G

w

h
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� � � �

� �

� �

10

5

4 rev 2 rad 1day 2 rad
2 2.25 10 kg 123m 10.0

1day 1rev 86400s 360
   

5 265 N

1hr
   2.12 10 s 58.9 hr

3600s

S S
u q

q
 

 u  

ª º§ ·§ ·§ · ª º§ ·
¨ ¸¨ ¸¨ ¸¨ ¸« » « »© ¹¬ ¼© ¹© ¹© ¹¬ ¼

 

Note that, in the diagram in the book, the original angular momentum is “up” and the torque is into 
the page.  Thus the planet’s axis would actually tilt backwards into the plane of the paper, not rotate 
clockwise as shown in the figure above. 

 
69. The velocity is the derivative of the position. 

  
� � � � � � � �

� � � �

ˆ ˆ ˆ ˆcos sin sin cos

ˆ ˆ  sin cos

d d
R t R t R t R t

dt dt

v t t

Z Z Z Z Z Z

Z Z

  �  � �

 � �

ª º¬ ¼

ª º¬ ¼

r
v i j i j

i j

G
G

 

From the right hand rule, a counterclockwise rotation in the x - y  plane produces an angular velocity 

in the ˆ�k -direction. Thus ˆ .v
R

 § ·
¨ ¸
© ¹

kG
Z   Now take the cross product .u rG GZ   

� � � �

� � � �
� � � �

ˆ ˆ ˆ

ˆ ˆˆ cos sin 0 0

cos sin 0

ˆ ˆ        sin cos

v v
R t R t

R R
R t R t

v t v t

Z Z

Z Z

Z Z

u  u �  

 � �  

ª º ª º¬ ¼« »¬ ¼

i j k

r k i j

i j v

G G

G

Z
 

 Thus we see that . uv rG GG Z  
 

70. Note that ,zz v t  and so .z
dz

v
dt

   To find the angular momentum, use Eq. 11-6, . uL r p
G G G    

2 2 2 2ˆ ˆ ˆ ˆˆ ˆcos sin cos sin

2 2 2 2ˆ ˆ ˆsin cos

z z
z

z z z z
z

z z v t v t
R R z R R v t

d d d d
d v v t v v t

R R v
dt d d d d

S S S S

S S S S

 � �  � �

  � � �

§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

r i j k i j k

r
v i j k

G

G
G

 

To simplify the notation, let 
2 .zv

d
SD {   Then the kinematical expressions are as follows. 

� � � � � � � �ˆ ˆ ˆ ˆˆ ˆcos sin  ; sin cosz zR t R t v t R t R vD D D D D D � �  � � �r i j k v i j kG G  

� � � �
� � � �

� � � �> @ � � � �> @
� � � �2 2 2 2

ˆ ˆ ˆ

cos sin
sin cos

ˆ ˆ  sin cos sin cos

ˆ      cos sin

z

z

z z z z

m m R t R t v t
R t R t v

m Rv t R v t t m R v t t Rv t

m R t R t

D D
D Z D D

D D D D D D

D D D D

 u  u  

�

 � � � �

� �ª º
¬ ¼

i j k
L r p r v

i j

k

G G G G G
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� � � �> @ � � � �> @

� � � �> @ � � � �> @

2ˆ ˆ ˆ  sin cos sin cos

ˆ ˆ ˆ  sin cos sin cos

2 2 2 2 2 2 2ˆ ˆ  sin cos sin cos

z z

z
z

z

mRv t t t mRv t t t mR

R
mRv t t t t t t

v

z z z z z z R
mRv

d d d d d d d

D D D D D D D

DD D D D D D

S S S S S S S

 � � � � �

 � � � � �

 � � � � �

 ½
® ¾
¯ ¿

 ½ª º ª º§ · § · § · § ·
® ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« » « »© ¹ © ¹ © ¹ © ¹¬ ¼ ¬ ¼¯

i j k

i j k

i j k
¿

 

 
71. (a) From the free-body diagram, we see that the normal force will produce a torque  

about the center of mass.  That torque, N uĲ r F
GGG , is clockwise in the diagram 

and so points into the paper, and will cause a change t'  'L Ĳ
G G  in the tire’s 

original angular momentum. 'L
G

 also points into the page, and so the angular 
momentum will change to have a component into the page.  That means that the 
tire will turn to the right in the diagram. 

 (b) The original momentum is the moment of inertia times the angular velocity.   
We assume the wheel is rolling without slipping. 

� �
� � � � � � � �

� � � �

N 0

2 22

2
0

sin sin   ;  

0.32 m 8.0 kg 9.80 m s sin12 0.20ssin
0.19

0.83kg m 2.1m s

L t rF t rmg t L I I v r

L r mg t
L Iv

T T Z

T

'  '  '  '   

q' '
   

ĲG

<

 

 
72. (a) See the diagram.  The parallel axis theorem is used to  

find the moment of inertia of the arms. 

   � �
� � � �

body arms

22 21 1 1
body body arm arm arm body arm2 12 2

21
2

2

   60 kg 0.12 m

   

aI I I

M R M M R

 �

 � � �

 

ª º
¬ ¼l l  

� � � � � � � �2 2 2 21
122 5.0 kg 0.60 m 5.0 kg 0.42 m 2.496 kg m 2.5kg m          � �  |ª º¬ ¼ < <  

 (b) Now the arms can be treated like particles, since all of the mass of the  
arms is the same distance from the axis of rotation. 

   � � � � � � � �

2 21
body arms body body arm body2

2 2 21
2

2

2

   60 kg 0.12 m 2 5.0 kg 0.12 m 0.576 kg m

0.58 kg m   

bI I I M R M R �  �

 �  

|

<

<

 

 (c) Angular momentum is conserved through the change in posture. 

   

� �

initial final

2

2

2 2
          

0.576 kg m
1.5s 0.3462s 0.35s

2.496 kg m

a a b b a b
a b

b
b a

a

L L I I I I
T T

I
T T

I

S SZ Z o  o  o

   |
<
<
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 (d) The change in kinetic energy is the final kinetic energy (arms horizontal) minus the initial  
kinetic energy (arms at sides). 

� � � �
2 2

2 2 2 21 1 1 1
2 2 2 2

2 2
2.496 kg m 0.576 kg m

1.5s 0.3462s

     73J

a b a a b bK K K I I
S SZ Z'  �  �  �

 �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

< <
 

 (e) Because of the decrease in kinetic energy, it is easier to lift the arms when rotating.  There is no  
corresponding change in kinetic energy if the person is at rest.  In the rotating system, the arms 
tend to move away from the center of rotation.  Another way to express this is that it takes work 
to bring the arms into the sides when rotating. 

 
73. (a) The angular momentum delivered to the waterwheel is that lost by the water. 

   � � � � � � � �

wheel water initial final 1 2
water water

2 2wheel 1 2
1 2

2 2

    

85kg s 3.0 m 3.2 m s 816 kg m s

820 kg m s         

L L L L mv R mv R

L mv R mv R mR
v v

t t t

'  �'  �  � o

' �
  �   

' ' '

|

<

<

  

 (b) The torque is the rate of change of angular momentum, from Eq. 11-9. 

   2 2wheel
on
wheel

816 kg m s 816m N 820 m N
L

t
W '

   |
'

< < <  

 (c) Power is given by Eq. 10-21, .P WZ  

   � � 2 rev
816m N 930 W

5.5s
P

SWZ   
§ ·
¨ ¸
© ¹

<  

 
74. Due to the behavior of the Moon, the period for the Moon’s rotation about its own axis is the same as 

the period for the Moon’s rotation about the Earth.  Thus the angular velocity is the same in both 
cases. 

� �
� �

262 22
spin spin spin 65 Moon Moon

22 2 6
orbit orbit orbit orbit orbit

2 1.74 10 m2
8.21 10

5 5 384 10 m

L I I MR R
L I I MR R

Z
Z

�
u

      u
u

§ ·
¨ ¸
© ¹

 

 
75. From problem 25, we have that tan . ua Į rG G G   For this object, rotating counterclockwise and gaining 

angular speed, the angular acceleration is ˆ .D Į kG  

  tan

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin 0
R R

R R
D D T D T

T T
 u   � �

i j k
a Į r i jG G G  

(a) We need the acceleration in order to calculate . uĲ r F
GGG   The force consists of two components, 

a radial (centripetal) component and a tangential component.  There is no torque associated with 
the radial component since the angle between rG  and centripF

G
is 180 .q   Thus tan u  uĲ r F r F

G GG GG  

tan tan.m m u u r a r aG G G G  
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� �2 2 2 2 2
tan

ˆ ˆ ˆ
ˆ ˆcos sin 0 cos sin

sin cos 0
m m R R m R R mR

R R
T T D T D T D

D T D T
 u   �  

�

i j k
Ĳ r a k kG GG  

 (b) The moment of inertia of the particle is 2.I mR  

   2 ˆI mR D  Ĳ Į kGG  
 
76. (a) The acceleration is needed since .m F a

G G  

� � � � � �21
0 0 0 02

ˆ ˆ ˆ ˆ ˆ  ;    ;  x y x y

d d
v t v t gt v v gt g

dt dt
 � �   � �   �

r v
r i j v i j a j

G G
G GG  (as expected) 

21
0 0 02

ˆ ˆ ˆ
ˆ0

0 0
x y xm m m v t v t gt gv t

g
 u  u  u  �  �

�

i j k
Ĳ r F r a r a k

GG G G G GG  

(b) Find the angular momentum from � � ,m u  uL r p r v
G G G G G  and then differentiate with respect to  

time. 

  

� � � � � �

� �

2 21 1
0 0 0 0 0 02 2

0 0

21
02

21
0 02

ˆ ˆ ˆ
ˆ0

0

ˆ  

ˆ ˆ

x y x y x y

x y

x

x x

m m v t v t gt v t v gt v v t gt
v v gt

v gt

d d
v gt v gt

dt dt

 u  u  �  � � �

�

 �

 �  �

ª º¬ ¼

i j k
L r p r v k

k

L
k k

G G G G G

G
 

 
77. We calculate spin angular momentum for the Sun, and orbital angular momentum for the planets, 

treating them as particles relative to the size of their orbits.  The angular velocities are calculated by 
2 .
T
SZ   

  

� � � � � �

� � � �

22 30 82 2
Sun Sun Sun Sun Sun5 5

Sun

22 25 9
Jupiter Jupiter Jupiter 7

orbit Jupiter

42

2 2 1 day
1.99 10 kg 6.96 10 m

25 days 86,400 s

      1.1217 10 kg m s

2 2 1 y
190 10 kg 778 10 m

11.9 y 3.156 10 s

       

L I M R
T

L M R
T

S SZ

S S

   u u

 u

  u u
u

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

<

43 1.9240 10 kg m s u <

 

 In a similar fashion, we calculate the other planetary orbital angular momenta. 

  2 42
Saturn Saturn Saturn

orbit Saturn

2
7.806 10 kg m sL M R

T
S

  u <  

  

2 42
Uranus Uranus Uranus

orbit Uranus

2 42
Neptune Neptune Neptune

orbit Neptune

2
1.695 10 kg m s

2
2.492 10 kg m s

L M R
T

L M R
T

S

S

  u

  u

<

<
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� �

� �
42

planets
42

planets Sun

19.240 7.806 1.695 2.492 10 kg m s
0.965

19.240 7.806 1.695 2.492 1.122 10 kg m s
L

f
L L

� � � u
   

� � � � � u
<

<
 

 
78. (a) In order not to fall over, the net torque on the cyclist about an axis  

through the CM and parallel to the ground must be zero.  Consider the 
free-body diagram shown.  Sum torques about the CM, with 
counterclockwise as positive, and set the sum equal to zero. 

   fr
N fr

N

0    tan
F x

F x F y
F y

W T �  o   ¦  

(b) The cyclist is not accelerating vertically, so N .F mg   The cyclist is  
accelerating horizontally, because he is traveling in a circle.  Thus the 
frictional force must be supplying the centripetal force, so 2

fr .F m v r  

   
� �

� �� �
22 2 2

1 1fr
2

N

9.2 m s
tan     tan tan 35.74 36

12 m 9.80 m s
F m v r v v
F mg rg rg

T T � �   o    q | q  

 (c) From 2
fr ,F m v r  the smallest turning radius results in the maximum force.  The maximum  

static frictional force is fr N .F FP   Use this to calculate the radius. 

   
� �

� � � �
22

2
min N min 2s s

s

9.2 m s
   13m

0.65 9.80 m s
v

m v r F mg r
g

P P
P

  o     

 
79. (a) During the jump (while airborne), the only force on the skater is gravity, which acts through the  

skater’s center of mass.  Accordingly, there is no torque about the center of mass, and so 
angular momentum is conserved during the jump. 

 (b) For a single axel, the skater must have 1.5 total revolutions.  The number of revolutions during  
each phase of the motion is the rotational frequency times the elapsed time.  Note that the rate 
of rotation is the same for both occurrences of the “open” position. 

   

� � � � � � � � � �
� � � �
� �

single

single

1.2 rev s 0.10s 0.50s 1.2 rev s 0.10s 1.5 rev  

1.5 rev 2 1.2 rev s 0.10s
2.52 rev s 2.5rev s

0.50s

f

f

� �  o

�
  |

 

The calculation is similar for the triple axel. 
� � � � � � � � � �

� � � �
� �

triple

triple

1.2 rev s 0.10s 0.50s 1.2 rev s 0.10s 3.5 rev  

3.5rev 2 1.2 rev s 0.10s
6.52 rev s 6.5 rev s

0.50s

f

f

� �  o

�
  |

 

 (c) Apply angular momentum conservation to relate the moments of inertia. 
single single single single single single
open closed open open closed closed

      L L I IZ Z o  o  

single single single
closed open open 1

2
single single single
open closed closed

1.2 rev s
0.476

2.52 rev s

I f

I f

Z

Z
    |  

  Thus the single axel moment of inertia must be reduced by a factor of about 2. 
  For the triple axel, the calculation is similar. 

mgG

NF
G

frF
G

T y
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triple single
closed open 1

5
triple single
open closed

1.2 rev s
0.184

6.52 rev s

I f

I f
   |  

  Thus the triple axel moment of inertia must be reduced by a factor of about 5. 
 
80. We assume that the tensions in the two unbroken cables immediately become zero, and so they have 

no effect on the motion. The forces on the tower are the forces at the base joint, and the weight.  The 
axis of rotation is through the point of attachment to the ground.  Since that axis is fixed in an inertial 

system, we may use Eq. 11-9 in one dimension, .dL
dt

W  ¦   See the free-body diagram in the text to 

express the torque. 

  � � � � 2
21 1 1 1 1

2 3 2 3 3 2
    sin     sin

d IdL d d d
mg m g

dt dt dt dt dt
Z Z Z TW T T o   o   ¦ l l l l  

 This equation could be considered, but it would yield T as a function of time.  Use the chain rule to 
eliminate the dependence on time. 

  � � � �

� � � � � � � �

31 1 1 1
2 3 3 3 2

23 3 1
2 2 2

0 0

2

sin     sin   

sin     1 cos     3 1 cos   

3 1 cos 3 9.80 m s 12 m 1 cos 19 1 cos

d d d d g
g d d

dt d dt d
g g g v

d d

v g

T Z

Z Z T ZT Z T T Z Z
T T

T T Z Z T Z Z T

T T T

   o  o

 o �  o  �  o

 �  �  �

³ ³

l l l
l

l l l l

l

 

Note that the same result can be obtained from conservation of energy, since the forces at the ground 
do no work. 

 
81. (a) We assume that no angular momentum is in the thrown-off mass, so the final angular  

momentum of the neutron star is equal to the angular momentum before collapse. 
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430 10 rev s 17,000 rev su |

 

 (b) Now we assume that the final angular momentum of the neutron star is only ¼ of the angular  
momentum before collapse.  Since the rotation speed is directly proportional to angular 
momentum, the final rotation speed will be ¼ of that found in part (a). 

   � �41
4 1.730 10 rev s 4300 rev sfZ  u   

 
82. The desired motion is pure rotation about the handle grip.  Since the grip is not to have any linear 

motion, an axis through the grip qualifies as an axis fixed in an inertial reference frame.  The pure 
rotation condition is expressed by � �CM bat CM grip ,a d dD �  where gripd  is the 0.050 m distance from 
the end of the bat to the grip.  Apply Newton’s second law for both the translational motion of the 
center of mass, and rotational motion about the handle grip. 
 CM grip CM grip ;        F F ma Fd I ma d IW D D    o  o¦ ¦   
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 � � � �
grip

CM grip grip
CM grip

    
I

m d d d I d
m d d

D D�  o  
�

 

So we must calculate the moment of inertia of the bat about an axis through the grip, the mass of the 
bat, and the location of the center of mass.  An infinitesimal element of mass is given by dm dxO , 
where O  is the linear mass density. 

 

� � � � � �

� �

� �

� �

0.84m 0.84m
2 22 2

grip grip
0 0

0.84m
4 3 2

0

0.845 4 3 2 21 1 1 1
5 4 3 2 0

2

0.050 0.61 3.3

 3.3 0.33 0.61825 0.061 0.001525

 3.3 0.33 0.61825 0.061 0.001525 0.33685kg m

0.61 3.3 kg m

I r dm x d dx x x dx

x x x x dx

x x x x x

m dm dx x

O

O

  �  � �

 � � � �

 � � � �  

   �ª

³ ³ ³

³

³ ³

<

� �

� � � �

0.84 m
0.843

0
0

0.842 41 10.84m
2 43 0

CM
0

0.61 1.1 1.1644 kg

0.61 3.31 1 1
0.61 3.3 kg m

1.1644 kg

     0.53757 m

dx x x

x x
x xdm x dx x x dx

m m m
O

 �  

�
   �  

 

º¬ ¼

ª º¬ ¼

³

³ ³ ³

 

 
� � � �

20.33685kg m
0.59333m 0.593m

1.1644 kg 0.53757 m 0.050 m
d   |

�
<

 

 So the distance from the end of the bat to the “sweet spot” is 0.050 m=0.643m 0.64 m .d � |  

 
83. (a) Angular momentum about the pivot is conserved during this collision.  Note that both objects  

have angular momentum after the collision. 

   
� � � � � �

before after bullet stick bullet bullet 0 stick bullet f
collision collision initial final final

bullet 0 f bullet 0 f bullet 0 f
2 21

12stick stick stick stick stick

          

12 12 0.00

L L L L L m v x I m v x

m v v x m v v x m v v x
I M M

Z

Z

 o  � o  � o

� � �
    

l l

� � � �
� � � �2

30 kg 110 m s
0.33kg 1.00 m

rad s
  12

m

x

x § ·
¨ ¸
© ¹

 

 
  (b) The spreadsheet used for  

this problem can be found 
on the Media Manager, 
with filename  
“PSE4_ISM_CH11.XLS,” 
on tab “Problem 11.83b.” 
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84. (a) Angular momentum about the center of mass of the system is conserved.   

First we find the center of mass, relative to the center of mass of the rod, 
taking up as the positive direction.  See the diagram. 

 � �
� �CM

0mx M mx
x

m M m M
�

  
� �

 

The distance of the stuck clay ball from the system’s center of mass is 
found. 

clay CM
from CM

mx Mx
x x x x

m M m M
 �  �  

� �
 

Calculate the moment of inertia of the rod about the center of mass of the entire system.  Use 
the parallel axis theorem.  Treat the clay as a point mass. 

2
21

rod 12I M M
mx

m M
 � § ·

¨ ¸�© ¹
l  

  Now express the conservation of angular momentum about the system’s center of mass. 
� �

� �

initial final clay rod clay final

clay clay
final 2

rod clay 2 21
12 clay

2 2
2 2121

1212

      

     
1

L L mvx I I

mvx mvx
I I mx

M M mx
m M

Mx
mv vxm M

Mmx Mx xM M m mm M m M

Z

Z

 o  � o

  
�

� �
�

�  
� �� �

� �

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

§ · § ·§ · § · ¨ ¸¨ ¸ ¨ ¸¨ ¸ © ¹© ¹ © ¹© ¹

l

ll

 

 (b) Graph this function with  
the given values, from x = 
9 to x = 0.60 m. 

  

final
2 21

12

2

1

12
rad s

3.72
     

vx
M

x
m

x
x

Z  
� �

 
�

§ ·
¨ ¸
© ¹

l
 

 
The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename “PSE4_ISM_CH11.XLS,” on tab “Problem 11.84b.” 

 
(c) Linear momentum of the center of mass is conserved in the totally inelastic collision. 

  � �initial final CM CM
final final

        
mv

p p mv m M v v
m M

 o  � o  
�

  

We see that the translational motion (the velocity of the center of mass) is NOT dependent on x.   
 

rodCM

x

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6
x  (m)

Z 
(r
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CHAPTER 12:  Static Equilibrium; Elasticity and Fracture 
 
Responses to Questions 
 
1.  Equilibrium requires both the net force and net torque on an object to be zero. One example is a 

meter stick with equal and opposite forces acting at opposite ends. The net force is zero but the net 
torque is not zero, because the forces are not co-linear. The meter stick will rotate about its center. 

 
2. No. An object in equilibrium has zero acceleration. At the bottom of the dive, the bungee jumper 

momentarily has zero velocity, but not zero acceleration. There is a net upward force on the bungee 
jumper so he is not in equilibrium.  

    
3.  The meter stick is originally supported by both fingers. As you start to slide your fingers together, 

more of the weight of the meter stick is supported by the finger that is closest to the center of 
gravity, so that the torques produced by the fingers are equal and the stick is in equilibrium. The 
other finger feels a smaller normal force, and therefore a smaller frictional force, and so slides more 
easily and moves closer to the center of gravity. The roles switch back and forth between the fingers 
as they alternately move closer to the center of gravity. The fingers will eventually meet at the center 
of gravity. 

 
4.  The sliding weights on the movable scale arm are positioned much farther from the pivot point than 

is the force exerted by your weight. In this way, they can create a torque to balance the torque caused 
by your weight, even though they weigh less. When the torques are equal in magnitude and opposite 
in direction, the arm will be in rotational equilibrium.  

 
5. (a) The wall remains upright if the counterclockwise and clockwise torques about the lower left  

corner of the wall are equal. The counterclockwise torque is produced by .F
G

 The clockwise 
torque is the sum of the torques produced by the normal force from the ground on the left side 
of the wall and the weight of the wall. F

G
and its lever arm are larger than the force and lever 

arm for the torque from the ground on the left. The lever arm for the torque generated by the 
weight is small, so the torque will be small, even if the wall is very heavy. Case (a) is likely to 
be an unstable situation. 

(b) In this case, the clockwise torque produced by the weight of the ground above the horizontal  
section of the wall and clockwise torque produced by the larger weight of the wall and its lever 
arm balance the counterclockwise torque produced by .F

G
 

 
6.  Yes. For example, consider a meter stick lying along the x-axis. If you exert equal forces downward 

(in the negative y-direction) on the two ends of the stick, the torques about the center of the stick will 
be equal and opposite, so the net torque will be zero. However, the net force will not be zero; it will 
be in the negative y-direction. Also, any force through the pivot point will supply zero torque. 

 
7.  The ladder is more likely to slip when a person stands near the top of the ladder. The torque 

produced by the weight of the person about the bottom of the ladder increases as the person climbs 
the ladder, because the lever arm increases. 

 
8. The mass of the meter stick is equal to the mass of the rock. Since the meter stick is uniform, its 

center of mass is at the 50-cm mark, and in terms of rotational motion about a pivot at the 25-cm 
mark, it can be treated as though its entire mass is concentrated at the center of mass. The meter 
stick’s mass at the 50-cm mark (25 cm from the pivot) balances the rock at the 0-cm mark (also 25 
cm from the pivot) so the masses must be equal.  
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9. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, 
your center of mass is in front of your feet, you will fall forward. 

 
10.  (a) The cone will be in stable equilibrium if it is placed flat on its base. If it is tilted slightly from this 

position and then released, it will return to the original position. (b) The cone will be in unstable 
equilibrium if it is balanced on its tip. A slight displacement in this case will cause the cone to topple 
over. (c) If the cone is placed on its side (as shown in Figure 12-42) it will be in neutral equilibrium. 
If the cone is displaced slightly while on its side, it will remain in its new position. 

 
11.  When you stand next to a door in the position described, your center of mass is over your heels.  If 

you try to stand on your toes, your center of mass will not be over your area of support, and you will 
fall over backward. 

 
12. Once you leave the chair, you are supported only by your feet. In order to keep from falling 

backward, your center of mass must be over your area of support, so you must lean forward so that 
your center of mass is over your feet.  

   
13. When you do a sit-up, you generate a torque with your abdominal muscles to rotate the upper part of 

your body off the floor while keeping the lower part of your body on the floor. The weight of your 
legs helps produce the torque about your hips. When your legs are stretched out, they have a longer 
lever arm, and so produce a larger torque, than when they are bent at the knee. When your knees are 
bent, your abdominal muscles must work harder to do the sit-up. 

 
14.  Configuration (b) is likely to be more stable. Because of the symmetry of the bricks, the center of 

mass of the entire system (the two bricks) is the midpoint between the individual centers of mass 
shown on the diagram. In figure (a), the center of mass of the entire system is not supported by the 
table.    

 
15. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral 

equilibrium. 
 
16. The Young’s modulus for the bungee cord will be smaller than that for an ordinary rope. The 

Young’s modulus for a material is the ratio of stress to strain. For a given stress (force per unit area), 
the bungee cord will have a greater strain (change in length divided by original length) than the rope, 
and therefore a smaller Young’s modulus.   

 
17. An object under shear stress has equal and opposite forces applied across its opposite faces. This is 

exactly what happens with a pair of scissors. One blade of the scissors pushes down on the 
cardboard, while the other blade pushes up with an equal and opposite force, at a slight 
displacement. This produces a shear stress in the cardboard, which causes it to fail. 

 
18.  Concrete or stone should definitely not be used for the support on the left. The left-hand support 

pulls downward on the beam, so the beam must pull upward on the support. Therefore, the support 
will be under tension and should not be made of ordinary concrete or stone, since these materials are 
weak under tension. The right-hand support pushes up on the beam and so the beam pushes down on 
it; it will therefore be under a compression force.  Making this support of concrete or stone would be 
acceptable.   
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Solutions to Problems 
 
1. If the tree is not accelerating, then the net force in all directions is 0. 

� �

� �

A B C

C A B

B C

C B

cos105 0  

cos105 385 N 475 N cos105 262.1N

sin105 0  

sin105 475 N sin105 458.8 N

x x

x

y y

y

F F F F

F F F

F F F

F F

 � q �  o

 � � q  � � q  �

 q �  o

 � q  � q  �

¦

¦

 

� � � �2 22 2
C C C

C1 1

C

262.1 N 458.8 N 528.4 N 528 N

458.8 N
tan tan 60.3  , 180 60.3 120

262.1 N

x y

y

x

F F F

F

F
T I� �

 �  � � �  |

�
   q  q � q  q

�

  

  And so CF
G

 is 528 N, at an angle of 120q  clockwise from A.F
G

 The angle has 3 sig. fig. 
 
2. Calculate the torques about the elbow joint (the dot in the free body 

diagram).  The arm is in equilibrium.  Counterclockwise torques are 
positive. 

M 0F d mgD MgLW  � �  ¦  

� � � � � � � � � �

M

22.3kg 0.12 m 7.3kg 0.300 m
     9.80 m s 970 N

0.025m

mD ML
F g

d
�

 

�
  

 
3. Because the mass m is stationary, the tension in the rope  

pulling up on the sling must be mg, and so the force of the 
sling on the leg must be mg, upward.  Calculate torques about 
the hip joint, with counterclockwise torque taken as positive.  
See the free-body diagram for the leg.  Note that the forces on 
the leg exerted by the hip joint are not drawn, because they do 
not exert a torque about the hip joint. 

 � � � �
� �

1
2 1

2

35.0cm
0    15.0 kg 6.73kg

78.0cm
x

mgx Mgx m M
x

W  �  o    ¦  

 
4. (a) See the free-body diagram.  Calculate torques about the pivot  

point P labeled in the diagram.  The upward force at the pivot 
will not have any torque.  The total torque is zero since the 
crane is in equilibrium. 

   � � � �
� �

0  

2800 kg 7.7 m
2.3m

9500 kg

Mgx mgd

md
x

M

W  �  o

   

¦
 

 
 
 

BF
G

CF
G

AF
G

T I

105q

d�

mgG MgG
MF
G

  L
D

x1 

x2 mgG

M gG

PF
G

mgG

x

MgG

d

P
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(b) Again we sum torques about the pivot point.  Mass m is the unknown in this case, and the  
counterweight is at its maximum distance from the pivot. 

   
� � � �

� �
max

max max max

9500 kg 3.4 m
0    4200 kg

7.7 kg
Mx

Mgx m gd m
d

W  �  o    ¦  

 
5. (a) Let m = 0.  Calculate the net torque about the left end of the  

diving board, with counterclockwise torques positive.  Since the 
board is in equilibrium, the net torque is zero. 

  

 
� � � �

� � � �
B

2 3
B

1.0 m 4.0 m 0  

4 4 52 kg 9.80 m s 2038 N 2.0 10 N, up

F Mg

F Mg

W  �  o

   | u

¦
   

  Use Newton’s second law in the vertical direction to find A.F  

   
� � � �

B A

2
A B

0  

4 3 3 52 kg 9.80 m s 1529 N 1500 N, down

yF F Mg F

F F Mg Mg Mg Mg

 � �  o

 �  �    |

¦
 

 (b) Repeat the basic process, but with m = 28 kg.  The weight of the board will add more clockwise  
torque. 

   

� � � � � �
� � � �> @� �

� �> @� �

B

2
B

B A

A B

2

1.0 m 2.0 m 4.0 m 0  

4 2 4 52 kg 2 28 kg 9.80 m s 2587 N 2600 N, up

  

4 2 3

    3 52 kg 28kg 9.80 m s 1803N 1800 N, down

y

F mg Mg

F Mg mg

F F Mg mg F

F F Mg mg Mg mg Mg mg Mg mg

W  � �  o

 �  �  |

 � � � o

 � �  � � �  �

 �  |

¦

¦  

 
6. Write Newton’s second law for the junction, in both the x and y directions. 
  o

B A cos 45 0xF F F �  ¦  

 From this, we see that A BF F! .  Thus set A 1660 NF  . 

  o
A sin 45 0yF F mg �  ¦  

� �o o
A sin 45 1660 N sin 45 1174 N 1200 Nmg F   |  

 
7. Since the backpack is midway between the two trees, the angles in the 

diagram are equal.  Write Newton’s second law for the vertical direction 
for the point at which the backpack is attached to the cord, with the weight 
of the backpack being the downward vertical force.  The angle is 
determined by the distance between the trees and the amount of sag at the 
midpoint, as illustrated in the second diagram. 

 (a) 1 1 1.5 m
tan tan 24.4

2 3.3 m
y

L
T � �   q  

� � � �
T 1

2

T
1

2 sin 0  

19 kg 9.80m s
225.4 N 230 N

2sin 2sin 24.4

yF F mg

mg
F

T

T

 �  o

   |
q

¦
 

��R�

mgG

AF
G

BF
G

mgG
TF
G

TF
G

TT

TT
L

y

AF
G

BF
G

mgG MgG1.0 m

2.0 m
4.0 m
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 (b) 1 1 0.15 m
tan tan 2.60

2 3.3 m
y

L
T � �   q  

  
� � � �2

T
1

19 kg 9.80m s
2052 N 2100 N

2sin 2sin 2.60
mg

F
T

   |
q

 

 
8. Let m be the mass of the beam, and M be the mass of the 

piano.  Calculate torques about the left end of the beam, with 
counterclockwise torques positive.  The conditions of 
equilibrium for the beam are used to find the forces that the 
support exerts on the beam. 

  � � � �1 1
2 4 0RF L mg L Mg LW  � �  ¦  

� � � � � �> @� �

� � � � � �

2 31 1 1 1
2 4 2 4

2 3 3

110 kg 320 kg 9.80m s 1.32 10 N

0

430 kg 9.80 m s 1.32 10 N 2.89 10 N

R

y L R

L R

F m M g

F F F mg Mg

F m M g F

 �  �  u

 � � �  

 � �  � u  u

¦  

 The forces on the supports are equal in magnitude and opposite in direction to the above two results. 
  R 1300 N downF    L 2900 N downF   

 
9. Calculate torques about the left end of the beam, with counter-

clockwise torques positive.  The conditions of equilibrium for the 
beam are used to find the forces that the support exerts on the beam. 

  
� � � �

� � � � � �
B

2 4
B

20.0 m 25.0 m 0  

25.0
1.25 1200 kg 9.80 m s 1.5 10 N

20.0

F mg

F mg

W  �  o

   u

¦
 

� � � � � �
A B

2
A B

0

1.25 0.25 0.25 1200 kg 9.80 m s 2900 N

yF F F mg

F mg F mg mg mg

 � �  

 �  �  �  �  �

¦
 

 Notice that AF
G

 points down. 
 
10. The pivot should be placed so that the net torque on the board is 

zero.  We calculate torques about the pivot point, with 
counterclockwise torques positive.  The upward force PF

G
 at the 

pivot point is shown, but it exerts no torque about the pivot 
point.  The mass of the child is m, the mass of the adult is M, 
the mass of the board is B,m  and the center of gravity is at the 
middle of the board. 

 (a) Ignore the force Bm g . 

   
� �
� �

� � � �

0  

25 kg
9.0 m 2.25m 2.3 m from adult

25 kg 75 kg

Mgx mg L x

m
x L

m M

W  � �  o

   |
� �

¦
 

 
 
  (b) Include the force B .m g  

L/4 
L 

mgGM gGLF
G

RF
G

AF
G

BF
G

mgG
20.0 m

25.0 m

L/2 – x 

mgG
Bm gGMgG

PF
G

 x L x�
L
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   � � � �B 2 0Mgx mg L x m g L xW  � � � �  ¦  

� �
� �

� �
� � � �B

B

2 25kg 7.5 kg
9.0 m 2.54 m 2.5 m from adult

75kg 25 kg 15kg
m m

x L
M m m

� �
   |

� � � �
 

 
11. Using the free-body diagram, write Newton’s second law for both the 

horizontal and vertical directions, with net forces of zero.   

  
T2 T1 T2 T1

T1 T1

cos 0    cos

sin 0    
sin

x

y

F F F F F

mg
F F mg F

T T

T
T

 �  o  

 �  o  

¦

¦
 

� � � �

� � � �

2

T2 T1

2

T1

190kg 9.80 m s
cos cos 2867N 2900 N

sin tan tan 33
190 kg 9.80 m s

3418 N 3400 N
sin sin 33

mg mg
F F

mg
F

T T
T T

T

     |
q

   |
q

 

 
12. Draw a free-body diagram of the junction of the three wires. 

The tensions can be found from the conditions for force  
equilibrium. 

  T1 T2 T2 T1

T1 T2

cos37
cos37 cos53 0    

cos53
sin 37 sin53 0

x

y

F F F F F

F F F mg

q
 q � q  o  

q
 q � q �  

¦
¦

 

T1 T1

cos37
sin 37 sin 53 0  

cos53
F F mg

q
q � q �  o

q
 

� � � �2

T1

33 kg 9.80 m s
194.6 N 190 N

cos37
sin 37 sin 53

cos53

F   |
q

q � q
q

 

� �2
T2 T1

cos37 cos37
1.946 10 N 258.3N 260 N

cos53 cos53
F F

q q
  u  |

q q
 

 
13. The table is symmetric, so the person can sit near either edge and 

the same distance will result.  We assume that the person (mass 
M) is on the right side of the table, and that the table (mass m) is  
on the verge of tipping, so that the left leg is on the verge of 
lifting off the floor.  There will then be no normal force between 
the left leg of the table and the floor.   Calculate torques about the 
right leg of the table, so that the normal force between the table 
and the floor causes no torque.  Counterclockwise torques are 
taken to be positive.  The conditions of equilibrium for the table are used to find the person’s 
location. 

  � � � � � � 24.0 kg
0.60 m 0    0.60 m 0.60 m 0.218m

66.0 kg
m

mg Mgx x
M

W  �  o    ¦  

 Thus the distance from the edge of the table is 0.50 m 0.218 m 0.28 m .�   

mgG
T2F
GT

T1F
G

T1F
G

T2F
G

mgG

o37o53

mgG M gG

x0.60 m

NF
G
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14. The cork screw will pull upward on the cork with a force of magnitude cork ,F  and so there is a 
downward force on the opener of magnitude cork.F  We assume that there is no net torque on the 
opener, so that it does not have an angular acceleration.  Calculate torques about the rim of the bottle 
where the opener is resting on the rim. 

� � � �

� � � �

cork

cork

79 mm 9 mm 0  

9 9 9
200 N  to 400 N 22.8 N to 45.6 N 20 N to50 N

70 79 79

F F

F F

W  �  o

   |

¦
 

 
15. The beam is in equilibrium, and so both the net torque and 

net force on it must be zero.  From the free-body diagram, 
calculate the net torque about the center of the left support, 
with counterclockwise torques as positive.  Calculate the 
net force, with upward as positive.  Use those two 
equations to find AF  and B.F  

� � � � � �
� � � �

� �

B 1 2 3 4 1 1 2 1 2 3 1 2 3 5

1 1 2 1 2 3 1 2 3 5
B

1 2 3 4

F x x x x F x F x x F x x x mgx

F x F x x F x x x mgx
F

x x x x

W  � � � � � � � � � �

� � � � � �
 

� � �

¦
 

� � � � � � � � � � � � � � � � � �24300 N 2.0 m 3100 N 6.0 m 2200 N 9.0 m 280 kg 9.80 m s 5.0 m
    

10.0 m

� � �
  

    6072 N 6100 N |  

� � � �
A B 1 2 3

2
A 1 2 3 B

0

9600 N 280 kg 9.80 m s 6072 N 6272 N 6300 N

F F F F F F mg

F F F F mg F

 � � � � �  

 � � � �  � �  |

¦
 

 
16. (a) Calculate the torques about the elbow joint (the dot in the free-  

body diagram).  The arm is in equilibrium.  Take counterclockwise 
torques as positive. 

   

� �
� � � � � �

� �

M

2

M o

sin 0  

3.3 kg 9.80 m s 0.24 m
249.9 N

sin 0.12 m sin15

    250 N

F d mgD

mgD
F

d

W T

T

 �  o

   

|

¦

 

(b) To find the components of J ,F  write Newton’s second law for both the x and y directions.  Then  
combine them to find the magnitude. 

   

� �

� � � � � �
� � � �

J M J M

M J

2
J M

2 22 2
J J J

cos 0    cos 249.9 N cos15 241.4 N

sin 0  

     sin 249.9 N sin15 3.3kg 9.80 m s 32.3N

F 241.4 N 32.3N 243.6 N 240 N

x x x

y y

y

x y

F F F F F

F F mg F

F F mg

F F

T T

T

T

 �  o    

 � �  o

 �  q �  

 �  �  |

q¦
¦

 

 
 

x1 x2 x3 x4

mgG

AF
G

BF
G

1F
G

2F
G

3F
G

5  x

mgG

MF
G

JF
G

T

D
d
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17. Calculate the torques about the shoulder joint, which is at the left 
end of the free-body diagram of the arm.  Since the arm is in 
equilibrium, the sum of the torques will be zero.  Take 
counterclockwise torques to be positive.  The force due to the 
shoulder joint is drawn, but it does not exert any torque about the 
shoulder joint. 

  sin 0mF d mgD MgLW T � �  ¦  

� � � � � � � �
� � � �23.3kg 0.24cm 8.5kg 0.52 m

9.80m s 1600 N
sin 0.12 m sin15m

mD ML
F g

d T
��

   
q

 

 
18. From the free-body diagram, the conditions of equilibrium 

are used to find the location of the girl (mass Cm ).  The 45-
kg boy is represented by A,m  and the 35-kg girl by B.m   
Calculate torques about the center of the see-saw, and take 
counterclockwise torques to be positive.  The upward force 
of the fulcrum on the see-saw � �F

G
 causes no torque about the center. 

  
� � � �

� � � � � � � �

1 1
A C B2 2

A B 1 1
2 2

C

0

45kg 35kg
3.2 m 0.64 m

25kg

m g L m gx m g L

m m
x L

m

W  � �  

� �
   

¦
 

 
19. There will be a normal force upwards at the ball of the foot, equal 

to the person’s weight � �N .F mg   Calculate torques about a 
point on the floor directly below the leg bone (and so in line with 
the leg bone force, BF

G
).  Since the foot is in equilibrium, the sum 

of the torques will be zero.  Take counterclockwise torques as 
positive. 

  
� �

� � � �
N A

2
A N

2 0  

2 2 2 72 kg 9.80 m s 1400 N

F d F d

F F mg

W  �  o

    

¦
 

 The net force in the y direction must be zero.  Use that to find B.F   

  N A B B N A0    2 3 2100 NyF F F F F F F mg mg mg � �  o  �  �   ¦  

 
20. The beam is in equilibrium.   Use the conditions of equilibrium to 

calculate the tension in the wire and the forces at the hinge.  Calculate 
torques about the hinge, and take counterclockwise torques to be positive. 

  

� �
� � � � � � � �

� � � �

T 2 1 1 2 1

11
22 1 1 2 1

T
2

sin 2 0  

155 N 1.70 m 215 N 1.70 m
sin 1.35m sin 35.0

    642.2 N 642 N

F l m g l m gl

m gl m gl
F

l

W T

T

 � �  o

��
  

q

 |

¦
 

  � �H T H Tcos 0    cos 642.2 N cos35.0 526.1N 526 Nx x xF F F F FT T �  o    |q¦  

Cm gGAm gG
Bm gGF

G

  L

  x

mgG M gG

MF
G

JF
G

T

d
D

L

NF
G

d 2D d 

AF
G

BF
G

1m gG

TF
G

T
HF
G

1 2l

2  l

1  l

2m gG
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� �

H T 1 2

H 1 2 T

sin 0  

sin 155N 215N 642.2 N sin 35.0 1.649 N 2 N

y y

y

F F F m g m g

F m g m g F

T

T

 � � �  o

 � �  � � q  |

¦
 

 
21. (a) The pole is in equilibrium, and so the net torque on it must  

be zero.  From the free-body diagram, calculate the net 
torque about the lower end of the pole, with 
counterclockwise torques as positive.  Use that calculation to 
find the tension in the cable.  The length of the pole is l. 

   
� �

� �
T

T

2 cos cos 0

2 cos

F h mg Mg

m M g
F

h

W T T

T

 � �  

�
 

¦ l l

l  

� � � � � �26.0 kg 21.5kg 9.80 m s 7.20 m cos37
    407.8 N 410 N

3.80 m

� q
  |  

 (b) The net force on the pole is also zero since it is in equilibrium.  Write Newton’s second law in  
both the x and y directions to solve for the forces at the pivot. 

   P T P T0    410 Nx x xF F F F F �  o   ¦  

   � � � � � �2
P P0    33.5 kg 9.80m s 328 Ny y yF F mg Mg F m M g � �  o  �   ¦  

 
22. The center of gravity of each beam is at its geometric center.  

Calculate torques about the left end of the beam, and take 
counterclockwise torques to be positive.  The conditions of 
equilibrium for the beam are used to find the forces that the 
support exerts on the beam. 

� � � �
� � � �

1
B 2

25 5
B 8 8

2 4 0  

940 kg 9.80 m s 5758 N 5800 N

F Mg Mg

F Mg

W  � �  o

   |

¦ l l l

� � � �
1

A B 2

23 7 7
A B2 8 8

0  

940 kg 9.80 m s 8061N 8100 N

yF F F Mg Mg

F Mg F Mg

 � � �  o

 �    |

¦
 

 
23. First consider the triangle made by the pole and one of the wires (first 

diagram).  It has a vertical leg of 2.6 m, and a horizontal leg of 2.0 m.  The 
angle that the tension (along the wire) makes with the vertical is 

1 o2.0
tan 37.6

2.6
T �  .  The part of the tension that is parallel to the ground is 

therefore T h T sin .F F T  
 

Now consider a top view of the pole, showing only force parallel to the ground 
(second diagram).  The horizontal parts of the tension lie as the sides of an 
equilateral triangle, and so each make a 30o angle with the tension force of the net.  
Write the equilibrium equation for the forces along the direction of the tension in 
the net. 

 
� �

net T h

net T

2 cos30 0  

2 sin cos30 2 115 N sin 37.6 cos30 121.5 N 120 N

F F F

F F T

 � q  o

 q  q q  |

¦
 

T�

T�

x 

y mgG

M gGTF
G

P xF
G

P yF
G

h

cosTl

AF
G

BF
G1

2 M gG

MgG4l

l

2l

2.6 m

2.0 m

T

o30 o30

netF
G

T hF
G

T hF
G
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mgG

W
G

hinge
horiz

F
G

ropeF
G

hinge
vert

F
G

I

T
x

l

x
y

� �T I�

24. See the free-body diagram.  We assume that the board is at the edge of 
the door opposite the hinges, and that you are pushing at that same edge 
of the door.  Then the width of the door does not enter into the problem.  
Force pushF

G
 is the force of the door on the board, and is the same as the 

force the person exerts on the door.  Take torques about the point A in 
the free-body diagram, where the board rests on the ground.  The board 
is of length l. 

  
� �

� � � �
1

push 2

2

push
2

sin cos 0  

62.0 kg 9.80 m s
303.8 N 3.0 10 N

2 tan 2 tan 45

F mg

mg
F

W T T

T

 �  o

   | u
q

¦ l l

 

 
25. Because the board is firmly set against the ground, the top of the board 

would move upwards as the door opened.  Thus the frictional force on 
the board at the door must be down.  We also assume that the static 
frictional force is a maximum, and so is given by fr N push.F F FP P    
Take torques about the point A in the free-body diagram, where the 
board rests on the ground.  The board is of length l. 

  
� �

� �

1
push fr2

1
push push2

sin cos cos 0  

sin cos cos 0  

F mg F

F mg F

W T T T

T T P T

 � �  o

� �  o
¦ l l l

l l l
 

� � � �
� � � �

� �

2

push

62.0 kg 9.80 m s
552.4 N 550 N

2 tan 2 tan 2 tan 45 0.45
mg mg

F
T P T P

    |
� � q �

 

 
26. Draw the free-body diagram for the sheet, and write 

Newton’s second law for the vertical direction.  Note 
that the tension is the same in both parts of the 
clothesline. 

� �
� � � �

� �
� �

T T

2

T

sin 3.5 sin 3.5 0  

0.75kg 9.80 m s

2 sin 3.5 2 sin 3.5

60 N  2 sig. fig.    

yF F F mg

mg
F

 q � q �  o

  
q q

 

¦

 

 The 60-N tension is much higher than the ~ 7.5-N weight of the sheet because of the small angle.  
Only the vertical components of the tension are supporting the sheet, and since the angle is small, the 
tension has to be large to have a large enough vertical component to hold up the sheet. 

 
27. (a) Choose the coordinates as shown in the free-body diagram. 

(b) Write the equilibrium conditions for the horizontal and vertical forces. 

� �

rope hinge
horiz

hinge rope
horiz

sin 0  

sin 85N sin 37 51N

xF F F

F F

I

I

 �  o

  q  

¦
 

mgG

pushF
G

T

G yF
G

G xF
G

A

mgG

pushF
G

T

G yF
G

G xF
G

A

frF
G

TF
G

TF
G

mgG

o3.5o3.5
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� � � � � �

rope hinge
vert

2
hinge rope
vert

cos 0  

cos 3.8kg 9.80 m s 22 N 85 N cos37

       8.6 N 9 N

yF F F mg W

F mg W F

I

I

 � � �  o

 � �  � � q

 � | �

¦

 

  And so the vertical hinge force actually points downward. 
 (c) We take torques about the hinge point, with clockwise torques as positive. 

   

� � � �
� � � �

� � � � � � � � � �
� �

1
rope2

1
2rope

2

sin sin sin 0    

sin sin
sin

85N 5.0 m sin16 3.8kg 9.80 m s 2.5m sin 53
2.436 m 2.4 m

22 N sin 53
  

Wx mg F

F mg
x

W

W T T T I

T I T
T

 � � �  o

� �
 

q � q
  |

q

¦ l l

l l
 

 
28. (a) Consider the free-body diagram for each side of the ladder.   

Because the two sides are not identical, we must have both 
horizontal and vertical components to the hinge force of one 
side of the ladder on the other.   

First determine the angle from 
1
2cos

2
.d dT   

l l
 

 
1

1 12 0.9 m
cos cos 68.9

2.5m
dT � �   q
l

 

Write equilibrium equations for the following conditions: 
Vertical forces on total ladder:   

vert N hinge hinge N
left vert vert right

N N
left right

0  F F mg F F F

F F mg

 � � � �  o

�  

¦
 

  Torques on left side, about top, clockwise positive.  
   � � � � � �1

N T 2
left

cos 0.2 cos sin 0F mg FW T T T � �  ¦ l l l  

  Torques on right side, about top, clockwise positive. 
   � � � �1

N T 2
right

cos sin 0F FW T T � �  ¦ l l  

  Subtract the second torque equation from the first. 

   � � � � � �1
N N T 2
left right

cos 0.2 cos 2 sin 0F F mg FT T T� � �  § ·
¨ ¸
© ¹

l l l  

Substitute in from the vertical forces equation, and solve for the tension. 

   
� � � � � �

� � � � � �
1

T 2

2

T

cos 0.2 cos 2 sin 0  

0.8 56.0 kg 9.80 m s0.8
0.8cos 169.4 N 170 N

sin tan tan 68.9

mg mg F

mg mg
F

T T T

T
T T

� �  o

    |
q

l l l

 

  
 
 
 

mgG

T

N
left

F
G

cosTl

hinge
horiz

F
G

hinge
vert

F
G

TF
G0.8l

l

T N
right

F
G

1
2 d

hinge
horiz

F
G

hinge
vert

F
G

TF
G

hingeI
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(b) To find the normal force on the right side, use the torque equation for the right side. 

   

� � � �

� �

1
N T 2
right

1 1
N T2 2
right

cos sin 0  

tan 169.4 N tan 68.9 219.5 N 220 N

F F

F F

T T

T

� �  o

  q  |

l l

 

  To find the normal force on the left side, use the vertical force equation for the entire ladder. 

   
� � � �

N N
left right

2
N N
left right

  

56.0 kg 9.80 m s 219.5N 329.3N 330 N

F F mg

F mg F

�  o

 �  �  |
 

 (c) We find the hinge force components from the free-body diagram for the right side. 

� � � �

vert N hinge hinge N
right vert vert right

horiz hinge T hinge T
horiz horiz

2 22 2
hinge hinge hinge

horiz vert

hinge
vert1

hinge
hinge
horiz

0    219.5N

0    169.4 N

169.4 N 219.5N 277.3N 280 N

tan

F F F F F

F F F F F

F F F

F

F
I �

 �  o   

 �  o   

 �  �  |

  

¦

¦

1 219.5N
tan 52

169.4 N
�  q

 

 
29. The forces on the door are due to gravity and the hinges.  Since the door  

is in equilibrium, the net torque and net force must be zero.  Write the 
three equations of equilibrium.  Calculate torques about the bottom 
hinge, with counterclockwise torques as positive.  From the statement of 
the problem, 1

A B 2 .y yF F mg   

  

� �

� �
� �� �� �

� �

2

2 0
2

13.0 kg 9.80 m s 1.30 m
55.2 N

2 2 2 2.30 m 0.80 m

0    55.2 N

Ax

Ax

x Ax Bx Bx Ax

w
mg F h d

mgw
F

h d

F F F F F

W  � �  

   
� �

 �  o   

¦

¦

 

� � � �21 1
2 20    13.0 kg 9.80m s 63.7 Ny Ay By Ay ByF F F mg F F mg � �  o     ¦  

 
30. See the free–body diagram for the crate on the verge of  

tipping.  From the textbook Figure 12-12 and the associated 
discussion, if a vertical line projected downward from the center of 
gravity falls outside the base of support, then the object will topple.  
So the limiting case is for the vertical line to intersect the edge of 
the base of support.  Any more tilting and the gravity force would 
cause the block to tip over, with the axis of rotation through the 
lower corner of the crate. 

  � �11.00 1.00
tan     tan 40  2 sig fig

1.18 1.18
T T � o   q  

 

d 

h 

w 

 d 

x 
y 

mgG

B xF
G

B yF
G

A xF
G
A yF
G

mgG
1.18m

1.00 m

T

T
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The other forces on the block, the normal force and the frictional force, would be acting at the lower 
corner and so would not cause any torque about the lower corner.  The gravity force causes the 
tipping.  It wouldn’t matter if the block were static or sliding, since the magnitude of the frictional 
force does not enter into the calculation. 

  
31. We assume the truck is accelerating to the right.  We want the refrigerator to not 

tip in the non-inertial reference frame of the truck.  Accordingly, to analyze the 
refrigerator in the non-inertial reference frame, we must add a pseudoforce in 
the opposite direction of the actual acceleration.  The free-body diagram is for a 
side view of the refrigerator, just ready to tip so that the normal force and 
frictional force are at the lower back corner of the refrigerator.  The center of 
mass is in the geometric center of the refrigerator.  Write the conditions for 
equilibrium, taking torques about an axis through the center of mass, 
perpendicular to the plane of the paper.  The normal force and frictional force 
cause no torque about that axis. 

  � � � �

� �

horiz fr truck fr truck

vert N N

N1 1
N fr2 2

fr

2 2N
truck

fr truck

0    

0    

0    

1.0 m
    9.80 m s 5.2 m s

1.9 m

F F ma F ma

F F mg F mg

F h
F w F h

F w

F h mg w
a g

F w ma h

W

 �  o  

 �  o  

 �  o  

  o    

¦
¦

¦  

 
32. Write the conditions of equilibrium for the ladder, with torques taken 

about the bottom of the ladder, and counterclockwise torques as 
positive. 

� � 1
W W 2

1
G W G W 2

G G

1
2sin cos 0    

tan

0    
tan

0    

x x x

y y y

mg
F mg F

mg
F F F F F

F F mg F mg

W T T
T

T

 �  o  

 �  o   

 �  o  

¦

¦
¦

l l

 

 For the ladder to not slip, the force at the ground G xF  must be less than 
or equal to the maximum force of static friction. 

  11
G N G 2

1 1
        tan     tan

tan 2 2x y

mg
F F F mgP P P T T

T P P
�d  o d o d o t § ·
¨ ¸
© ¹

 

 Thus the minimum angle is 1
min

1
tan

2
.T

P
� § ·
¨ ¸
© ¹

 

 
 
 
 
 
 
 
 

x

y 
mgG

WF
G

T

G yF
G

G xF
G

sinTl

cosTl

h

w

mgG

frF
G

NF
G

truckmaG
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33. The tower can lean until a line projected downward through its center of 
gravity will fall outside its base of support.  Since we are assuming that the 
tower is uniform, its center of gravity (or center of mass) will be at its 
geometric center.  The center of mass can move a total of 3.5 m off of 
center and still be over the support base.  It has currently moved 2.25 m 
off of center.  So it can lean over another 1.25 m at the center, or 2.5 m at 
the top.  Note that the diagram is NOT to scale.  The tower should be 
twice as tall as shown to be to scale. 

 
 
 
 
 
 
34. The amount of stretch can be found using the elastic modulus in Eq. 12-4. 

  
� �

� � 2
0 29 2 4

1 1 275 N
0.300 m 2.10 10 m

5 10 N m 5.00 10

F
E A S

�

�
'    u

u u
l l  

 

35. (a) 
� � � �2

2 5 2
2

25000 kg 9.80 m s
Stress 175,000 N m 1.8 10 N m

1.4 m
F mg
A A

    | u  

 (b) 
5 2

6
9 2

Stress 175,000 10 N m
Strain 3.5 10

Young's Modulus 50 10 N m
�u

   u
u

 

 
36. The change in length is found from the strain. 

  � � � � � �6 5
0

0

Strain     Strain 8.6 m 3.5 10 3.0 10 m� �'
 o '   u  u
l

l l
l

 

 

37. (a) 
� � � �2

6 2 6 2
2

1700 kg 9.80 m s
Stress 1.388 10 N m 1.4 10 N m

0.012 m
F mg
A A

    u | u  

 (b) 
6 2

6 6
9 2

Stress 1.388 10 N m
Strain 6.94 10 6.9 10

Young's Modulus 200 10 N m
� �u

   u | u
u

 

 (c) � � � � � � � �6 5 5
0Strain 6.94 10 9.50 m 6.593 10 m 6.6 10 m� � �'   u  u | ul l  

 
38. The relationship between pressure change and volume change is given by Eq. 12-7. 

  
� � � �2 9 2 7 2

0
0

7 2
2

5 2
atm

    0.10 10 90 10 N m 9.0 10 N m

9.0 10 N m
9.0 10  , or 900 atmospheres

1.0 10 N m

P V
V V P B

B V

P
P

�' '
'  � o '  �  � u u  u

' u
  u

u

 

 
39. The Young’s Modulus is the stress divided by the strain. 

� � � �
� � � �

231
2 6 2

3 2
0

13.4 N 8.5 10 mStress
Young's Modulus 9.6 10 N m

Strain 3.7 10 m 15 10 m
F A S �

� �

u u
    u

' u u

ª º
¬ ¼

l l
  

Vertical Ready to fall
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40. The percentage change in volume is found by multiplying the relative change in volume by 100.  The  
change in pressure is 199 times atmospheric pressure, since it increases from atmospheric pressure to 
200 times atmospheric pressure.  Use Eq. 12-7. 

  
� �5 2

2
9 2

199 1.0 10 N m
100 100 100 2 10 %

90 10 N mo

V P
V B

�
u' '

 �  �  � u
u

 

 The negative sign indicates that the interior space got smaller. 
 
41. (a) The torque due to the sign is the product of the weight of the sign  

and the distance of the sign from the wall.   
   � � � � � �26.1kg 9.80 m s 2.2 m 130 m N , clockwisemgdW    <  

 (b) Since the wall is the only other object that can put force on the pole  
(ignoring the weight of the pole), then the wall must put a torque on 
the pole.  The torque due to the hanging sign is clockwise, so the torque due to the wall must be 
counterclockwise.  See the diagram.  Also note that the wall must put a net upward force on the 
pole as well, so that the net force on the pole will be zero. 

 (c) The torque on the rod can be considered as the wall pulling horizontally to the left on the top  
left corner of the rod and pushing horizontally to the right at the bottom left corner of the rod.  
The reaction forces to these put a shear on the wall at the point of contact.  Also, since the wall 
is pulling upwards on the rod, the rod is pulling down on the wall at the top surface of contact, 
causing tension.  Likewise the rod is pushing down on the wall at the bottom surface of contact, 
causing compression.  Thus all three are present. 

 
42. Set the compressive strength of the bone equal to the stress of the bone. 

  � �� �6 2 4 2 4max
maxCompressive Strength     170 10 N m 3.0 10 m 5.1 10 N

F
F

A
� o  u u  u  

 
43. (a) The maximum tension can be found from the ultimate tensile strength of the material. 

   
� � � � � �

max

26 2 4
max

Tensile Strength   

Tensile Strength 500 10 N m 5.00 10 m 393 N

F
A

F A S �

 o

  u u  
 

(b) To prevent breakage, thicker strings should be used, which will increase the cross-sectional area  
of the strings, and thus increase the maximum force.  Breakage occurs because when the strings 
are hit by the ball, they stretch, increasing the tension.  The strings are reasonably tight in the 
normal racket configuration, so when the tension is increased by a particularly hard hit, the 
tension may exceed the maximum force. 

 
44. (a) Compare the stress on the bone to the compressive strength to see if the bone breaks. 

   
� �

4

4 2

7 2 8 2

3.3 10 N
Stress

3.6 10 m
9.167 10 N m <1.7 10 N m Compressive Strength of bone        

F
A �

u
  

u
 u u

 

  The bone will not break.  
 (b) The change in length is calculated from Eq. 12-4. 

   � �7 2 30
9 2

0.22 m
9.167 10 N m 1.3 10 m

15 10 N m
F

E A
�'   u  u

u
§ ·
¨ ¸
© ¹

l
l  

 

mgGwallW
wallF
G
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45. (a) The area can be found from the ultimate tensile strength of the material. 

   
� � � �2 5 2 5 2

6 2

Tensile Strength Safety Factor
Safety Factor Tensile Strength

7.0
270 kg 9.80 m s 3.704 10 m 3.7 10 m

500 10 N m

      F
A F

A

A � �

  

 u | u
u

§ ·o o¨ ¸
© ¹

 
 

(b) The change in length can be found from the stress-strain relationship, Eq. 12-5. 

   
� � � � � �

� � � �
2

30
5 2 9 2

0

7.5m 320 kg 9.80 m s
    2.7 10 m

3.704 10 m 200 10 N m
F F

E
A AE

�
�

'
 o '    u

u u
l l

l
l

  

 
46. For each support, to find the minimum cross-sectional area with a  

safety factor means that 
Strength

Safety Factor
,F

A
  where either the tensile or 

compressive strength is used, as appropriate for each force.  To find the 
force on each support, use the conditions of equilibrium for the beam.  
Take torques about the left end of the beam, calling counterclockwise 
torques positive, and also sum the vertical forces, taking upward forces as positive. 

 
� � � � 25.0

2 2 20.0

1 2 1 2

20.0 m 25.0 m 0    1.25

0    1.25 0.25y

F mg F mg mg

F F F mg F mg F mg mg mg

W  �  o   

 � �  o  �  �  �
¦
¦

 

Notice that the forces on the supports are the opposite of 1F
G

 and 2.F
G

  So the force on support # 1 is 
directed upwards, which means that support # 1 is in tension.  The force on support # 2 is directed 
downwards, so support # 2 is in compression. 

  
� � � � � � � �

1

1

3 2
3 2

1 6 2

Tensile Strength
  

9.0

0.25 2.9 10 kg 9.80 m s0.25
9.0 9.0 1.6 10 m

Tensile Strength 40 10 N m

F
A

mg
A �

 o

u
   u

u

 

  
� � � � � � � �

2

2

3 2
3 2

1 6 2

Compressive Strength
  

9.0

1.25 2.9 10 kg 9.80 m s1.25
9.0 9.0 9.1 10 m

Compressive Strength 35 10 N m

F
A

mg
A �

 o

u
   u

u

 

 
47. The maximum shear stress is to be 1/7th of the shear strength for iron.  The maximum stress will 

occur for the minimum area, and thus the minimum diameter. 

  

� �

� �
� �

� �
� �

21
max 1 2

min

2
6 2

shear strength 7.0
stress       

7.0 shear strength

4 7.0 28 3300 N
1.3 10 m 1.3cm

shear strength 170 10 N m

F F
A d

A

F
d

S

S S
�

  o   o

   u  
u

 

 
 
 

1F
G

2F
G

mgG20.0 m

25.0 m
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48. From the free-body diagram, write Newton’s second law for the vertical direction.  Solve 
for the maximum tension required in the cable, which will occur for an upwards 
acceleration. 

  � �T     y TF F mg ma F m g a �  o  �¦  
The maximum stress is to be 1/8th of the tensile strength for steel.  The maximum stress 
will occur for the minimum area, and thus the minimum diameter. 

  

� �

� � � �
� �

� � � �
� �

2T T1
max 1 2

min

2
2

6 2

tensile strength 8.0
stress       

8.0 tensile strength

32 3100 kg 11.0 m s4 8.0
2.6 10 m 2.6cm

tensile strength 500 10 N m

F F
A d

A

m g a
d

S

S S
�

  o   o

�
   u  

u

 

 
49. (a) The three forces on the truss as a whole are the tension force  

at point B, the load at point E, and the force at point A.  Since 
the truss is in equilibrium, these three forces must add to be 0 
and must cause no net torque.  Take torques about point A, 
calling clockwise torques positive.  Each member is 3.0 m in 
length. 

   � � � �T 3.0 m sin 60 6.0 m 0  F MgW  q �  o¦   

� �
� �

� � � �
� �

6.0 m 66.0 kN 6.0 m
152 kN 150 kN

3.0 m sin 60 3.0 m sin 60T

Mg
F    |

q q
 

The components of AF
G

 are found from the force equilibrium equations, and then the magnitude 
and direction can be found. 

   � � � �

horiz T A horiz A horiz T

vert A vert A vert

2 22 2
A A horiz A vert

1 1A vert
A

A horiz

0    152 kN

0    66.0 kN

152 kN 66.0 kN 166 kN 170 kN

66.0 kN
tan tan 23.47 23  above AC

152 kN

F F F F F

F F Mg F Mg

F F F

F
F

T � �

 �  o   

 �  o   

 �  �  |

   q | q

¦
¦

  

(b) Analyze the forces on the pin at point E.  See the second free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

   
vert DE

DE

sin 60 0  

66.0 kN
76.2 kN 76 kN, in tension

sin 60 sin 60

F F Mg

Mg
F

 q �  o

   |
q q

¦
  

   
� �

horiz DE CE

CE DE

cos60 0  

cos60 76.2 kN cos60 38.1kN 38kN, in compression

F F F

F F

 q �  o

 q  q  |

¦
 

 Analyze the forces on the pin at point D.  See the third free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

   
vert DC DE

DC DE

sin 60 sin 0 0  

76.2 kN 76 kN, in compression

F F F

F F

 q � � q  o

  |

¦
   

mgG

TF
G

AF
GTF

G

E

B

C A

D

MgG

AT

DEF
G

E
MgG

CEF
G

60q

DEF
G

D

DBF
G

60q

DCF
G

60q
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   � � � �
horiz DB DE DC

DB DE DC

cos60 cos60 0  

cos60 2 76.2 kN cos60 76.2 kN

     76 kN, in tension

F F F F

F F F

 � q � q  o

 � q  q  

|

¦
 

Analyze the forces on the pin at point C.  See the fourth free-body  
diagram.  Write equilibrium equations for the horizontal and vertical 
directions. 

   
vert BC DC

BC DC

sin 60 sin 0 0  

76.2 kN 76kN, in tension

F F F

F F

 q � � q  o

  |

¦
 

   � � � �
horiz CE BC DC CA

CA CE BC DC

cos60 cos60 0  

cos60 38.1kN 2 76.2 kN cos60

     114.3kN 114 kN, in compression

F F F F F

F F F F

 � q � q �  o

 � � q  � q

 |

¦
 

Analyze the forces on the pin at point B.  See the fifth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

   
vert AB BC

AB BC

sin 60 sin 0 0  

76.2 kN 76kN, in compression

F F F

F F

 q � � q  o

  |

¦
 

   horiz T BC AB DBcos60 cos60 0  F F F F F � q � q �  o¦  

� � � �T BC AB DBcos60 2 76.2 kN cos60 76.2kN 152 kNF F F F � q �  q �   
This final result confirms the earlier calculation, so the results are consistent.  We could also 
analyze point A to check for consistency. 

 
50. There are upward forces at each support (points A and D) and a 

downward applied force at point C.  Write the conditions for equilibrium 
for the entire truss by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.  Let each side of the 
equilateral triangle be of length .l  

� � � �
vert A D

41 1 1
D D2 2 2

4
A D

0

0    1.35 10 N 6750 N

1.35 10 N 6750 N 6750 N

F F F F

F F F F

F F F

W

 � �  

 �  o   u  

 �  u �  

¦
¦ l l  

(a) Analyze the forces on the pin at point A.  See the second free-body  
diagram.  Write equilibrium equations for the horizontal and vertical 
directions. 

   

� �

vert A AB

A
AB

horiz AC AB

AC AB

sin 60 0  

6750 N
7794 N 7790 N, compression

sin 60 sin 60
cos60 0  

cos60 7794 N cos60 3897 N 3900 N, tension

F F F

F
F

F F F

F F

 � q  o

   |
q q

 � q  o

 q  q  |

¦

¦
 

By the symmetry of the structure, we also know that DB 7794 N 7790 N, compressionF  | and  

DC 3897 N 3900 N, tensionF  | .  Finally, from consideration of the vertical forces on pin C, we  

C
CEF
G60q

DCF
G

60q

BCF
G

CAF
G

ABF
G

B
TF
G

60q
60q

BCF
G

DBF
G

60q

l

2l

AF
G

DF
G

F
G

A

B

C D
60q

2l

l

AF
G

ABF
G

ACF
G

60q
A
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see that BC
41.35 10 N, tensionF  u . 

 (b) As listed above, we have struts AB and DB under compression, and struts AC, DC, and BC  
under compression . 

 
51. (a) We assume that all of the trusses are of the same cross-sectional area, and so to find the  

minimum area needed, we use the truss that has the highest force in it.  That is AB

1
.

3
F Mg   

Apply the safety condition to find the area. 

   
� �

� � � �
� �

AB

5 2

AB
6 2

2 2

Ultimate strength
  

7.0
7.0 7.0 10 kg 9.80 m s7.0 7.0

Ultimate strength 3 Ultimate strength 3 500 10 N m

5.5 10 m   

F
A

F Mg
A

�

 o

u
   

u

 u

 

(b) Recall that each truss must carry half the load, and so we need to add in an additional mass 
equal to 30 trucks.  As in Example 12-11, we will assume that the mass of the trucks acts 
entirely at the center, so the analysis of that example is still valid.  Let m represent the mass of a 
truck. 

� �
� �

� � � �
� �

5 4 2

6 2

2 2

7.0 7.0 10 kg+30 1.3 10 kg 9.80 m s7.0 30
3 Ultimate strength 3 500 10 N m

   8.6 10 m

M m g
A

�

u u�
  

u

 u

ª º¬ ¼
 

 
52.  See the free-body diagram from Figure 12-29, as modified to indicate  

the changes in the roadway mass distribution.  As in that example, if the 
roadway mass is 61.40 10 kg,u  then for one truss, we should use 

57.0 10 kg.M  u  Write the conditions for equilibrium for the entire 
truss by considering vertical forces and the torques about point A.  Let 
clockwise torques be positive.   

  � � � � � �
vert 1 2

1 1 1
2 22 4 2

1
1 22

0

32 m 64 m 64 m 0    

F F F Mg

Mg Mg F F Mg

F Mg F Mg

W

 � �  

 � �  o  

�  

¦
¦  

Note that the problem is still symmetric about a vertical line through pin C.  Also note that the forces 
at the ends each bear half of the weight of that side of the structure. 
 

Analyze the forces on the pin at point A.  See the second free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

  

1 1
vert AB2 4

1 1
4 4

AB 1
2

sin 60 0  

, in compression
sin 60 3 2 3

F Mg Mg F

Mg Mg Mg
F

 � � q  o

   
q

¦
  

  horiz AC AB AC AB

1
cos60 0    cos60 , in tension

22 3 4 3
Mg Mg

F F F F F � q  o  q   ¦  

2F
G

1F
G

A

B

C E

D

1
2 MgG

60q

1
4 MgG 1

4 MgG

60q

1
2 MgG

ABF
G

ACF
G

60q
A

1
4 MgG
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Analyze the forces on the pin at point B.  See the third free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

BC AB

sin 60 sin 0 0  

, in tension
2 3

F F F

Mg
F F

 q � � q  o

  

¦
   

  
� �

horiz AB BC DB

DB AB BC

cos60 cos60 0  

cos60 2 cos60 , in compression
2 3 2 3

F F F F

Mg Mg
F F F

 q � q �  o

 � q  q  § ·
¨ ¸
© ¹

¦
 

By the symmetry of the geometry, we can determine the other forces.  

DE AB , in compression
2 3
Mg

F F  , DC BC , in tension
2 3
Mg

F F  , CE AC , in tension
4 3
Mg

F F  . 

Note that each force is reduced by a factor of 2 from the original solution given in Example 12-11. 
 
53. See the free-body diagram from Figure 12-29.  M represents the mass of 

the train, and each member has a length of .l  Write the conditions for 
equilibrium for the entire truss by considering vertical forces and the 
torques about point A.  Let clockwise torques be positive.   

� � � �

1
vert 1 2 2

1 1 1
2 22 2 8

31
1 22 8

0

2 0    

F F F Mg

Mg F F Mg

F Mg F Mg

W

 � �  

 �  o  

 �  

¦
¦ l l  

Analyze the forces on strut AC, using the free-body diagram given in 
Figure 12-29b.  Note that the forces at the pins are broken up into 
components.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions, and for torques 
about point A. 

  
� � � �

1
vert A C 2

horiz A C C A

1 1 1
C C2 2 4

1 1
A C2 4

0

0    

    

y y

x x x x

y y

y y

F F F Mg

F F F F F

Mg F F Mg

F Mg F Mg

W

 � �  

 � �  o  

 �  o  

 �  

¦
¦
¦ l l

  

 Since their x components are equal and their y components are equal, A C AC.F F F   
 

Analyze the forces on the pin at point A.  The components found above are forces 
of the pin on the strut, so we put in the opposite forces, which are the forces of the 
strut on the pin.  See the third free-body diagram.  Write equilibrium equations for 
the horizontal and vertical directions. 

� � � �
3

vert AC AB8

3 23 3 1
8 AC 8 4

AB 1
2

sin 60 0  

53 10 kg 9.80 m s

sin 60 3 4 3 4 3

y

y

F Mg F F

Mg F Mg Mg Mg
F

 � � q  o

u� �
    

q

¦
 

 4 4     7.497 10 N 7.5 10 N,  in compression u | u  

B

DBF
G

60q
ABF
G

60q

BCF
G

2F
G1F

G

A

B

C E

D

60q

1
2 MgG

60q

AyF
G

A
1
2 MgG

C

C yF
G

AxF
G

CxF
G

3
8 MgG

ABF
G

ACxF
G

60q
A

ACyF
G
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horiz AC AB

4 41
AC AB2

cos60 0  

3.7485 10 N 3.7 10 N, in tension
8 3

x

x

F F F

Mg
F F

 � q  o

   u | u

¦
 

The actual force ACF  has both a tension component ACxF  and a shearing component AC .yF  Since the 

problem asks for just the compressive or tension force, only ACxF is included in the answer. 
 

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

4
BC AB

sin 60 sin 0 0  

7.5 10 N,  in tension
4 3

F F F

Mg
F F

 q � � q  o

   u

¦
   

  
� �

horiz AB BC DB

4
DB AB BC

cos60 cos60 0  

cos60 2 cos60 7.5 10 N,  in compression
4 3 4 3

F F F F

Mg Mg
F F F

 q � q �  o

 � q  q   u§ ·
¨ ¸
© ¹

¦
 

Analyze the forces on the pin at point C.  See the fifth free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  

vert BC DC AC

1 1
AC 4 4

DC BC 1 1
2 2

4

sin 60 sin 0 0  

sin 60 3 4 3 3 4 3

7.5 10 N, in tension
4 3

     

y

y

F F F F

F Mg Mg Mg Mg
F F

Mg

 q � � q �  o

 �  �  �
q

 | u

¦
 

  
� �

horiz CE DC BC AC

4
CE AC BC DC

cos60 cos60 0  

cos60 3.7 10 N, in tension
8 3

0

x

x

F F F F F

Mg
F F F F

 � q � q �  o

 � � q  | u�

¦
 

Analyze the forces on the pin at point D.  See the sixth free-body diagram.  Write 
the equilibrium equation for the vertical direction. 

   
vert DE DC

4
DE DC

sin 60 sin 0 0  

7.5 10 N, in compression
4 3

F F F

Mg
F F

 q � � q  o

  | u

¦
 

 This could be checked by considering the forces on pin E.   
 
54. See the free-body diagram from Figure 12-29.  We let m be the mass of 

the truck, x be the distance of the truck from the left end of the bridge, 
and 2l be the length of the bridge.  Write the conditions for equilibrium 
for the entire truss by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.  And we use half of the 
mass of the truck, because there are 2 trusses. 

  � �
� � � � � �

� �

1
vert 1 2 2

1
22

2

2

0

2 0  

23000 kg 9.80 m s 22 m
38740 N

4 4 32 m

F F F mg

mgx F

mgx
F

W

 � �  

 �  o

   

¦
¦ l

l

 

B

DBF
G

60q
ABF
G

60q

BCF
G

CEF
G

60q
DCF
G

60q
BCF
G

ACxF
G

ACyF
G

C

D

DBF
G

60q

DCF
G

60q

DEF
G

2F
G1F

G

A

B

C E

D

60q

1
2 mgG

60q

x

2l
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  � � � �21 1
1 22 2 23000 kg 9.80m s 38740 73960 NF mg F �  �   

Analyze the forces on strut AC, using the free-body diagram given in 
Figure 12-29b.  Note that the forces at the pins are broken up into 
components.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions, and for torques 
about point A. 

  

� �

1
vert A C 2

horiz A C C A

1
C2

0

0    

  

y y

x x x x

y

F F F mg

F F F F F

mgx FW

 � �  

 � �  o  

 �  o

¦
¦
¦ l

 

� � � �

� � � �

21 1
C 2 2

21 1
A C2 2

22 m
23000 kg 9.80 m s 77480 N 77,000 N

32 m

23000 kg 9.80 m s 77480 N 35220 N 35,000 N

y

y y

x
F mg

F mg F

   |

 �  �  |

l   

Since their x components are equal, AC CAF F  for tension or compression along the beams. 
 

Analyze the forces on the pin at point A.  The components found above are forces 
of the pin on the strut, so we put in the opposite forces, which are the forces of the 
strut on the pin.  See the third free-body diagram.  Write equilibrium equations for 
the horizontal and vertical directions. 

vert A AB1 sin 60 0  yF F F F � � q  o¦  

  

� �

1 A 4
AB

horiz AC AB

4
AC AB

73960 N 35220 N
44730 N 4.5 10 N,  in compression

sin 60 sin 60
cos60 0  

cos60 44730 N cos60 22365N 2.2 10 N, in tension

y

x

x

F F
F

F F F

F F

� �
   | u

q q
 � q  o

 q  q  | u

¦  

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

4
BC AB

sin 60 sin 0 0  

4.5 10 N,  in tension

F F F

F F

 q � � q  o

  u

¦
   

  
� �

horiz AB BC DB

4
DB AB BC AB

cos60 cos60 0  

cos60 4.5 10 N,  in compression

F F F F

F F F F

 q � q �  o

 � q   u

¦
 

Analyze the forces on the pin at point C.  See the fifth free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  vert BC DC Csin 60 sin 0 0  yF F F F q � � q �  o¦  

C 4
DC BC

77480 N
44730N 44740 N 4.5 10 N, in tension

sin 60 sin 60
yF

F F �  �  | u
q q

 

  
� �

horiz CE DC BC AC

4
CE AC BC DC AC

cos60 cos60 0  

cos60 2.2 10 N, in tension

x

x x

F F F F F

F F F F F

 � q � q �  o

 � � q  | u

¦
 

 
 

AyF
G

A
1
2 mgG

C

C yF
G

AxF
G

CxF
G

x

ABF
G

ACxF
G

60q
A

AyF
G

1F
G

B

DBF
G

60q
ABF
G

60q

BCF
G

CEF
G

60q
DCF
G

60q
BCF
G

ACxF
G

C yF
G

C
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Analyze the forces on the pin at point D.  See the sixth free-body diagram.  Write 
the equilibrium equation for the vertical direction. 

   
vert DE DC

4
DE DC

sin 60 sin 0 0  

4.5 10 N, in compression

F F F

F F

 q � � q  o

 | u

¦
 

 This could be checked by considering the forces on pin E.   
 
55. We first show a free-body diagram for the entire 

structure.  All acute angles in the structure are 45 .q  
Write the conditions for equilibrium for the entire truss 
by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.   

  vert 1 2 5 0F F F F � �  ¦  

� � � � � � � �2

2 1 2

2 3 4 4 0

10
2.5   ;  5 2.5

4

Fa F a F a F a F a

a
F F F F F F F

a

W  � � � �  

   �  

¦
 

Note that the forces at the ends each support half of the load.  Analyze the forces 
on the pin at point A.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions. 

  
vert 1 AB

3
21

AB 1
2

sin 45 0  

3
, in compression

sin 45 2 2

F F F F

F F F F
F

 � � q  o

�
   

q

¦
  

  3
horiz AC AB AC AB 2

3 2
cos 45 0    cos45 , in tension

22
F

F F F F F F � q  o  q   ¦  

Analyze the forces on the pin at point C.  See the third free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert BC BC

3
horiz CE AC CE AC 2

0    , tension

0    , in tension

F F F F F

F F F F F F

 �  o  

 �  o   

¦
¦

 

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BE BC

BC
BE AB 1

2

sin 45 sin 45 0  

3
,  tension

sin 45 2 2 2

F F F F

F F FFF F

 q � q �  o

 �  �  
q

¦
   

  
� �

horiz AB BE DB

DB AB BE

cos 45 cos 45 0  

3 2
cos 45 2 , in compression

22 2

F F F F

F F
F F F F

 q � q �  o

 � q  �  § ·
¨ ¸
© ¹

¦
 

 
Analyze the forces on the pin at point D.  See the fifth free-body diagram.  Write 
equilibrium equations for the vertical direction. 

  vert DE DE    0F F F � o  ¦  
 All of the other forces can be found from the equilibrium of the structure. 

2F
G

1F
G

A

B

C E

D G

JH
F
G

F
G

F
G

F
G

F
G

ABF
G

ACF
G

45q
A

F
G

1F
G

BCF
G

CEF
G

CACF
G

F
G

B

DBF
G

45q

ABF
G

45q

BCF
G

BEF
G

D

DBF
G

DEF
GDGF

G

D

DBF
G

60q

DCF
G

60q

DEF
G
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  DG DB 2 , in compressionF F F   , GE BE ,  tension
2

F
F F    ,  

3
EH CE 2 , in tensionF F F   , GH BC , tensionF F F   , 3

HJ AC 2 , in tensionF F F  ,  

  GJ AB

3
, in compression

2
F

F F   

 
56. Draw free-body diagrams similar to Figures 12-36(a) and 12-36(b) for the  

forces on the right half of a round arch and a pointed arch.  The load force  
is placed at the same horizontal position on each arch.  For each half-arch,  
take torques about the lower right hand corner, with counterclockwise as 
positive. 
 

 For the round arch:   

  � �Load H H Load
round round

0    
R x

F R x F R F F
R

W �
 � �  o  ¦  

 For the pointed arch: 

  � �Load H H Load
pointed pointed

0    
R x

F R x F y F F
y

W �
 � �  o  ¦  

 Solve for y , given that 1
H H3
pointed round

F F . 

  
� �

1 1
H H Load Load3 3
pointed round

1
2

      

3 3 8.0 m 12 m

R x R x
F F F F

y R

y R

� �
 o  o

   
 

 
57. Each crossbar in the mobile is in equilibrium, and so the net torque about the suspension point for 

each crossbar must be 0.  Counterclockwise torques will be taken as positive.  The suspension point 
is used so that the tension in the suspension string need not be known initially.  The net vertical force 
must also be 0. 

 The bottom bar: 

  

� �

D D C C

D
C D D D

C

CD C D CD C D D

0  

17.50cm
3.50

5.00cm

0    4.50y

m gx m gx

x
m m m m

x

F F m g m g F m m g m g

W  �  o

   

 � �  o  �  

¦

¦

 

 

The middle bar: 

  
� � � �
� � � �

B B
CD CD B B CD B D B

CD CD

2BB
D

CD

0    4.50

0.748kg 5.00cm
0.05541 5.54 10 kg

4.50 4.50 15.00cm

x x
F x m gx F m g m g m g

x x

xm
m

x

W

�

 �  o  o  

   | u

¦
 

  
� � � �

� �
C D

BCD CD B BCD CD B D B

3.50 3.50 0.05541kg 0.194 kg

0    4.50y

m m

F F F c m g F F m g m m g

   

 � �  o  �  �¦
 

 
 

H
round

F
G

H
round

F
G

VF
G

LoadF
G

R

R

x

H
pointed

F
G

H
pointed

F
G

VF
G

LoadF
G

R

y

x

Cm gG
Dm gG

CxDx

CDF
G

Bm gG
BxCDx

BCDF
G

CDF
G
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 The top bar: 

  � � � �

A A BCD BCD

D B BCD BCD
A D B

A A

0 

4.50
4.50

m gx F x

m m gx x
m m m

gx x

W  �  o

�
  �

¦
 

  � � � �> @ 7.50cm
     4.50 0.05541 kg 0.748kg 0.249 kg

30.00cm
 �   

 
58. From the free-body diagram (not to scale), write the 

force equilibrium condition for the vertical direction. 
  T2 sin 0yF F mgT �  ¦  

� � � �260.0kg 9.80m s

2sin 2 tan 2.1m
2

18m

2500 N   

T
mg mg

F
T T

 

 

|  
§ ·
¨ ¸
© ¹

 

Note that the angle is small enough (about 7o) that we have made the substitution of sin tanT T| .   
 

It is not possible to increase the tension so that there is no sag.   There must always be a vertical 

component of the tension to balance the gravity force.  The larger the tension gets, the smaller the 
sag angle will be, however. 

 
59. (a) If the wheel is just lifted off the lowest level, then the only  

forces on the wheel are the horizontal pull, its weight, and the 
contact force NF

G
at the corner.  Take torques about the corner 

point, for the wheel just barely off the ground, being held in 
equilibrium.  The contact force at the corner exerts no torque 
and so does not enter the calculation.  The pulling force has a 
lever arm of 2 ,R R h R h� �  �  and gravity has a lever arm of 
x , found from the triangle shown. 

 � � � �22 2x R R h h R h � �  �  

   

� �
� �

2 0  

2

2 2 2

Mgx F R h

h R hMgx h
F Mg Mg

R h R h R h

W  � �  o

�
   

� � �

¦
 

. (b) The only difference is that now the pulling force has a lever arm  
of .R h�  

   

� �

� �

0  

2

Mgx F R h

h R hMgx
F Mg

R h R h

W  � �  o

�
  

� �

¦
 

 
 
 
 

Am gG
BCDxAx

ABCDF
G

BCDF
G

2.1 m 

18 m 

T� T�

mgG
TF
G

TF
G

R h�

x

R

MgG
F
G

R h�

x

MgG

F
G

2R h�

x

NF
G
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60. The mass is to be placed symmetrically between two legs of the table.   
When enough mass is added, the table will rise up off of the third leg, 
and then the normal force on the table will all be on just two legs.  
Since the table legs are equally spaced, the angle marked in the 
diagram is 30o.  Take torques about a line connecting the two legs 
that remain on the floor, so that the normal forces cause no torque.  It 
is seen from the second diagram (a portion of the first diagram but 
enlarged) that the two forces are equidistant from the line joining the 
two legs on the floor.  Since the lever arms are equal, then the torques 
will be equal if the forces are equal.  Thus, to be in equilibrium, the two 
forces must be the same.  If the force on the edge of the table is any 
bigger than the weight of the table, it will tip.  Thus 28kgM !  will 

cause the table to tip. 
 
 
61. (a) The weight of the shelf exerts a downward force and a  

clockwise torque about the point where the shelf 
touches the wall.  Thus there must be an upward force 
and a counterclockwise torque exerted by the slot for 
the shelf to be in equilibrium.  Since any force exerted 
by the slot will have a short lever arm relative to the 
point where the shelf touches the wall, the upward force 
must be larger than the gravity force.  Accordingly, there then must be a downward force 
exerted by the slot at its left edge, exerting no torque, but balancing the vertical forces. 

 (b) Calculate the values of the three forces by first taking torques about the left end of the shelf,  
with the net torque being zero, and then sum the vertical forces, with the sum being zero. 

   

� � � �

� � � �

� � � �
� � � �

2 2
Right

2
2

Right 2

Right Left

2
Left Right

2

2.0 10 m 17.0 10 m 0  

17.0 10 m
6.6 kg 9.80 m s 549.8 N 550 N

2.0 10 m

  

549.8 N 6.6 kg 9.80 m s 490 N

6.6 kg 9.80 m s 65 N

y

F mg

F

F F F mg

F F mg

mg

W � �

�

�

 u � u  o

u
  |

u

 � � o

 �  �  

  

§ ·
¨ ¸
© ¹

¦

¦  

 (c) The torque exerted by the support about the left end of the rod is    
   � � � � � �2 2

Right 2.0 10 m 549.8 N 2.0 10 m 11m NFW � � u  u  <  

 
62. Assume that the building has just begun to tip, so that it is 

essentially vertical, but that all of the force on the building due to 
contact with the Earth is at the lower left corner, as shown in the 
figure.  Take torques about that corner, with counterclockwise 
torques as positive. 
 

 

Ro30

mgG

2R 2R

M gG

� �downmgG

� �down
MgG

o30

mgG

32.0cmLeftF
G

RightF
G

2.0cm

mgG
AF
G

90.0 m

23.0 m

E xF
G

E yF
G
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mgG

T2 xF

h
1d

T2 yF

mgG

o60

T1F
G

T2F
G

o19

h

1d

� � � �
� � � � � � � � � � � � � �
A

2 7 2

9

90.0 m 23.0 m

      950 N m 180.0 m 76.0 m 90.0 m 1.8 10 kg 9.80 m s 23.0 m

      2.9 10 m N

F mgW  �

 � u

 � u

ª º¬ ¼

¦

<

 

 Since this is a negative torque, the building will tend to rotate clockwise, which means it will rotate 
back down to the ground.  Thus the building will not topple .  

 
63. The truck will not tip as long as a vertical line down from the CG is between 

the wheels.  When that vertical line is at the wheel, it is in unstable equilibrium 
and will tip if the road is inclined any more.  See the diagram for the truck at 
the tipping angle, showing the truck’s weight vector. 

  1 1 o1.2 m
tan     tan tan 29

2.2 m
x x
h h

T T � � o     

 
64. Draw a force diagram for the cable that is supporting the right-hand section.  The forces will be the 

tension at the left end, T2 ,F
G

 the tension at the right end, T1,F
G

 and the weight of the section, .mgG   The 
weight acts at the midpoint of the horizontal span of 
the cable.  The system is in equilibrium.  Write 
Newton’s second law in both the x and y directions to 
find the tensions.  

 

o o
T1 T2

o

T2 T1 o

o o
T2 T1

cos19 sin 60 0  

cos19
sin 60

cos 60 sin19 0  

x

y

F F F

F F

F F F mg

 �  o

 

 � �  o

¦

¦
o

o
o T1 o

T2
T1 o o

cos19
cos 60cos 60 sin 60  

sin19 sin19

F mgF mg
F

��
  o

� �
o

T1 o o o o

o o

T2 T1 o o

sin 60
4.539 4.5

cos19 cos 60 sin19 sin 60

cos19 cos19
4.539 4.956 5.0

sin 60 sin 60

F mg mg mg

F F mg mg mg

  |
�

   |

 

 

 To find the height of the tower, take torques about the point  
where the roadway meets the ground, at the right side of the  
roadway.  Note that then T1F

G
 will exert no torque.  Take  

counterclockwise torques as positive.  For purposes of  
calculating the torque due to T2 ,F

G
 split it into x and y components.  

� �
� � � � � � � �

1
1 T2 T2 12

o o11
T2 2T2 2

1 1o o
T2 T2

0  

cos 60 4.956 cos 60 0.50
343 m

sin 60 4.956 sin 60

  158 m

x y

y

x

mg d F h F d

F mg mg mgF mg
h d d

F F mg

W  � �  o

� ��
   

 

¦

 

 

T�
T�

h�x�
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65. We consider the right half of the bridge in the diagram in the book.  We divide it into two segments 
of length 1d  and 1

22 d , and let the mass of those two segments be M.  Since the roadway is uniform, 
the mass of each segment will be in proportion to the length of the 
section, as follows. 

1
22 2 2 2

1 1 1 1

    2
m d d m
m d d m

 o   

The net horizontal force on the right tower is to be 0.  From the force 
diagram for the tower, we write this. 
 T3 3 T2 2sin sinF FT T  
From the force diagram for each segment of the cable, write Newton’s second law for both the 
vertical and horizontal directions. 

Right segment: 

T1 1 T2 2

T1 1 T2 2

T2 2 T1 1 1

1 T2 2 T1 1

cos sin 0  

         cos sin

cos sin 0  

        cos sin

x

y

F F F

F F

F F F m g

m g F F

T T

T T

T T

T T

 �  o

 

 � �  o

 �

¦

¦
 

 

Left segment: 

T3 3 T4 T3 3 T4

T3 3 2

2 T3 3

sin 0    sin

cos 0  

        cos

x

y

F F F F F

F F m g

m g F

T T

T

T

 �  o  

 �  o

 

¦
¦  

 
We manipulate the relationships to solve for the ratio of the 
masses, which will give the ratio of the lengths. 

2
T1 1 T2 2 T1 T2

1

2 2
1 T2 2 T1 1 T2 2 T2 1 T2 2 1

1 1

sin
cos sin     

cos

sin sin
cos sin cos sin cos sin

cos cos

F F F F

m g F F F F F

TT T
T

T TT T T T T T
T T

 o  

 �  �  �
§ ·
¨ ¸
© ¹

 

2 2
T3 3 T2 2 T3 T2 2 T3 3 T2 3

3 3

sin sin
sin sin     cos cos

sin sin
    F F F F m g F F

T TT T T T
T T

 o    o  

� �

� �

2
T2 3

2 2 2 2 3 13

1 1 1 2 1 2 1 32
T2 2 1

1

2 1

1 2 3

sin
2 cos

2sin cos cossin
2 2

cos cos sin sin sinsin
cos sin

cos

2sin cos 2sin 60 cos19
3.821 3.8

cos tan cos79 tan 66
    

F
d m m g
d m m g

F

T T
T T TT

T T T T TTT T
T

T T
T T T

    
�

�

q q
   |

� q q

§ ·
¨ ¸
© ¹

 

 
66. The radius of the wire can be determined from the  

relationship between stress and strain, expressed by Eq. 12-5. 

  20 0

0

1
       

F F F
E A r r

A E E
S

S
'

 o   o  
' '

l l l

l l l
 

 

T� T�

mgG
TF
G

TF
G

T3F
G

T2F
G

2T3T

NF
G

1m gG

2T

T1F
G

T2F
G

1T

1right segment, d

2left segment, 2d
3T

2m gG

T4F
G

T3F
G
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Use the free-body diagram for the point of connection of the mass to the wire to determine the 
tension force in the wire. 

  
� � � �2

T T o

25 kg 9.80m s
2 sin 0    589.2 N

2sin 2sin12y

mg
F F mg FT

T
 �  o    ¦  

The fractional change in the length of the wire can be found from the geometry 
of the problem. 

  20
o

0 0

2 1 1
cos     1 1 2.234 10

cos cos12
2

T
T

�'
 o  �  �  u

� '
l l

l l l
 

 Thus the radius is  

  � �
4T 0

9 2 2

1 1 589.2 N 1
3.5 10 m

70 10 N m 2.234 10
F

r
ES S

�
�

   u
' u u
l

l
 

 
67. The airplane is in equilibrium, and so the net force in 

each direction and the net torque are all equal to zero.  
First write Newton’s second law for both the horizontal 
and vertical directions, to find the values of the forces. 

� � � �

5

4 2 5

0    5.0 10 N

0

7.7 10 kg 9.80 m s 7.546 10 N

x D T D T

y L

L

F F F F F

F F mg

F mg

 �  o   u

 �  

  u  u

¦
¦

Calculate the torques about the CM, calling counterclockwise torques positive. 

 � � � � � � � �
� �

1 2

5 5

2
1 5

0

7.546 10 N 3.2 m 5.0 10 N 1.6 m
3.2 m

5.0 10 N

L D T

L T

D

F d F h F h

F d F h
h

F

W  � �  

u � u�
   

u

¦
 

 
68. Draw a free-body diagram for half of the cable. Write Newton’s 

second law for both the vertical and horizontal directions, with the 
net force equal to 0 in each direction. 

1 1
T1 T12 2sin 56 0    0.603

sin 56y

mg
F F mg F mg q �  o   

q¦

� �
T2 T1

T2

cos56 0  

0.603 cos56 0.337
xF F F

F mg mg

 � q  o

 q  
¦  

So the results are: 
 (a) T2 0.34F mg   

 (b) T1 0.60F mg  

 (c) The direction of the tension force is tangent to the cable at all points on the cable.  Thus the  
direction of the tension force is horizontal at the lowest point ,  and is  

56 above the horizontal at the attachment point .q  

 
 
 

l0/2
T�

0

2
� 'l l
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69. (a) For the extreme case of the beam being ready to tip,  
there would be no normal force at point A from the 
support.  Use the free-body diagram to write the 
equation of rotational equilibrium under that 
condition to find the weight of the person, with 

0.AF    Take torques about the location of support 

B, and call counterclockwise torques positive.  W
G

 is the weight of the person. 

   
� � � �5.0 m 5.0 m 0  

650 N

B

B

m g W

W m g

W  �  o

  

¦
 

 (b) With the person standing at point D, we have already assumed that 0 .AF      The net force in  

the vertical direction must also be zero. 
 0    650 N 650 N 1300 Ny A B B B BF F F m g W F m g W � � �  o  �  �  ¦  

 (c) Now the person moves to a different spot, so the  
free-body diagram changes as shown.  Again use the 
net torque about support B and then use the net 
vertical force. 

� � � � � �
� � � � � � � �

5.0 m 2.0 m 12.0 m 0

5.0 m 2.0 m 650 N 3.0m
12.0 m 12.0 m

    162.5N 160 N

B A

B
A

m g W F

m g W
F

W  � �  

�
  

 |

¦

 0    1300 N 160 N 1140 Ny A B B B B AF F F m g W F m g W F � � �  o  � �  �  ¦  
 (d) Again the person moves to a different spot, so the  

free-body diagram changes again as shown.  Again  
use the net torque about support B and then use the 
 net vertical force. 

   � � � � � �5.0 m 10.0 m 12.0 m 0B Am g W FW  � �  ¦   

� � � � � � � � � � � �5.0 m 10.0 m 650 N 5.0 m 650 N 10.0 m
810 N

12.0 m 12.0 m
0    1300 N 810 N 490 N

B
A

y A B B B B A

m g W
F

F F F m g W F m g W F

� �
   

 � � �  o  � �  �  ¦
 

 
70. If the block is on the verge of tipping, the normal force will be acting at the  

lower right corner of the block, as shown in the free-body diagram.  The 
block will begin to rotate when the torque caused by the pulling force is 
larger than the torque caused by gravity.  For the block to be able to slide, 
the pulling force must be as large as the maximum static frictional force.  
Write the equations of equilibrium for forces in the x and y directions and 
for torque with the conditions as stated above. 

  
N N

fr fr s N s

s

0    

0    

0    
2 2

y

x

F F mg F mg

F F F F F F mg

mg
mg Fh Fh mgh

P P

W P

 �  o  

 �  o    

 �  o   

¦
¦

¦ l l

 

3.0 m 7.0 m 5.0 m 5.0 m 

AF
G

BF
G

W
G

Bm gG

C A B D

3.0 m 7.0 m 5.0 m 

2.0 m

AF
G

BF
G

W
G

Bm gG

C A B D

3.0 m 5.0 m 5.0 m 

2.0 m

AF
G BF

G

W
G

Bm gG

C A B D

h 

L /2 

mgG
frF
G

NF
G

F
G
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Solve for the coefficient of friction in this limiting case, to find s 2
.

h
P  

l
 

(a) If s 2 ,hP � l  then sliding will happen before tipping. 

(b) If s 2 ,hP ! l  then tipping will happen before sliding. 

 
71. The limiting condition for the safety of the painter is the  

tension in the ropes.  The ropes can only exert an upward 
tension on the scaffold.  The tension will be least in the 
rope that is farther from the painter.  The mass of the pail is 

p ,m the mass of the scaffold is ,m  and the mass of the 
painter is .M  
  

Find the distance to the right that the painter can walk before the tension in the left rope becomes 
zero.  Take torques about the point where the right-side rope is attached to the scaffold, so that its 
value need not be known.  Take counterclockwise torques as positive. 
 � � � �p2.0 m 3.0 m 0  mg m g MgxW  � �  o¦

 
� � � � � � � � � � � �p2.0 m 3.0 m 25kg 2.0 m 4.0 kg 3.0 m

0.9538m 0.95m
65.0 kg

m m
x

M

� �
   |  

 The painter can walk to within 5 cm of the right edge of the scaffold. 
 

Now find the distance to the left that the painter can walk 
before the tension in the right rope becomes zero.  Take 
torques about the point where the left-side tension is 
attached to the scaffold, so that its value need not be 
known.  Take counterclockwise torques as positive. 

  � � � �p 1.0 m 2.0 m 0  Mgx m g mgW  � �  o¦  

  
� � � � � � � � � � � �p2.0 m 1.0 m 25kg 2.0m 4.0kg 1.0m

0.8308m 0.83m
65.0 kg

m m
x

M

� �
   |  

The painter can walk to within 17 cm of the left edge of the scaffold.  We found that both ends are 
dangerous.   

 
72. (a) The man is in equilibrium, so the net force and the net torque on him must  

be zero.  We use half of his weight, and then consider the force just on 
one hand and one foot, considering him to be symmetric.  Take torques 
about the point where the foot touches the ground, with counterclockwise 
as positive. 

   

� �

� �
� � � � � �

� �

1
2 h 1 22

2

2
h

1 2

0

68kg 9.80 m s 0.95m
231N 230 N

2 2 1.37 m

mgd F d d

mgd
F

d d

W  �  

   |
�

�¦
 

 (b) Use Newton’s second law for vertical forces to find the force on the feet. 

   
� � � �

h f

21 1
f h2 2

2 2 0

68kg 9.80 m s 231N 103N 100 N

yF F F mg

F mg F

 � �  

 �  �  |

¦
  

  The value of 100 N has 2 significant figures. 
 

1.0 m 2.0 m 

left 0 F
G

rightF
G

mgG
1.0 m

pm gG
1.0 m 

1.0 m

M gG
x

1.0 m

2.0 m 

leftF
G

right 0 F
G

mgG
1.0 m

pm gG
1.0 m 1.0 m

M gG
x

d1 d2 

1
2 mgG

hF
G

fF
G
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73. The force on the sphere from each plane is a normal force, and so is perpendicular 
to the plane at the point of contact.  Use Newton’s second law in both the  
horizontal and vertical directions to determine the magnitudes of the forces. 

L
L L R R R L L

R

sin sin 67
sin sin 0    

sin sin 32xF F F F F F
TT T
T

q
 �  o   

q¦  

L L R R L

sin 67
cos cos 0  cos67 cos32

sin 32yF F F mg F mgT T q
 � �  o q � q  

q
§ ·
¨ ¸
© ¹

¦  

� � � �

� �

2

L

R L

23kg 9.80 m s
120.9 N 120 N

sin 67 sin 67
cos67 cos32 cos67 cos32

sin 32 sin 32
sin 67 sin 67

 120.9 N 210.0 N 210 N
sin 32 sin 32

mg
F

F F

   |
q q

q � q q � q
q q

q q
   |

q q

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹  

 
74. See the free-body diagram.  The ball is at rest, and so is in equilibrium.  Write 

Newton’s second law for the horizontal and vertical directions, and solve for the 
forces. 

  

A
horiz B B A A B A

B

vert A A B B A A B B

A A
A A A B A A B

B B

sin
sin sin 0    

sin

cos cos 0    cos cos   

sin sin
cos cos     cos cos   

sin sin

F F F F F

F F F mg F F mg

F F mg F mg

TT T
T

T T T T

T TT T T T
T T

 �  o  

 � �  o  � o

 � o �  o
§ ·
¨ ¸
© ¹

¦

¦  

� � � � � � � �

� �

2B B
A

A B A B B A

A
B A

B

sin sin sin 53
15.0kg 9.80m s

cos sin sin cos sin sin 31

    228N 230N
sin sin 22

228 N 107 N 110 N
sin sin53

F mg mg

F F

T T
T T T T T T

T
T

q
   

� � q

 |

q
   |

q

 

 
75. Assume a constant acceleration as the person is brought to rest, with up as the positive 

direction.  Use Eq. 2-12c to find the acceleration.  From the acceleration, find the average 
force of the snow on the person, and compare the force per area to the strength of body 
tissue. 

  
� � � �

� �
� �

� � � �

22 2
2 2 20

0 0
0

2
5 2 5 2

2

0 55m s
2     1513m s

2 2 1.0 m

75kg 1513m s
3.78 10 N m  Tissue strength 5 10 N m

0.30m

v v
v v a x x a

x x

F ma
A A

��
 � � o    

� �

   u �  u

 

 Since the average force on the person is less than the strength of body tissue, the person may escape 
serious injury.  Certain parts of the body, such as the legs if landing feet first, may get more than the 
average force, though, and so still sustain injury. 

 
 
 
 

mgG
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G LT RT
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mgG

snowF
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76. The mass can be calculated from the equation for the relationship between stress and strain.  The  
force causing the strain is the weight of the mass suspended from the wire.  Use Eq. 12-4. 

  � � � �
� �

23
9 2

2
0 0

1.15 10 m1 0.030
    200 10 N m 25kg

9.80 m s 100
F mg EA

m
E A EA g

S �u' '
  o   u  
l l

l l
 

 
77. To find the normal force exerted on the road by the trailer tires, take the 

torques about point B, with counterclockwise torques as positive. 
  � � � �A5.5 m 8.0 m 0  mg FW  �  o¦  

� � � �2
A

4

5.5m 5.5m
2500 kg 9.80m s 16,844 N

8.0 m 8.0 m

    1.7 10 N

F mg   

| u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹  

 The net force in the vertical direction must be zero. 

  
� � � �

B A

2 3
B A

0  

2500 kg 9.80 m s 16,844 N 7656 N 7.7 10 N

yF F F mg

F mg F

 � �  o

 �  �  | u

¦
 

 
78. The number of supports can be found from the compressive strength of the wood.  Since the wood 

will be oriented longitudinally, the stress will be parallel to the grain. 

� � � �

� � � �

Compressive Strength Load force on supports Weight of roof
Safety Factor Area of supports # supports area per support

Weight of roof Safety Factor
# supports

area per support Compressive Strength

             

  

 

� �� �
� � � � � �

4 2

6 2

1.36 10 kg 9.80m s 12
      12.69 supports

0.040 m 0.090m 35 10 N m

u
  

u

 

 Since there are to be more than 12 supports, and to have the same number of supports on each side, 
there will be 14 supports, or 7 supports on each side .  That means there will be 6 support-to-support 

spans, each of which would be given by 
10.0 m

Spacing 1.66m gap
6 gaps

  . 

 
79. The tension in the string when it breaks is found from the ultimate strength of nylon under tension, 

from Table 12-2. 

  � �

� � � �

T

T

23 6 21
2

Tensile Strength  

Tensile Strength

   1.15 10 m 500 10 N m 519.3N

F
A

F A

S �

 o

 

 u u  ª º¬ ¼

 

From the force diagram for the box, we calculate the angle of the rope relative to the horizontal from 
Newton’s second law in the vertical direction.  Note that since the tension is the same throughout the 
string, the angles must be the same so that the object does not accelerate horizontally. 

mgG
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� � � �
� �

T

2
1 1

T

2 sin 0  

25kg 9.80m s
sin sin 13.64

2 2 519.3N

yF F mg

mg
F

T

T � �

 �  o

   q

¦
 

 To find the height above the ground, consider the second 
diagram. 

  � � � �3.00 m
tan     3.00 m 2.00 m tan 3.00 m 2.00 m tan13.64 2.5m

2.00 m
h

hT T�
 o  �  � q   

 
80.  See the free-body diagram.  Assume that the ladder is just ready to slip, so  

the force of static friction is fr N.F FP   The ladder is of length l, and so 
1

1 2 sin ,d T l  3
2 4 sin ,d T l  and 3 cos .d T l   The ladder is in 

equilibrium, so the net vertical and horizontal forces are 0, and the net 
torque is 0.  We express those three equilibrium conditions, along with the 
friction condition.  Take torques about the point where the ladder rests on 
the ground, calling clockwise torques positive.   

  

� �vert G G

horiz G W G W

1 2
1 2 W 3 W

3

fr N G G

0    

0    

0    

    

y y

x x

x y

F F mg Mg F m M g

F F F F F

mgd Mgd
mgd Mgd F d F

d

F F F F

W

P P

 � �  o  �

 �  o  

�
 � �  o  

 o  

¦
¦

¦
 

 These four equations may be solved for the coefficient of friction. 

  � � � � � �
� � � �
� � � �

� �
� �

� � � �> @
� �

1 2
31

2 4G W 1 23

G 3

3131
2 42 4

sin sin
cos

16.0 kg 76.0 kg tan 20.0tan
  0.257

92.0 kg

x

y

mgd Mgd
m MF F md Mdd

F m M g m M g d m M m M

m M
m M

T T
P

T

T

�
��

     
� � � �

� q�
   

�

l l

l  

 
81. The maximum compressive force in a column will occur at the bottom.  The bottom layer supports 

the entire weight of the column, and so the compressive force on that layer is mg .  For the column to 
be on the verge of buckling, the weight divided by the area of the column will be the compressive 
strength of the material.  The mass of the column is its volume (area x height) times its density. 

Compressive Strength
Compressive Strength     

mg hA g
h

A A g
U

U
  o   

Note that the area of the column cancels out of the expression, and so the height does not depend on 
the cross-sectional area of the column. 

 (a) � � � �
6 2

steel 3 3 2

Compressive Strength 500 10 N m
6500 m

7.8 10 kg m 9.80 m s
h

gU
u

   
u

 

 (b) � � � �
6 2

granite 3 3 2

Compressive Strength 170 10 N m
6400 m

2.7 10 kg m 9.80 m s
h

gU
u

   
u

 

 

T T3 h�

h
2.0 m

T

G yF
G

G xF
G

WF
G

MgG
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mgG
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82. See the free–body diagram.  Let M represent the mass of the train, and 
m represent the mass of the bridge.  Write the equilibrium conditions 
for torques, taken about the left end, and for vertical forces.  These 
two equations can be solved for the forces.  Take counterclockwise 
torques as positive.  Note that the position of the train is given by 

.x vt  
� �1

B2 0  Mgx mg FW  � �  o¦ l l

 

� � � � � �
� � � �

� � � �

� �

1 1
B 2 2

2

21
2

4 5 4 5

vert A B

A B

1m s
95000 kg 9.80 m s 80.0 km h

3.6 km h
   23000 kg 9.80m s

280 m

   7.388 10 N s 1.127 10 N 7.4 10 N s 1.1 10 N

0  

1.18

x Mgv
F Mg mg t mg

t

t t

F F F Mg mg

F M m g F

 �  �

 �

 u � u | u � u

 � � �  o

 � �  

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸

© ¹© ¹¨ ¸
¨ ¸
¨ ¸
© ¹

¦

l l

� � � � � �
� � � �

5 2 4 5

4 6 4 6

10 kg 9.80 m s 7.388 10 N s 1.127 10 N

    7.388 10 N s 1.044 10 N 7.4 10 N s 1.0 10 N

t

t t

u � u � u

 � u � u | � u � u

ª º¬ ¼

 

 
83. Since the backpack is midway between the two trees, the angles in the 

free-body diagram are equal.  Write Newton’s second law for the vertical 
direction for the point at which the backpack is attached to the cord, with 
the weight of the backpack being the original downward vertical force. 

T0 0 T0
0

2 sin 0    
2siny

mg
F F mg FT

T
 �  o  ¦  

 Now assume the bear pulls down with an additional force, bearF .  The force equation would be 
modified as follows. 

  � �

� � � �

T final final bear

bear T final final T0 final final
0

2final

0

2 sin 0  

2 sin 2 2 sin 4 sin
2sin

2sin 2sin 27
       1 23.0 kg 9.80 m s 1 565.3N 570 N

sin sin15

yF F mg F

mg
F F mg F mg mg

mg

T

T T T
T

T
T

 � �  o

 �  �  �

q
 �  �  |

q

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

¦

 

 
84.  (a) See the free-body diagram.  To find the tension in 

the wire, take torques about the left edge of the 
beam, with counterclockwise as positive.  The net 
torque must be 0 for the beam to be in equilibrium. 

   

� �
� �

1
T2

T

sin 0  

2
2 sin sin 2sin

mgx Mg F

g mx M mg Mg
F x

W T

T T T

 � �  o

�
  �

¦ l l

l

l l

 

  We see that the tension force is linear in x. 
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 (b) Write the equilibrium condition for vertical and horizontal forces. 

   

� � � �

� �

� � � � � �

hinge T hinge T
horiz horiz

hinge T
vert

1
hinge T 2
vert

2 2
cos 0    cos cos

2 sin 2 tan

sin 0  

2
sin sin 1

2 sin

x

y

g mx M g mx M
F F F F F

F F F m M g

g mx M x
F m M g F m M g mg Mg

T T T
T T

T

T T
T

� �
 �  o    

 � � �  o

�
 � �  � �  � �§ ·

¨ ¸
© ¹

¦

¦

l l

l l

l

l l

 

 
85. Draw a free-body diagram for one of the beams.  By Newton’s third 

law, if the right beam pushes down on the left beam, then the left beam 
pushes up on the right beam.  But the geometry is symmetric for the 
two beams, and so the beam contact force must be horizontal.  For the 
beam to be in equilibrium, NF mg  and so fr NsF F mgP P   is the 
maximum friction force.  Take torques about the top of the beam, so 
that beamF

G
 exerts no torque.  Let clockwise torques be positive. 

  
� �

� �

1
N fr2

1 1

s

cos cos sin 0  

1 1
tan tan 45

2 2 0.5

F mg FW T T T

T
P

� �

 � �  o

   q

¦ l l l

 

 
86. Take torques about the elbow joint.  Let clockwise torques be positive.  Since the arm is in 

equilibrium, the total torque will be 0. 

  
� � � � � � � � � �
� � � � � � � �

� �

max

max

2.0 kg 0.15m 35kg 0.35m 0.050m sin105 0    

2.0 kg 0.15m 35kg 0.35m
2547 N 2500 N

0.050m sin105

g g F

g g
F

W  � � q  o

�
  |

q

¦
 

 
87. (a) Use the free-body diagram in the textbook.  To find the magnitude of M ,F

G
 take torques about an  

axis through point S and perpendicular to the paper.  The upper body is in equilibrium, so the 
net torque must be 0.  Take clockwise torques as positive. 

 
� � � � � �> @ � �
� � � � � �> @

� �

T A H M

T A H
M

0.36 m 0.48m 0.72 m cos30 0.48m sin12 0  

0.36 m 0.48m 0.72 m cos30
0.48m sin12

w w w F

w w w
F

W  � � q � q  o

� � q
 

q

¦
 

 
� � � � � � � � � � � �> @

� �
0.46 0.36 m 0.12 0.48m 0.07 0.72 m cos30

    2.374 2.4
0.48m sin12

w
w w

� � q
  |

q
 

 (b) Write equilibrium conditions for the horizontal and vertical forces.   
Use those conditions to solve for the components of V ,F

G
 and then 

find the magnitude and direction.  Note the free–body diagram for 
determining the components of M.F

G
 The two dashed lines are 

parallel, and so both make an angle of T  with the heavy line 
representing the back. 
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� �
� �
� �

� �

� � � �

horiz V horiz M

V horiz M

vert V vert M T A H

V vert M T A H

2 22 2
V V horiz V vert

cos 30 12 0  

cos18 2.374 cos18 2.258

sin 30 12 0  

sin18 2.374 sin18 0.65 1.384

2.258 1.384

F F F

F F w w

F F F w w w

F F w w w w w w

F F F w w

 � q � q  o

 q  q  

 � q � q � � �  o

 q � � �  q �  

 �  �

¦

¦

1 1V vert
V

V horiz

2.648 2.6

1.384
tan tan 31.51 32  above the horizontal

2.258

w w

F w
F w

T � �

 |

   q | q

 

    
88. We are given that rod AB is under a compressive force F.  Analyze the forces on 

the pin at point A.  See the first free-body diagram.  Write equilibrium equations 
for the horizontal and vertical directions. 

  

AB
horiz AD AB AD

vert AC AD

AC AD

cos45 0    2 ,  in tension
cos 45

sin 45 0  

2
sin 45 2 , in compression

F
F F F F F

F F F

F F F F
r

 q �  o   
q

 � q  o

 q   

¦
¦  

By symmetry, the other outer forces must all be the same magnitude as ABF , and the other diagonal 
force must be the same magnitude as ABF . 

  AC AB BD CD , in compressionF F FF F     ; AD BC 2 ,  in tensionF F F   
 
89. (a) The fractional decrease in the rod’s length is the strain  Use Eq. 12-5.  The force applied is the  

weight of the man. 
� � � �

� � � � � �
2

8 6
22 9 2

0

65kg 9.80 m s
4.506 10 4.5 10 %

0.15 200 10 N m
F mg

AE r ES S
� �'

    u  u
u

l

l
 

(b) The fractional change is the same for the atoms as for the macroscopic material.  Let d represent 
the interatomic spacing. 

� � � � � �

8

0 0

8 8 10 18
0

4.506 10   

4.506 10 4.506 10 2.0 10 m 9.0 10 m

d
d

d d

�

� � � �

' '
  u o

'  u  u u  u

l

l

 
90. (a) See the free-body diagram for the system, showing forces on the engine  

and the forces at the point on the rope where the mechanic is pulling (the 
point of analysis).  Let m represent the mass of the engine.  The fact that 
the engine was raised a half-meter means that the part of the rope from 
the tree branch to the mechanic is 3.25 m, as well as the part from the 
mechanic to the bumper.  From the free-body diagram for the engine, we 
know that the tension in the rope is equal to the weight of the engine.  
Use this, along with the equations of equilibrium at the point where the 
mechanic is pulling, to find the pulling force by the mechanic. 

A

ABF
G

45q

ACF
G

ADF
G

mgG

TF
G

3.0 m
3.25m

F
G

TF
G

TF
G

T
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1

T T

T

3.0 m
Angle:  cos 22.62

3.25m

Engine: 0    

Point:   2 sin 0  
y

x

F F mg F mg

F F F

T

T

�  q

 �  o  

 �  o

¦
¦

 

� � � �22 sin 2 280kg 9.80m s sin 22.62 2111N 2100 NF mg T  q  |  

 (b) 
� � � �2280kg 9.80m sLoad force

Mechanical advantage 1.3N
Applied force 2111N

mg
F

     

 
91. Consider the free-body diagram for the box.  The box is assumed to 

be in equilibrium, but just on the verge of both sliding and tipping.  
Since it is on the verge of sliding, the static frictional force is at its 
maximum value.  Use the equations of equilibrium.  Take torques 
about the lower right corner where the box touches the floor, and 
take clockwise torques as positive.  We also assume that the box is 
just barely tipped up on its corner, so that the forces are still parallel 
and perpendicular to the edges of the box. 

� � � �
N N

fr fr

0    

0    0.60 250 N 150 N

y

x

F F W F W

F F F F F WP

 �  o  

 �  o     

¦
¦

� � � � � � 250 N
0.5m 0    0.5m 0.5m 0.83m

150 N
W

Fh W h
F

W  �  o    ¦  

 
92. See the free-body diagram.  Take torques about the pivot 

point, with clockwise torques as positive.  The plank is in 
equilibrium.  Let m represent the mass of the plank, and M 
represent the mass of the person.  The minimum nail force 
would occur if there was no normal force pushing up on the 
left end of the board. 

  

� � � �
� �

� � � �
� �

nails

nails

0.75m cos 2.25m cos

              0.75m cos 0  

0.75m 2.25m
3

0.75m

mg Mg

F

mg Mg
F mg Mg

W T T

T

 �

�  o

�
  �

¦
 

� �� � � �2       45kg 3 65kg 9.80 m s 2352 N 2400 N �  |  

 
93. (a) Note that since the friction is static friction, we may NOT  

use fr N.F FP   It could be that fr N.F FP�   So, we must 
determine frF  by the equilibrium equations.  Take an axis of 
rotation to be out of the paper, through the point of contact of 
the rope with the wall.  Then neither TF  nor frF  can cause 
any torque.  The torque equilibrium equation is as follows. 

   0
N 0 N    

mgr
F h mgr F

h
 o   

  Take the sum of the forces in the horizontal direction. 

mgG
NF
G

frF
G
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G

T

h

l
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T
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F
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W
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G

h
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h

2.0 m



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

410 

   N 0
N T Tsin     

sin sin
F mgr

F F F
h

T
T T

 o    

  Take the sum of the forces in the vertical direction. 

   
T fr

0 0
fr T

cos   

cos
cos 1 cot

sin

F F mg

mgr r
F mg F mg mg

h h

T

TT T
T

�  o

 �  �  �§ ·
¨ ¸
© ¹

 

 (b) Since the sphere is on the verge of slipping, we know that fr N .F FP  

   0 0
fr N

0 0

    1 cot     cot cot
r mgr h h

F F mg
h h r r

P T P T P T o �  o �   �
§ ·§ ·

¨ ¸ ¨ ¸© ¹ © ¹
 

 
94. There are upward forces at each support (points A and D) and a 

downward applied force at point C.  To find the angles of members 
AB and BD, see the free-body diagram for the whole truss. 

  1 1
A

6.0 6.0
tan 56.3   ;  tan 45

4.0 6.0BT T� �  q   q  

 Write the conditions for equilibrium for the entire truss by 
considering vertical forces and the torques about point A.  Let 
clockwise torques be positive. 

vert A D 0F F F F � �  ¦  

� � � � � �D D

A D

4.0 4.0
4.0m 10.0 m 0    12,000 N 4800 N

10.0 10.0
12,000 N 4800 N 7200 N

F F F F

F F F

W  �  o    

 �  �  

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

¦  

Analyze the forces on the pin at point A.  See the second free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  

� �

vert A AB A

A
AB

A

horiz AC AB A

AC AB A

sin 0  

7200 N
8654 N 8700 N, compression

sin sin56.3

cos 0  

cos 8654 N cos56.3 4802 N 4800 N, tension

F F F

F
F

F F F

F F

T

T

T

T

 �  o

   |
q

 �  o

  q  |

¦

¦
 

 
Analyze the forces on the pin at point C.  See the third free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert BC BC

horiz CD AC CD AC

0    12,000 N, tension

0    4800 N, tension

F F F F F

F F F F F

 �  o   

 �  o   

¦
¦

 

 Analyze the forces on the pin at point D.  See the fourth free-body diagram.  
Write the equilibrium equation for the horizontal direction. 

  
vert BD D CD

CD
BD

D

cos 0  

4800 N
6788 N 6800 N, compression

cos cos 45

F F F

F
F

T

T

 �  o

   |
q

¦
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TF
G

mgG

T T12.5m
x

TF
G

12.5m

95. (a) See the free-body diagram.  We write the equilibrium conditions for  
horizontal and vertical forces, and for rotation.  We also assume that 
both static frictional forces are at their maximum values.  Take 
clockwise torques as positive.  We solve for the smallest angle that 
makes the ladder be in equilibrium. 

   
� �

horiz G W G W

vert G W G W

1
W W2

G G G W W W

0    

0    

cos sin cos 0

  ;  

x x x x

y y y y

x y

x y y x

F F F F F

F F F mg F F mg

mg F F

F F F F

W T T T

P P

 �  o  

 � �  o �  

 � �  

  

¦
¦
¦ l l l

  

Substitute the first equation above into the fourth equation, and simplify 
the third equation, to give this set of equations. 

   � �G W W W W G G W W W  ;  2 tan   ;    ;  y y x y x y y xF F mg mg F F F F F FT P P�   �    

  Substitute the third equation into the second and fourth equations. 
   � �G W G G W W W G G  ;  2 tan   ;  y y y y y yF F mg mg F F F FP T P P�   �   

  Substitute the third equation into the first two equations. 
   � �G W G G G G W G G  ;  2 tany y y yF F mg mg F FP P P T P P�   �  

  Now equate the two expressions for mg, and simplify. 

   � � W G
G W G G G G W G G min

G

1
2 tan     tan

2y y y yF F F F
P PP P P T P P T
P

�
�  � o   

(b) For a frictional wall:  � �
� �

2
1 1W G

min
G

1 0.401
tan tan 46.4 46

2 2 0.40
P PT
P

� � ��
   q | q  

 For a frictionless wall:  � �
� �

2
1 1W G

min
G

1 01
tan tan 51.3 51

2 2 0.40
P PT
P

� � ��
   q | q  

  51.3 46.4
%diff 100 10.6% 11%

46.4
q � q

  |
q

§ ·
¨ ¸
© ¹

 

 
96. (a) See the free-body diagram for the Tyrolean  

traverse technique.  We analyze the point on  
the rope that is at the bottom of the “sag.”  To  
include the safety factor, the tension must be no 
more than 2900 N. 

   
� � � �

� �

� � � �

vert T

2
1 1

min
T
max

min
min min

2 sin 0  

75kg 9.80 m s
sin sin 7.280

2 2 2900 N

tan     12.5m tan 7.280 1.597 m 1.6 m
12.5m

F F mg

mg
F

x
x

T

T

T

� �

 �  o

   q

 o  q  |

¦

 

 (b) Now  the sag amount is  � �1 1
min4 4 1.597 m 0.3992 mx x   .  Use that distance to find the  

tension in the rope. 

mgG

T

GyF
G

GxF
G

sinTl

cosTl

WxF
G

WyF
G
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� � � �

1 1

2

T

0.3992 m
tan tan 1.829

12.5m 12.5m

75kg 9.80 m s
11,512 N 12,000 N

2sin 2sin1.829

x

mg
F

T

T

� �   q

   |
q

 

  The rope will not break, but the safety factor will only be about 4 instead of 10. 
 

97. (a) The stress is given by 
F
A

, the applied force divided by the cross-sectional area, and the strain is  

given by 
0

'l
l

, the elongation over the original length. 

0.0
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ss
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08  N
/m

2 )

 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH12.XLS,” on tab “Problem 12.97a.” 

 
 (b) The elastic  

region is shown 
in the graph. 
 

The slope of the 
stress vs. strain 
graph is the 
elastic modulus, 
and is 

11 22.02 10 N m .u

 
The spreadsheet 
used for this 
problem can be 
found on the 
Media Manager, 
with filename “PSE4_ISM_CH12.XLS,” on tab “Problem 12.97b.” 

 

stress = [2.02 x 1011(strain) - 6.52 x 105] N/m2
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98. See the free-body diagram.  We assume that point C is not 
accelerating, and so the net force at point C is 0.  That net force is 
the vector sum of applied force F

G
 and two identical spring forces 

elas.F
G

  The elastic forces are given by  � �elas amount of stretch .F k   
If the springs are unstretched for 0T  , then 2.0 m must be 
subtracted from the length of AC and BC to find the amount the 
springs have been stretched.  Write Newton’s second law for the 

vertical direction in order to obtain a relationship between F and .T   Note that 
2.0m

cos .T  
l

 

  
� �

� � � �

� �

vert elas elas
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2 sin 0    2 sin
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2.0 m 2.0 m   
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2.0 m 1

2 sin 2 2.0 m sin 2 20.0 N m 2.0m 1 sin
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   80 N tan sin

F F F F F

F k k

F F k

T T

T

T T T
T T

T T

 �  o  

 �  � o

  �  �

 �

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

¦
l

   

 

 This gives F as a function of ,T  but we 
require a graph of T  as a function of F.  
To graph this, we calculate F for 
0 75 ,Td d q  and then simply interchange 
the axes in the graph. 

 

The spreadsheets used for this problem 
can be found on the Media Manager, 
with filename “PSE4_ISM_CH12.XLS”, 
on tab “Problem 12.98”. 
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CHAPTER 13:  Fluids 
 
Responses to Questions 
 
1.  No. If one material has a higher density than another, then the molecules of the first could be heavier 

than those of the second, or the molecules of the first could be more closely packed together than the 
molecules of the second. 

 
2.   The cabin of an airplane is maintained at a pressure lower than sea-level atmospheric pressure, and 

the baggage compartment is not pressurized. Atmospheric pressure is lower at higher altitudes, so 
when an airplane flies up to a high altitude, the air pressure outside a cosmetics bottle drops, 
compared to the pressure inside. The higher pressure inside the bottle forces fluid to leak out around 
the cap.  

 
3.  In the case of the two non-cylindrical containers, perpendicular forces from the sides of the 

containers on the fluid will contribute to the net force on the base. For the middle container, the 
forces from the sides (perpendicular to the sides) will have an upward component, which helps 
support the water and keeps the force on the base the same as the container on the left. For the 
container on the right, the forces from the sides will have a downward component, increasing the 
force on the base so that it is the same as the container on the left.  

 
4.  The pressure is what determines whether or not your skin will be cut. You can push both the pen and 

the pin with the same force, but the pressure exerted by the point of the pin will be much greater than 
the pressure exerted by the blunt end of the pen, because the area of the pin point is much smaller. 

 
5. As the water boils, steam displaces some of the air in the can. When the lid is put on, and the water 

and the can cool, the steam that is trapped in the can condenses back into liquid water.  This reduces 
the pressure in the can to less than atmospheric pressure, and the greater force from the outside air 
pressure crushes the can. 

 
6.  If the cuff is held below the level of the heart, the measured pressure will be the actual blood 

pressure from the pumping of the heart plus the pressure due to the height of blood above the cuff. 
This reading will be too high. Likewise, if the cuff is held above the level of the heart, the reported 
pressure measurement will be too low.    

 
7.  Ice floats in water, so ice is less dense than water. When ice floats, it displaces a volume of water 

that is equal to the weight of the ice. Since ice is less dense than water, the volume of water 
displaced is smaller than the volume of the ice, and some of the ice extends above the top of the 
water. When the ice melts and turns back into water, it will fill a volume exactly equal to the original 
volume of water displaced. The water will not overflow the glass as the ice melts. 

 
8.  No. Alcohol is less dense than ice, so the ice cube would sink. In order to float, the ice cube would 

need to displace a weight of alcohol equal to its own weight. Since alcohol is less dense than ice, this 
is impossible.  

 
9. All carbonated drinks have gas dissolved in them, which reduces their density to less than that of 

water. However, Coke has a significant amount of sugar dissolved in it, making its density greater 
than that of water, so the can of Coke sinks. Diet Coke has no sugar, leaving its density, including 
the can, less that the density of water. The can of Diet Coke floats. 
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10.  In order to float, a ship must displace an amount of water with a weight equal to its own weight. An 
iron block would sink, because it does not have enough volume to displace an amount of water equal 
to its weight. However, the iron of a ship is shaped more like a bowl, so it is able to displace more 
water. If you were to find the average density of the ship and all its contents, including the air it 
holds, you would find that this density would be less than the density of water. 

  
11.  The liquid in the vertical part of the tube over the lower container will fall into the container through 

the action of gravity. This action reduces the pressure in the top of the tube and draws liquid through 
the tube, and into the tube from the upper container. As noted, the tube must be full of liquid initially 
for this to work. 

 
12.  Sand must be added to the barge. If sand is removed, the barge will not need to displace as much 

water since its weight will be less, and it will rise up in the water, making it even less likely to fit 
under the bridge. If sand is added, the barge will sink lower into the water, making it more likely to 
fit under the bridge.  

 
13. As the weather balloon rises into the upper atmosphere, atmospheric pressure on it decreases, 

allowing the balloon to expand as the gas inside it expands. If the balloon were filled to maximum 
capacity on the ground, then the balloon fabric would burst shortly after take-off, as the balloon 
fabric would be unable to expand any additional amount. Filling the balloon to a minimum value on 
take-off allows plenty of room for expansion as the balloon rises. 

 
14.  The water level will fall in all three cases. 

(a) The boat, when floating in the pool, displaces water, causing an increase in the overall level of 
water in the pool. Therefore, when the boat is removed, the water returns to its original (lower) 
level. 

(b) The boat and anchor together must displace an amount of water equal to their combined weight. 
If the anchor is removed, this water is no longer displaced and the water level in the pool will go 
down. 

(c) If the anchor is removed and dropped in the pool, so that it rests on the bottom of the pool,  the 
water level will again go down, but not by as much as when the anchor is removed from the 
boat and pool altogether. When the anchor is in the boat, the combination must displace an 
amount of water equal to their weight because they are floating. When the anchor is dropped 
overboard, it can only displace an amount of water equal to its volume, which is less than the 
amount of water equal to its weight. Less water is displaced so the water level in the pool goes 
down.  

 
15. No. If the balloon is inflated, then the air inside the balloon is slightly compressed by the balloon 

fabric, making it more dense than the outside air. The increase in the buoyant force, present because 
the balloon is filled with air, is more than offset by the increase in weight due to the denser air filling 
the balloon. The apparent weight of the filled balloon will be slightly greater than that of the empty 
balloon. 

 
16.  In order to float, you must displace an amount of water equal to your own weight. Salt water is more 

dense than fresh water, so the volume of salt water you must displace is less than the volume of fresh 
water. You will float higher in the salt water because you are displacing a lower volume of water.  

 
17. The papers will move toward each other. When you blow between the sheets of paper, you reduce 

the air pressure between them (Bernoulli’s principle). The greater air pressure on the other side of 
each sheet will push the sheets toward each other. 
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18.  As the water falls, it speeds up because of the acceleration due to gravity. Because the volume flow 
rate must remain constant, the faster-moving water must have a smaller cross-sectional area 
(equation of continuity). Therefore the water farther from the faucet will have a narrower stream 
than the water nearer the faucet.  

 
19. As a high-speed train travels, it pulls some of the surrounding air with it, due to the viscosity of the 

air.  The moving air reduces the air pressure around the train (Bernoulli’s principle), which in turn 
creates a force toward the train from the surrounding higher air pressure. This force is large enough 
that it could push a light-weight child toward the train. 

 
20. No. Both the cup and the water in it are in free fall and are accelerating downward because of 

gravity. There is no “extra” force on the water so it will not accelerate any faster than the cup; both 
will fall together and water will not flow out of the holes in the cup. 

 
21. Taking off into the wind increases the velocity of the plane relative to the air, an important factor in 

the creation of lift. The plane will be able to take off with a slower ground speed, and a shorter 
runway distance. 

 
22. As the ships move, they drag water with them. The moving water has a lower pressure than 

stationary water, as shown by Bernoulli’s principle. If the ships are moving in parallel paths fairly 
close together, the water between them will have a lower pressure than the water to the outside of 
either one, since it is being dragged by both ships. The ships are in danger of colliding because the 
higher pressure of the water on the outsides will tend to push them towards each other.  

 
23. Air traveling over the top of the car is moving quite fast when the car is traveling at high speed, and, 

due to Bernoulli’s principle, will have a lower pressure than the air inside the car, which is stationary 
with respect to the car. The greater air pressure inside the car will cause the canvas top to bulge out. 

 
24. The air pressure inside and outside a house is typically the same. During a hurricane or tornado, the 

outside air pressure may drop suddenly because of the high wind speeds, as shown by Bernoulli’s 
principle. The greater air pressure inside the house may then push the roof off.  

 
 
Solutions to Problems 
 
1. The mass is found from the density of granite (found in Table 13-1) and the volume of granite. 

� �� �3 3 8 3 11 112.7 10 kg m 10 m 2.7 10 kg 3 10 kgm VU  u  u | u  

 
2. The mass is found from the density of air (found in Table 13-1) and the volume of air. 

� � � � � � � �31.29 kg m 5.6m 3.8m 2.8m 77 kgm VU     

 
3. The mass is found from the density of gold (found in Table 13-1) and the volume of gold. 

� � � � � � � � � �3 319.3 10 kg m 0.56m 0.28m 0.22m 670kg   1500lbm VU  u  |  

 
4. Assume that your density is that of water, and that your mass is 75 kg. 

2 3

3 3

75 kg
7.5 10 m 75 L

1.00 10 kg m

m
V

U
�   u  

u
 

 

Jeroen
Marked ingesteld door Jeroen
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5. To find the specific gravity of the fluid, take the ratio of the density of the fluid to that of water, 
noting that the same volume is used for both liquids. 

� �
� �

fluid fluidfluid
fluid

water waterwater

89.22g 35.00g
0.8547

98.44g 35.00g

m V m
SJ

m V m
U
U

�
     

�
 

 
6. The specific gravity of the mixture is the ratio of the density of the mixture to that of water.  To find 

the density of the mixture, the mass of antifreeze and the mass of water must be known. 

  
antifreeze antifreeze antifreeze antifreeze water antifreeze water water water

mixture mixture mixture antifreeze water antifreeze water antifre
mixture

water water water mixture

          m V SG V m V

m V m m SG V
SG

V

U U U
U U
U U U

   

�
    eze water water

water mixture

V
V

U
U

�  

� � � �antifreeze antifreeze water

mixture

0.80 5.0 L 4.0 L
            0.89

9.0 L

SG V V
V

��
    

 
7. (a) The density from the three-part model is found from the total mass divided by the total volume.   

Let subscript 1 represent the inner core, subscript 2 represent the outer core, and subscript 3 
represent the mantle.  The radii are then the outer boundaries of the labeled region. 

   

� � � �
� � � �

� � � � � � � �

� � � �

3 3 3 3 34 4 4
3 3 31 1 2 2 1 3 3 21 2 3 1 1 2 2 3 3

three 3 3 3 3 34 4 4
layers 3 3 31 2 3 1 2 3 1 2 1 3 2

3 3 3 3 3 3 3 3
1 1 2 2 1 3 3 2 1 1 2 2 2 3 3 3

3 3

3 3

3 3

      

1220km 1900kg m
      

r r r r rm m m m m m
V V V V V V r r r r r

r r r r r r r r
r r

U S U S U SU U UU
S S S

U U U U U U U U

� � � �� � � �
   

� � � � � � � �

� � � � � � � �
  

�
 

� � � � � � � �
� �

3 33 3

3

3 3

3480km 6700kg m 6371km 4400kg m

6371km

5505.3kg m 5510kg m      

�

 |

 

 (b) 
� �

24
3 3

one 334 34density 3 3

5.98 10 kg
5521kg m 5520kg m

6371 10 m

M M
V R

U
S S

u
    |

u
 

  
3 3one three

density layers

3

three
layers

5521kg m 5505kg m
%diff 100 100 0.2906 0.3%

5505kg m

U U

U

�
�

   |
§ ·

§ ·¨ ¸
¨ ¸¨ ¸ © ¹¨ ¸

© ¹

 

 
8. The pressure is given by Eq. 13-3. 

  � � � � � �2 5 21000 9.80m s 35m 3.4 10 N m 3.4atmP ghU   u |  

 
9. (a) The pressure exerted on the floor by the chair leg is caused by the chair pushing down on the  

floor.  That downward push is the reaction to the normal force of the floor on the leg, and the 
normal force on one leg is assumed to be one-fourth of the weight of the chair.  

� � � �
� �

21
4leg 7 2 7 2

chair 2

2

66kg 9.80m s
8.085 10 N m 8.1 10 N m

1m
0.020cm

100cm

W
P

A
   u | u

§ ·
¨ ¸
© ¹

. 

(b) The pressure exerted by the elephant is found in the same way, but with ALL of the weight  
being used, since the elephant is standing on one foot. 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

418 

  
� � � �
� �

2

elephant 5 2 5 2
elephant 2

2

1300kg 9.80m s
1.59 10 N m 2 10 N m

1 m
800cm

100 cm

W
P

A
   u | u

§ ·
¨ ¸
© ¹

. 

Note that the chair pressure is larger than the elephant pressure by a factor of about 400. 
 
10. Use Eq. 13-3 to find the pressure difference.  The density is found in Table 13-1. 

� � � � � �3 3 2

4 2

2

    1.05 10 kg m 9.80m s 1.70m

1 mm-Hg
                            1.749 10 N m 132 mm-Hg

133N m

P gh P g hU U o '  '  u

 u  
§ ·
¨ ¸
© ¹

 

 
11. The height is found from Eq. 13-3, using normal atmospheric pressure.  The density is found in 

Table 13-1. 

  � � � �
5 2

3 3 2

1.013 10 N m
    13m

0.79 10 kg m 9.80m s

P
P gh h

g
U

U
u

 o    
u

 

 That is so tall as to be impractical in many cases.   
 
12. The pressure difference on the lungs is the pressure change from the depth of water. 

  

� �

� � � �

2

3 3 2

133N m
85mm-Hg

1 mm-Hg
    1.154m 1.2m

1.00 10 kg m 9.80m s

P
P g h h

g
U

U
'

'  ' o '    |
u

§ ·
¨ ¸
© ¹  

 
13. The force exerted by the gauge pressure will be equal to the weight of the vehicle. 

  

� �
� � � �

� �

2

5 2

2

2

2
1
2

  

1.013 10 N m
17.0atm

1 atm
6990kg

9.80m s

0.225m

mg PA P r

P r
m

g

S

S
S

  o

u

   

§ ·
ª º¨ ¸ ¬ ¼

© ¹
 

 
14. The sum of the force exerted by the pressure in each tire is equal to the weight of the car. 

  
� � � �

� �

2
5 2 2

4 2

2

1 m
4 2.40 10 N m 220cm

10 cm4
4     2200kg

9.80m s

PA
mg PA m

g

u
 o    

§ ·
¨ ¸
© ¹  

 
15. (a) The absolute pressure is given by Eq. 13-6b, and the total force is the absolute pressure times  

the area of the bottom of the pool. 

   

� � � � � �

� � � � � �

5 2 3 3 2
0

2 5 2

5 2 7

5

1.013 10 N m 1.00 10 kg m 9.80m s 1.8m

   1.189 10 N m 1.2 10 N m

1.189 10 N m 28.0m 8.5m 2.8 10 N

P P gh

F PA

U �  u � u

 u u

  u  u

|  

 (b) The pressure against the side of the pool, near the bottom, will be the same as the pressure at the  

bottom.  Pressure is not directional.  5 21.2 10 N mP  u   
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16. (a) The gauge pressure is given by Eq. 13-3.  The height is the height from the bottom of the hill  
to the top of the water tank. 

   � �� � � �3 3 2 o 5 2

G 1.00 10 kg m 9.80m s 5.0 m 110 m sin58 9.6 10 N mP ghU  u �  uª º¬ ¼  

 (b) The water would be able to shoot up to the top of the tank (ignoring any friction). 

   � � o5.0m 110m sin58 98mh  �   

 
17. The pressure at points a and b are equal since they are the same height in the same fluid.  If they 

were unequal, the fluid would flow.  Calculate the pressure at both a and b, starting with atmospheric 
pressure at the top surface of each liquid, and then equate those pressures. 

  � � � �
� �

0 oil oil 0 water water oil oil water water

3 3

3water water
oil

oil

          

1.00 10 kg m 0.272 m 0.0862 m
683kg m

0.272m

a bP P P gh P gh h h

h
h

U U U U

UU

 o �  � o  o

u �
   

 

 
18. (a) The mass of water in the tube is the volume of the tube times the density of water. 

   � � � � � �22 3 3 21.00 10 kg m 0.30 10 m 12 m 0.3393kg 0.34 kgm V r hU US S �   u u  |  

 (b) The net force exerted on the lid is the gauge pressure of the water times the area of the lid.  The  
gauge pressure is found from Eq. 13-3. 

   � �� �� � � �22 3 3 2 4

gauge 1.00 10 kg m 9.80m s 12m 0.21m 1.6 10 NF P A gh RU S S   u  u  

 
19. We use the relationship developed in Example 13-5. 

� � � � � �� �4 1

0 0
1.25 10 m 8850m5 2 4 2

0 1.013 10 N m 3.35 10 N m 0.331atmg P yP Pe eU
� �� u�  u  u |  

 Note that if we used the constant density approximation, 0 ,P P ghU �  a negative pressure would 

result. 
 
20. Consider the lever (handle) of the press.  The net torque 

on that handle is 0.  Use that to find the force exerted by 
the hydraulic fluid upwards on the small cylinder (and 
the lever).  Then Pascal’s principle can be used to find 
the upwards force on the large cylinder, which is the 
same as the force on the sample. 

  

� �

� � � �
� � � �

1 1

1 2
1 2 2 21 1

2 21 2

2 2

2 1 2 1 2 1 sample

2 0    2

      

2   

F F F F

F F
P P

d d

F F d d F d d F

W

S S

 �  o  

 o  o

   o

¦ l l

 

� � � � � �2 2

sample 7 22 1
sample 4 2

sample sample

2 2 350 N 5
4.4 10 N m 430atm

4.0 10 m

F F d d
P

A A �
    u |

u
 

 
21. The pressure in the tank is atmospheric pressure plus the pressure difference due to the column of 

mercury, as given in Eq. 13-6b. 
 (a) 0 Hg1.04barP P gh ghU U �  �  

D1

D1 B

F
G

1F
G

2F
G

sampleF
G

l l

Jeroen
Marked ingesteld door Jeroen

Jeroen
Marked ingesteld door Jeroen
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� � � � � � � �
5 2

3 3 2 5 21.00 10 N m
   1.04bar 13.6 10 kg m 9.80m s 0.210m 1.32 10 N m

1bar

u
 � u  u

§ ·
¨ ¸
© ¹

 

 (b) � � � � � � � �
5 2

3 3 2 4 21.00 10 N m
1.04bar 13.6 10 kg m 9.80m s 0.052m 9.7 10 N m

1bar
P

u
 � u �  u

§ ·
¨ ¸
© ¹

 

 
22. (a) See the diagram.  In the accelerated frame of the beaker, there is a  

pseudoforce opposite to the direction of the acceleration, and so there is 
a pseudo acceleration as shown on the diagram.  The effective 
acceleration, cgG , is given by .c  �g g aG G G

  The surface of the water will be 
perpendicular to the effective acceleration, and thus makes an angle 

1tan .
a
g

T �  

 (b) The left edge of the water surface, opposite to the direction of the  
acceleration, will be higher. 

(c) Constant pressure lines will be parallel to the surface.  From the second 
diagram, we see that a vertical depth of h  corresponds to a depth of hc   
perpendicular to the surface, where cos ,h h Tc   and so we have the 
following. 

   

� �2 2
0 0

2 2

0 02 2

cos

  

P P g h P g a h

g
P g a h P hg

g a

U U T

U U

c c �  � �

 � �  
�

§ ·
�¨ ¸¨ ¸

© ¹

 

  And so 0P P hgU � , as in the unaccelerated case. 

  
23. (a) Because the pressure varies with depth, the force on the wall  

will also vary with depth.  So to find the total force on the 
wall, we will have to integrate.  Measure vertical distance y 
downward from the top level of the water behind the dam.  
Then at a depth y, choose an infinitesimal area of width b 
and height dy.  The pressure due to the water at that depth is 
P gyU . 

   
� � � �

� � � � 21
20

 ;  
h

P gy dF PdA gy bdy

F dF gy bdy gbh

U U

U U

   

   

o

³ ³
 

 (b) The lever arm for the force dF about the bottom of the dam  
is ,h y�  and so the torque caused by that force is 

� �d h y dFW  � .  Integrate to find the total torque. 

   
� � � � � � � �

� �

2

0 0

2 3 31 1 1
2 3 60

  

h h

h

d h y gy bdy gb hy y dy

gb hy y gbh

W W U U

U U

  �  �

 �  

³ ³ ³
 

  Consider that torque as caused by the total force, applied at a single distance from the bottom d.  

   3 21 1 1
6 2 3    gbh Fd gbh d d hW U U   o   

 
 

b

y

d y

d F

h

t

gGcgG
T

TaG

h T
hc
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 (c) To prevent overturning, the torque caused by gravity about the lower right front corner in the  
diagram must be at least as big as the torque caused by the water.  The lever arm for gravity is 
half the thickness of the dam. 

   

� � � � � �3 31 1 1 1
concrete water2 6 2 6

3 3
water1 1

3 3 3 3
concrete

      

1.00 10 kg m
0.38

2.3 10 kg m

mg t gbh hbt g t gbh

t
h

U U U

U
U

t o t o

u
t   

u

 

So we must have 0.38t ht  to prevent overturning.  Atmospheric pressure need not be added in 
because it is exerted on BOTH sides of the dam, and so causes no net force or torque.  In part 
(a), the actual pressure at a depth y is 0P P gyU � , and of course air pressure acts on the 

exposed side of the dam as well. 
 

24. From section 9-5, the change in volume due to pressure change is 
0

V P
V B
' '

 � , where B is the bulk 

modulus of the water, given in Table 12-1.  The pressure increase with depth for a fluid of constant 
density is given by P g hU'  ' , where h'  is the depth of descent.  If the density change is small, 

then we can use the initial value of the density to calculate the pressure change, and so 0P g hU' | ' .  

Finally, consider a constant mass of water.  That constant mass will relate the volume and density at 
the two locations by 0 0M V VU U  .  Combine these relationships and solve for the density deep in 

the sea, U . 

  � � � � � �

0 0

3

0 0 0 0 0 0 0
3 2 3

00
0 0

9 2

3 3 3

  

1025kg m

1025kg m 9.80m s 5.4 10 m1 1
2.0 10 N m

   1054kg m 1.05 10 kg m

V V

V V V
ghPV V V V V

BB

U U

U U U UU U

 o

     
'� ' u�� � �

u

 | u

§ ·
¨ ¸
© ¹

 

  0

1054
1.028

1025
U U    

 The density at the 6 km depth is about  3% larger  than the density at the surface. 
 
25. Consider a layer of liquid of (small) height h' , and ignore the 

pressure variation due to height in that layer.  Take a cylindrical 
ring of water of height h' , radius r, and thickness dr.  See the 
diagram (the height is not shown).  The volume of the ring of 
liquid is � �2 r h drS ' , and so has a mass of � �2dm r h drSU ' .  

That mass of water has a net centripetal force on it of magnitude 

� �2
radialdF r dmZ  � �2 2r r h drZ U S ' .  That force comes from a 

pressure difference across the surface area of the liquid.  Let the 
pressure at the inside surface be P , which causes an outward 
force, and the pressure at the outside surface be P dP� , which 
causes an inward force.  The surface area over which these 
pressures act is 2 r hS ' , the “walls” of the cylindrical ring.  Use Newton’s second law. 

  � � � � � �2
radial outer inner

wall wall

    2 2 2   dF dF dF r r h dr P dP r h P r hZ U S S S � o '  � ' � ' o  

r

dr
P
P dP�

Z

radialdF
G
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0

2 2 2 2 2 21 1
0 02 2

0

            
P r

P

dP r dr dP r dr P P r P P rZ U Z U UZ UZ o  o �  o  �³ ³  

 
26. If the iron is floating, then the net force on it is zero.  The buoyant force on the iron must be equal to 

its weight.  The buoyant force is equal to the weight of the mercury displaced by the submerged iron. 

  

buoyant Fe Hg submerged Fe total

3 3
submerged Fe

3 3

total Hg

      

7.8 10 kg m
0.57 57%

13.6 10 kg m

F m g gV gV

V
V

U U

U
U

 o  o

u
   |

u

 

 
27. The difference in the actual mass and the apparent mass is the mass of the water displaced by the 

rock.  The mass of the water displaced is the volume of the rock times the density of water, and the 
volume of the rock is the mass of the rock divided by its density.  Combining these relationships 
yields an expression for the density of the rock. 

� �

rock
actual apparent water rock water

rock

3 3 3rock
rock water

  

9.28 kg
1.00 10 kg m 2990 kg m

9.28 kg 6.18 kg

m
m m m V

m
m

U U
U

U U

�  '   o

  u  
' �

 

 
28. (a) When the hull is submerged, both the buoyant force and the tension force act upward on  

the hull, and so their sum is equal to the weight of the hull, if the hill is not accelerated as it is 
lifted.  The buoyant force is the weight of the water displaced. 

   

� � � �

buoyant

hull water
buoyant hull water sub hull water hull

hull hull

3 3
4 2 5 5

3 3

  

1

1.00 10 kg m
  1.6 10 kg 9.80 m s 1 1.367 10 N 1.4 10 N

7.8 10 kg m

T F mg

m
T mg F m g V g m g g m g

UU U
U U

�  o

 �  �  �  �

u
 u �  u | u

u

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

 (b) When the hull is completely out of the water, the tension in the crane’s cable must be  
equal to the weight of the hull. 

   � � � �4 2 5 51.6 10 kg 9.80 m s 1.568 10 N 1.6 10 NT mg  u  u | u  

 
29. The buoyant force of the balloon must equal the weight of the balloon plus the weight of the helium 

in the balloon plus the weight of the load.  For calculating the weight of the helium, we assume it is 
at 0oC and 1 atm pressure.  The buoyant force is the weight of the air displaced by the volume of the 
balloon. 

  � �
� � � �

buoyant air balloon He balloon cargo

cargo air balloon He balloon air balloon He balloon balloon air He balloon balloon

33 3 34
3

  

        1.29 kg m 0.179 kg m 7.35m 930 kg 920 kg 9.0 10 N

F V g m g m g m g

m V m m V V m V m

U

U U U U U

S

  � � o

 � �  � �  � �

 � �   u

 

 
30. The difference in the actual mass and the apparent mass is the mass of the water displaced by the 

legs.  The mass of the water displaced is the volume of the legs times the density of water, and the 
volume of the legs is the mass of the legs divided by their density.  The density of the legs is 
assumed to be the same as that of water.  Combining these relationships yields an expression for the 
mass of the legs. 
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� � � �

legs

actual apparent water legs water leg

legs

1 1
leg 2 2

2   

74 kg 54 kg 10 kg  2 sig. fig.

m
m m m V m

m m

U U
U

�  '    o

 '  �  

 

 
31. The apparent weight is the actual weight minus the buoyant force.  The buoyant force is weight of a 

mass of water occupying the volume of the metal sample. 

� � � � � �

2 2

2

2

metal
apparent metal B metal metal H O metal H O

metal

metal
apparent metal H O

metal

3 3metal
metal H O

metal apparent

 

  

63.5g
1000 kg m 7840 kg m

63.5g 55.4 g

m
m g m g F m g V g m g g

m
m m

m
m m

U U
U

U
U

U U

 �  �  � o

 � o

   
� �

 

Based on the density value, the metal is probably  iron or steel  . 
 
32. The difference in the actual mass and the apparent mass of the aluminum is the mass of the air 

displaced by the aluminum.  The mass of the air displaced is the volume of the aluminum times the 
density of air, and the volume of the aluminum is the actual mass of the aluminum divided by the 
density of aluminum.  Combining these relationships yields an expression for the actual mass. 

  

actual
actual apparent air Al air

Al

apparent

actual 3
air

3 3
Al

  

3.0000 kg
3.0014 kg

1.29 kg m1 1
2.70 10 kg m

m
m m V

m
m

U U
U

U
U

�   o

   
� �

u

 

 
33. The buoyant force on the drum must be equal to the weight of the steel plus the weight of the 

gasoline.  The weight of each component is its respective volume times density.  The buoyant force 
is the weight of total volume of displaced water.  We assume that the drum just “barely” floats – in 
other words, the volume of water displaced is equal to the total volume of gasoline and steel. 

� �B steel gasoline gasoline steel water steel steel gasoline gasoline

gasoline water steel water steel steel gasoline gasoline

water gasoline

steel gasoline

steel water

      

  

2

F W W V V g V g V g

V V V V

V V

U U U

U U U U

U U
U U

 � o �  � o

�  � o

�
  

�
§ ·
¨ ¸
© ¹

� �
3 3

2 3

3 3

1000kg m 680kg m
30L 10.82 L 1.1 10 m

7800kg m 1000kg m
��

 | u
�

§ ·
¨ ¸
© ¹

 

 
34. (a) The buoyant force is the weight of the water displaced, using the density of sea water. 
   buoyant water water displaced

displaced

F m g V gU   

   � �� � � �
3 3

3 3 21 10 m
          1.025 10 kg m 65.0 L 9.80 m s 653 N

1 L

�u
 u  

§ ·
¨ ¸
© ¹

 

 (b) The weight of the diver is � �� �2
diver 68.0 kg 9.80 m s 666 Nm g   .  Since the buoyant  

force is not as large as her weight, she will sink , although it will be very gradual since the two 
forces are almost the same. 
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35. The buoyant force on the ice is equal to the weight of the ice, since it floats. 

  

� � � �

� � � �

buoyant ice seawater ice seawater ice
submerged submerged

seawater seawater ice ice water submerged water iceseawater ice
ice

submerged iceseawater ice
ice

submerged

          

      

  

F W m g m g m m

V V SG V SG V

SG V SG V

V

U U U U

 o  o  o

 o  o

 o

� �
� �

ice
ice ice ice

ice
seawater

0.917
0.895

1.025

SG
V V V

SG
   

 

 Thus the fraction above the water is above ice submerged ice0.105  or 10.5%V V V V �   

 
36. (a) The difference in the actual mass and the apparent mass of the aluminum ball is the mass of the  

liquid displaced by the ball.  The mass of the liquid displaced is the volume of the ball times the 
density of the liquid, and the volume of the ball is the mass of the ball divided by its density.  
Combining these relationships yields an expression for the density of the liquid. 

� � � �

ball
actual apparent liquid ball liquid

Al

3 3 3

liquid Al

ball

  

3.80 kg 2.10 kg
2.70 10 kg m 1210 kg m

3.80 kg

m
m m m V

m
m

U U
U

U U

�  '   o

�'
  u  

 

 (b) Generalizing the relation from above, we have object apparent

liquid object

object

m m
m

U U
�

 
§ ·
¨ ¸
© ¹

. 

 
37. (a) The buoyant force on the object is equal to the weight of the fluid displaced.  The force of  

gravity of the fluid can be considered to act at the center of gravity of the fluid (see section 9-8).  
If the object were removed from the fluid and that space re-filled with an equal volume of fluid, 
that fluid would be in equilibrium.  Since there are only two forces on that volume of fluid, 
gravity and the buoyant force, they must be equal in magnitude and act at the same point.  
Otherwise they would be a couple (see Figure 12-4), exert a non-zero torque, and cause rotation 
of the fluid.  Since the fluid does not rotate, we may conclude that 
the buoyant force acts at the center of gravity. 

(b) From the diagram, if the center of buoyancy (the point where the 
buoyancy force acts) is above the center of gravity (the point where 
gravity acts) of the entire ship, when the ship tilts, the net torque 
about the center of mass will tend to reduce the tilt.  If the center of 
buoyancy is below the center of gravity of the entire ship, when the 
ship tilts, the net torque about the center of mass will tend to increase the tilt.  Stability is 
achieved when the center of buoyancy is above the center of gravity. 

 
38. The weight of the object must be balanced by the two buoyant forces, one from the water and one 

from the oil.  The buoyant force is the density of the liquid, times the volume in the liquid, times the 
acceleration due to gravity.  We represent the edge length of the cube by l. 

  � � � �2 2

B B oil oil water water oil water
oil water

0.28 0.72   mg F F V g V g g gU U U U �  �  � ol l l l  

  
� � � � � � � �33 2 2

oil water0.28 0.72 0.100m 0.28 810kg m 0.72 1000kg m

   0.9468kg 0.95kg

m U U �  �

 |

ª º¬ ¼l

 

mgG

buoyF
G

mgG

buoyF
G
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 The buoyant force is the weight of the object, � � � �20.9468kg 9.80m s 9.3Nmg    

 
39. The buoyant force must be equal to the combined weight of the helium balloons and the person.  We 

ignore the buoyant force due to the volume of the person, and we ignore the mass of the balloon 
material. 

  

� � � � � �

� �
� �

� � � �

person34
B person He air He person He He He 3

air He

person

33 3 3
air He

          

3 3 75kg
3587 3600balloons

4 4 0.165m 1.29kg m 0.179kg m

m
F m m g V g m V g V N r

m
N

r

U U S
U U

S U U S

 � o  � o   o
�

   |
� �

 

 
40. There will be a downward gravity force and an upward buoyant force on the fully submerged tank.   

The buoyant force is constant, but the gravity force will decrease as the air is removed.  Take 
upwards to be positive. 

� �
� � � � � �

� �
� � � � � �

full B total water tank tank air

3 3 2

empty B total water tank tank air

3 3 2

     1025kg m 0.0157m 17.0kg 9.80m s 8.89 N 9N downward

     1025kg m 0.0157m 14.0kg 9.80m s 20.51N 21N upward

F F m g V g m m g

F F m g V g m m g

U

U

 �  � �

 �  � |

 �  � �

 �  |

ª º¬ ¼

ª º¬ ¼

 

 
41. The apparent weight is the force required to hold the 

system in equilibrium.  In the first case, the object is 
held above the water.  In the second case, the object 
is allowed to be pulled under the water.  Consider 
the free-body diagram for each case. 

 Case 1: 1 buoy sinker
sinker

0F w w F w � � �  ¦   

 Case 2: 2 buoy buoy sinker
object sinker

0F w F w F w � � �  �¦  

Since both add to 0, equate them.  Also note that the 
specific gravity can be expressed in terms of the 
buoyancy force. 

  object water
buoy object water water object
object object object S.G.

m w
F V g g m g

UU U
U U

     

  

� �

1 buoy sinker 2 buoy buoy sinker
sinker object sinker

1 2 buoy 2
object 1 2

0   

    S.G.
S.G.

w w F w w F w F w

w w
w w F w

w w

� � �   � � � � o

 �  � o  
�

 

  
42. For the combination to just barely sink, the total weight of the wood and lead must be equal to the 

total buoyant force on the wood and the lead. 

  

weight buoyant wood Pb wood water Pb water

wood Pb water water
wood Pb water water Pb wood

wood Pb Pb wood

      

   1 1   

F F m g m g V g V g

m m
m m m m

U U

U U
U U

U U U U

 o �  � o

�  � o �  � o
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
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w

buoy
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F

apparent 1F w 
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w
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sinker

F

apparent 2F w buoy
object
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  � �
water

wood wood
Pb wood wood

water

Pb Pb

1 11 1 1
0.503.25kg 3.57 kg

11 11 1
11.3

SG
m m m

SG

U
U

U
U

� � �
    

�� �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹
§ · § · § ·

¨ ¸¨ ¸ ¨ ¸ © ¹© ¹ © ¹

 

 
43. We apply the equation of continuity at constant density, Eq. 13-7b. 
  Flow rate out of duct = Flow rate into room 

� � � � � �
� � � �

2 room room
duct duct duct duct 2

2
to fill to fill
room room

8.2 m 5.0 m 3.5m
    2.8 m s

60s
0.15m 12 min

1 min

V V
A v r v v

t r t
S

S S
  o    

§ ·
¨ ¸
© ¹

 

 
44. Use Eq. 13-7b, the equation of continuity for an incompressible fluid, to compare blood flow in the  

aorta and in the major arteries. 

  

� � � �
� � � �

aorta arteries

2

aorta
arteries aorta 2

arteries

  

1.2 cm
40 cm s 90.5cm s 0.9 m s

2.0 cm

Av Av

A
v v

A
S

 o

   |
 

 
45. We may apply Torricelli’s theorem, Eq. 13-9. 

� � � � � � � �2

1 2 12 2 9.80 m s 5.3m 10.2 m s 10 m s  2 sig. fig.v g y y �   |  

 
46. The flow speed is the speed of the water in the input tube.  The entire volume of the water in the tank 

is to be processed in 4.0 h.  The volume of water passing through the input tube per unit time is the 
volume rate of flow, as expressed in the text immediately after Eq. 13-7b. 

  
� � � � � �

� � � �
2

2

0.36 m 1.0 m 0.60 m
    0.02122 m s 2.1cm s

3600s
0.015 m 4.0 h

1h

V V wh
Av v

t A t r tS S
 o     |

' ' ' § ·
¨ ¸
© ¹

l
 

 
47. Apply Bernoulli’s equation with point 1 being the water main, and point 2 being the top of the spray.  

The velocity of the water will be zero at both points.  The pressure at point 2 will be atmospheric 
pressure.  Measure heights from the level of point 1. 

  2 21 1
1 1 1 2 2 22 2  P v gy P v gyU U U U� �  � � o  

  � � � � � �3 3 2 5 2
1 atm 2 1.00 10 kg m 9.80 m s 18 m 1.8 10 N mP P gyU�   u  u  

 
48. The volume flow rate of water from the hose, multiplied times the time of filling, must equal the 

volume of the pool. 

  

� � � � � �

� � � �

2

pool pool 5

2hose
"hose hose 51

2 8 "

5

3.05 m 1.2 m
    4.429 10 s

1m
0.40 m s

39.37

1day
4.429 10 s 5.1 days

60 60 24s

V V
Av t

t A v
S

S
 o    u

u  
u u

ª º§ ·
¨ ¸« »© ¹¬ ¼
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49. We assume that there is no appreciable height difference between the two sides of the roof.  Then the 
net force on the roof due to the air is the difference in pressure on the two sides of the roof, times the 
area of the roof.  The difference in pressure can be found from Bernoulli’s equation. 

2 21 1
inside inside inside outside outside outside2 2  P v gy P v gyU U U U� �  � � o  

� � � � � � � �

2 air1
inside outside air outside2

roof

2

2 31 1
air air outside roof2 2

5

  

1m s
1.29 kg m 180 km h 6.2 m 12.4 m

3.6 km h

1.2 10 N    

F
P P v

A

F v A

U

U

�   o

  

 u

ª º§ ·
¨ ¸« »
© ¹¬ ¼

 

 
50. Use the equation of continuity (Eq. 13-7b) to relate the volume flow of water at the two locations, 

and use Bernoulli’s equation (Eq. 13-8) to relate the pressure conditions at the two locations.  We 
assume that the two locations are at the same height.  Express the pressures as atmospheric pressure 
plus gauge pressure.  Use subscript “1” for the larger diameter, and “2” for the smaller diameter. 

  
� �

� � � �

2 2

1 1 1
1 1 2 2 2 1 1 12 2

2 2 2

2 21 1
0 1 1 1 0 2 2 22 2

4
2 2 2 1 211 1 1

1 1 2 2 2 1 12 2 2 4 4
2 1

4

2

3
22 21 2

1 1 1 4

1
4

2

    

  

2
      

1

2 32.0 10 P2
3.0 10 m

1

A r r
A v A v v v v v

A r r

P P v gy P P v gy

P Pr
P v P v P v v

r r
r

P P
A v r

r
r

S
S

U U U U

U U U
U

S S
U
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 o    

� � �  � � � o

�
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�

u�
  u

�

§ ·
¨ ¸
© ¹
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� � � �
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3

42

3 3

42

3 3

a 24.0 10 Pa

3.0 10 m
1.0 10 kg m 1

2.25 10 m

      7.7 10 m s
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�

�

� u
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u �

u

 u

§ ·
¨ ¸
¨ ¸
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51. The air pressure inside the hurricane can be estimated using Bernoulli’s equation.  Assume the  

pressure outside the hurricane is air pressure, the speed of the wind outside the hurricane is 0, and 
that the two pressure measurements are made at the same height. 

  
� � � �

2 21 1
inside inside inside outside outside outside2 2

21
inside outside air inside2

2

5 31
2

4

  

1000 m 1h
       1.013 10 Pa 1.29 kg m 300 km h

km 3600s

       9.7 10 Pa 0.96atm

P v gy P v gy

P P v

U U U U

U

� �  � � o

 �

 u �

 u |

ª º§ ·§ ·
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52. The lift force would be the difference in pressure between the two wing surfaces, times the area of 

the wing surface.  The difference in pressure can be found from Bernoulli’s equation.  We consider 
the two surfaces of the wing to be at the same height above the ground.  Call the bottom surface of 
the wing point 1, and the top surface point 2. 
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� �
� � � � � �
� � � � � � � �

2 2 2 21 1 1
1 1 1 2 2 2 1 2 2 12 2 2

2 21
lift 1 2 2 12

2 23 2 61
2

    

Area of wing

     1.29 kg m 280 m s 150 m s 88 m 3.2 10 N

P v gy P v gy P P v v

F P P v v A

U U U U U

U

� �  � � o �  �

 �  �

 �  uª º¬ ¼

 

 
53. Consider the volume of fluid in the pipe.  At each end of the pipe there is a force towards the 

contained fluid, given by F PA .  Since the area of the pipe is constant, we have that 
� �net 1 2F P P A � .  Then, since the power required is the force on the fluid times its velocity, and 

AV Q  volume rate of flow, we have � � � �net 1 2 1 2 .P F v P P Av P P Q  �  �  

 
54. Use the equation of continuity (Eq. 13-7b) to relate the volume flow of water at the two locations,  

and use Bernoulli’s equation (Eq. 13-8) to relate the conditions at the street to those at the top floor.  
Express the pressures as atmospheric pressure plus gauge pressure. 
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street street top top

2
21
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top street 2

21
top 2

2 21 1
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5
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               1.00 10 kg m 9.80 m s 18 m

1atm
       2.064 10 Pa 2.0atm

1.013 10 Pa

v gy y yU� � �
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55. Apply both Bernoulli’s equation and the equation of continuity between the two openings of the  

tank.  Note that the pressure at each opening will be atmospheric pressure. 

  � �

� �
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2
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56. (a) Relate the conditions at the top surface and at the opening by Bernoulli’s equation. 

   

� �
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2 2 21 1 1
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 (b) � �
� �

� � � � � �

5

22
1 2 1 33

1.013 10 Pa
2 0.85atm

atm2
2 2 9.80 m s 2.4 m 15m s

1.00 10 kg m

P
v g y y

U

u

 � �  �  
u

§ ·
¨ ¸
© ¹  

  
57. We assume that the water is launched from the same level at which it lands.  Then the level range 

formula, derived in Example 3-10, applies. That formula is 
2

0 0sin 2
.

v
R

g
T

   If the range has 

increased by a factor of 4, then the initial speed has increased by a factor of 2.  The equation of 
continuity is then applied to determine the change in the hose opening.  The water will have the same 
volume rate of flow, whether the opening is large or small. 

  � � � �
fully
open

fully partly partly fully fully
open open open open openpartly

open

1
    

2

v
Av Av A A A

v
 o   § ·

¨ ¸
© ¹

 

 Thus 1 2 of the hose opening was blocked. 

 
58. Use Bernoulli’s equation to find the speed of the liquid as it leaves the opening, assuming that the 

speed of the liquid at the top is 0, and that the pressure at each opening is air pressure. 

� �2 21 1
1 1 1 2 2 2 1 2 12 2

    2P v gy P v gy v g h hU U U U� �  � � o  �  

(a) Since the liquid is launched horizontally, the initial vertical speed is zero.  Use Eq. 2-12b for  
constant acceleration to find the time of fall, with upward as the positive direction.  Then 
multiply the time of fall times 1v , the (constant) horizontal speed. 
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2 2 11 1
0 0 12 2

1
1 2 1 2 1 1

2
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2
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y y

h
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h
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 (b) We seek some height 1hc  such that � � � �2 1 1 2 1 12 2 .h h h h h hc c�  �  

� � � � � � � �2 1 1 2 1 1 2 1 1 2 1 12 2       h h h h h h h h h h h hc c c c�  � o �  � o   
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� � � �

2
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4 4 4 2 2 2 2
,

2 2 2 2 2

h h h h h h

h h h h h h h h h h h h h h h h
h

h h h

c c� � �  o

r � � r � � r � �c     

c  �

  
59. (a) Apply Bernoulli’s equation to point 1, the exit hole, and point 2, the top surface of the liquid in  

the tank.  Note that both points are open to the air and so the pressure is atmospheric pressure.  
Also apply the equation of continuity � �1 1 2 2A v A v to the same two points. 
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   � �
2

1
2 2 22

2 12
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  Note that since the water level is decreasing, we have 2

dh
v

dt
 � , and so � �

2
1

2 2
2 1

2
.

dh ghA
dt A A

 �
�

 

 (b) Integrate to find the height as a function of time. 
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 (c) We solve for the time at which 0,h   given the other parameters.  In particular,  
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60. (a) Apply the equation of continuity and Bernoulli’s equation at the same height to the wide and  

narrow portions of the tube. 
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61. (a) Relate the conditions inside the rocket and just outside the exit orifice by means of Bernoulli’s  
equation and the equation of continuity.  We ignore any height difference between the two 
locations. 
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(b) Thrust is defined in section 9-10, by thrust rel

dm
F v

dt
 , and is interpreted as the force on the rocket 

due to the ejection of mass. 
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62. There is a forward force on the exiting water, and so by Newton’s third law there is an equal force 

pushing backwards on the hose.  To keep the hose stationary, you push forward on the hose, and so 
the hose pushes backwards on you.  So the force on the exiting water is the same magnitude as the 
force on the person holding the hose.  Use Newton’s second law and the equation of continuity to find 
the force.  Note that the 450 L/min flow rate is the volume of water being accelerated per unit time.  
Also, the flow rate is the product of the cross-sectional area of the moving fluid, times the speed of 

the fluid, and so 1 1 2 2

V
A v A v

t
  . 
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63. Apply Eq. 13-11 for the viscosity force.  Use the average radius to calculate the plate area. 
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� �
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64. The relationship between velocity and the force of viscosity is given by Eq. 

13-11, vis .
v

F AK 
l

 The variable A is the area of contact between the 

moving surface and the liquid.  For a cylinder, 2 .A rhS   The variable l is 
the thickness of the fluid layer between the two surfaces.  See the diagram.  
If the object falls with terminal velocity, then the net force must be 0, and so 
the viscous force will equal the weight.  Note that 

� �1
2 1.00cm 0.900cm 0.05cm. �  l  

weight vis       
v

F F mg AK o  o
l
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<
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65. Use Poiseuille’s equation (Eq. 13-12) to find the pressure difference. 
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66. From Poiseuille’s equation, the volume flow rate Q is proportional to 4R if all other factors are the 

same.  Thus 4

4

1V
Q R

t R
 is constant.  If the volume of water used to water the garden is to be the 

same in both cases, then 4tR  is constant. 
4 4

4 4 1
1 1 2 2 2 1 1 1

2

3 8
    0.13

5 8

R
t R t R t t t t

R
 o    

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

Thus the  time has been cut by 87%  . 
 
67. Use Poiseuille’s equation to find the radius, and then double the radius to the diameter. 
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68. Use Poiseuille’s equation to find the pressure difference. 
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69. (a) 
� � � � � �3

3

22 0.35m s 0.80 10 m 1.05 10 kg m2
1470

4 10 Pa s

vr
Re

U
K �

� �u u
   

u <
 

The flow is  laminar  at this speed. 
(b) Since the velocity is doubled the Reynolds number will double to 2940. The flow is  turbulent    

at this speed. 
 
70. From Poiseuille’s equation, Eq. 13-12, the volume flow rate Q  is proportional to 4R if all other 

factors are the same.  Thus 4Q R is constant. 

  � �
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1/ 4final initial final
final initial initial initial4 4
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 o    
§ ·
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, a  38%  reduction. 

 
71. The fluid pressure must be 78 torr higher than air pressure as it exits the needle, so that the blood will 

enter the vein.  The pressure at the entrance to the needle must be higher than 78 torr, due to the 
viscosity of the blood.  To produce that excess pressure, the blood reservoir is placed above the level 
of the needle.  Use Poiseuille’s equation to calculate the excess pressure needed due to the viscosity, 
and then use Eq. 13-6b to find the height of the blood reservoir necessary to produce that excess 
pressure. 
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72. In Figure 13-35, we have 2FJ  l .  Use this to calculate the force. 

  
� �

3
23.4 10 N

2.4 10 N m
2 2 0.070 m

FJ
�

�u
   u

l
 

 
73. In Figure 13-35, we have 2FJ  l .  Use this relationship to  

calculate the force. 

  � � � � 22     2 2 0.025 N m 0.245m 1.2 10 NF FJ J � o    ul l  

 
74. (a) We assume that the weight of the platinum ring is negligible.  Then the surface tension is the  

force to lift the ring, divided by the length of surface that is being pulled.  Surface tension will 

act at both edges of the ring, as in Figure 13-35b.  Thus 
� �2 2 4

F F
r r

J
S S

   

(b) � �
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2
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F
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J
S S

�
�

�

u
   u
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75. As an estimate, we assume that the surface tension force acts vertically.  We assume that the free-

body diagram for the cylinder is similar to Figure 13-37(a) in the text.  The weight must equal the 
total surface tension force.  The needle is of length l. 

  

� �
� �

� � � �

21
T needle needle2

3

needle 3 2

needle

2     2   

8 0.072 N m8
1.55 10 m 1.5mm

7800 kg m 9.80 m s

mg F d g

d
g

U S J

J
U S S

�

 o  o

   u |

l l

 

 
76. Consider half of the soap bubble – a hemisphere.  The forces on the 

hemisphere will be the surface tensions on the two circles and the net 
force from the excess pressure between the inside and the outside of 
the bubble.  This net force is the sum of all the forces perpendicular 
to the surface of the hemisphere, but must be parallel to the surface 
tension.  Therefore we can find it by finding the force on the circle 
that is the base of the hemisphere.  The total force must be zero.  
Note that the forces T outerF

G
 and T innerF

G
 act over the entire length of the 

circles to which they are applied.  The diagram may look like there 
are 4 tension forces, but there are only 2.  Likewise, there is only 1 
pressure force, PF

G
, but it acts over the area of the hemisphere.  

  � � 2

T P

4
2     2 2     F F r r P P

r
JS J S o  ' o '   

 
77. The mass of liquid that rises in the tube will have the force of gravity acting down on it, and the 

force of surface tension acting upwards.  The two forces must be equal for the liquid to be in 
equilibrium.    The surface tension force is the surface tension times the circumference of the tube, 
since the tube circumference is the length of the “cut” in the liquid surface.  The mass of the risen 
liquid is the density times the volume. 
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78. (a) The fluid in the needle is confined, and so Pascal’s principle may be applied. 
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(b) � � � �
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79. The pressures for parts (a) and (b) stated in this problem are gauge pressures, relative to atmospheric  

pressure.  The pressure change due to depth in a fluid is given by P g hU'  ' . 
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  (c) For the fluid to just barely enter the vein, the fluid pressure must be the same as the blood  
pressure. 
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80. The ball has three vertical forces on it – string tension, buoyant force, and gravity.  See 

the free-body diagram for the ball.  The net force must be 0. 

  � �
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Since the water pushes up on the ball via the buoyant force, there is a downward force on the water 
due to the ball, equal in magnitude to the buoyant force.  That mass-equivalent of that force 
(indicated by B Bm F g ) will show up as an increase in the balance reading. 
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81. The change in pressure with height is given by P g hU'  ' . 
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82. (a) The input pressure is equal to the output pressure. 
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(b) The work is the force needed to lift the car (its weight) times the vertical distance lifted. 

  � � � � � �2920 kg 9.80 m s 0.42 m 3787 J 3800JW mgh   |  

(c) The work done by the input piston is equal to the work done in lifting the car. 
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(d) The number of strokes is the full distance divided by the distance per stroke. 

  full
full stroke 3

stroke

0.42 m
    83strokes

5.047 10 m

h
h Nh N

h �
 o    

u
 

(e) The work input is the input force times the total distance moved by the input piston. 

  � � � �input input input     83 350 N 0.13m 3777 J 3800 JW NF d o  |  

 Since the work input is equal to the work output, energy is conserved. 
 
83. The pressure change due to a change in height is given by P g hU'  ' .  That pressure is the excess 

force on the eardrum, divided by the area of the eardrum. 
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84. The change in pressure with height is given by P g hU'  ' . 
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85. The pressure difference due to the lungs is the pressure change in the column of water. 
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86. We use the relationship developed in Example 13-5. 
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87. The buoyant force, equal to the weight of mantle displaced, must be equal to the weight of the 

continent.  Let h represent the full height of the continent, and y represent the height of the continent 
above the surrounding rock. 
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88. The “extra” buoyant force on the ship, due to the loaded fresh water, is the weight of “extra” 

displaced seawater, as indicated by the ship floating lower in the sea.  This buoyant force is given by 

buoyant displaced sea
water

.F V gU  But this “extra” buoyant force is what holds up the fresh water, and so must 

also be equal to the weight of the fresh water. 

 � � � � � �2 3 7

buoyant displaced sea fresh fresh
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89. (a) We assume that the one descending is close enough to the surface of the Earth that constant  

density may be assumed.  Take Eq. 13-6b, modify it for rising, and differentiate it with respect 
to time. 
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y
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90. The buoyant force must be equal to the weight of the water displaced by the full volume of the logs,  

and must also be equal to the full weight of the raft plus the passengers.  Let N represent the number  
of passengers. 
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� � � � � � � �2 312 0.225m 6.1m 1000 kg m 1 0.60

    68.48
68 kg

S �
   

Thus  68  people can stand on the raft without getting wet.  When the 69th person gets on, the raft 
will go under the surface. 

 
91. We assume that the air pressure is due to the weight of the atmosphere, with the area equal to the 

surface area of the Earth. 
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92. The work done during each heartbeat is the force on the fluid times the distance that the fluid moves 

in the direction of the force. 
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93. (a) We assume that the water is launched at ground level.  Since it also lands at ground level, the  

level range formula from Example 3-10 may be used. 
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0 o
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 (b) The volume rate of flow is the area of the flow times the speed of the flow.  Multiply by 4 for  
the 4 heads. 
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 (c) Use the equation of continuity to calculate the flow rate in the supply pipe. 
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94. The buoyant force on the rock is the force that would be on a mass of water with the same volume as 

the rock.  Since the equivalent mass of water is accelerating upward, that same acceleration must be 
taken into account in the calculation of the buoyant force. 
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buoyant water water

rock
buoyant water water water rock water water

rock

2

rock

rock

  

3.0 kg 2.8 9.80 m s
        1.8 30.49 N 30 N 2 sig. fig.

2.7

F m g m a

m
F m g a V g a V g a g a

m
g g

SG

U U U
U

�  o

 �  �  �  �

 �   |
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 For the rock to not sink, the upward buoyant force on the rock minus the weight of the rock must be 
equal to the net force on the rock. 

  � � � � � �2
buoyant rock rock buoyant rock    3.0kg 2.8 9.80m s 82 NF m g m a F m g a�  o  �    

  The rock will sink , because the buoyant force is not large enough to “float” the rock. 
 
95. Apply both Bernoulli’s equation and the equation of continuity at the two locations of the stream,  

with the faucet being location 0 and the lower position being location 1.  The pressure will be air 
pressure at both locations.  The lower location has 1 0y   and the faucet is at height 0y y . 

  
� �
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96. (a) Apply Bernoulli’s equation between the surface of the water in the sink and the lower end of the  

siphon tube.  Note that both are open to the air, and so the pressure at both is air pressure. 

  
� � � � � �

2 21 1
top top top bottom bottom bottom2 2

2

bottom top bottom

  

2 2 9.80 m s 0.44 m 2.937 m s 2.9 m s

P v gy P v gy

v g y y

U U U U� �  � � o

 �   |
 

(b) The volume flow rate (at the lower end of the tube) times the elapsed time must equal the 
volume of water in the sink. 

� � � �
� � � �
� � � �

2 2

sink
sink 2lower 2

lower

0.38 m 4.0 10 m
    16.47 s 16s

1.0 10 m 2.937 m s

V
Av t V t

Av S

�

�

u
'  o '    |

u
 

 
97. The upward force due to air pressure on the bottom of the wing must be equal to the weight of the 

airplane plus the downward force due to air pressure on the top of the wing.  Bernoulli’s equation 
can be used to relate the forces due to air pressure.  We assume that there is no appreciable height 
difference between the top and the bottom of the wing. 

  

� �
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98. We label three vertical levels.  Level 0 is at the pump, and the supply tube 

has a radius of 0r  at that location.  Level 1 is at the nozzle, and the nozzle 

has a radius of 1r .  Level 1 is a height 1h  above level 0.  Level 2 is the 

highest point reached by the water.  Level 2 is a height 2h above level 1.  We 

may write Bernoulli’s equation relating any 2 of the levels, and we may 
write the equation of continuity relating any 2 of the levels.  The desired 
result is the gauge pressure of the pump, which would be 0 atm .P P�   Start by 

using Bernoulli’s equation to relate level 0 to level 1. 
  2 21 1

0 0 0 1 1̀ 12 2P gh v P gh vU U U U� �  � �  

 Since level 1 is open to the air, 1 atm .P P   Use that in the above equation. 

  2 21 1
0 atm `1 1 02 2P P gh v vU U U�  � �  

Use the equation of continuity to relate level 0 to level 1, and then use that result in the Bernoulli 
expression above. 

  
2 2

2 2 1 1
0 0 1 1 0 0 1 1 0 1 12 2

0 0

        
r d

A v A v r v r v v v v
r d

S S o  o    

  

22 4
2 21 11 1 1

0 atm `1 1 1 `1 12 2 22 4
0 0

1
d d

P P gh v v gh v
d d

U U U U U�  � �  � �
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

Use Bernoulli’s equation to relate levels 1 and 2.  Since both levels are open to the air, the pressures 
are the same.  Also note that the speed at level 2 is zero.  Use that result in the Bernoulli expression 
above. 
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99. We assume that there is no appreciable height difference to be considered between the two sides of  

the window.  Then the net force on the window due to the air is the difference in pressure on the two 
sides of the window, times the area of the window.  The difference in pressure can be found from 
Bernoulli’s equation. 

2 21 1
inside inside inside outside outside outside2 2  P v gy P v gyU U U U� �  � � o  

� � � � � �

2 air1
inside outside air outside2

roof

2

2 3 41 1
air air outside roof2 2

2

  

1m s
1.29 kg m 200 km h 6.0 m 1.2 10 N

3.6 km h

F
P P v

A

F v A

U

U

�   o

   u
ª º§ ·

¨ ¸« »
© ¹¬ ¼

 

 
100. From Poiseuille’s equation, the viscosity can be found from the volume flow rate, the geometry of 

the tube, and the pressure difference.  The pressure difference over the length of the tube is the same 
as the pressure difference due to the height of the reservoir, assuming that the open end of the needle 
is at atmospheric pressure. 

1h

2h

1r

0r



Chapter 13  Fluids 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

441 
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101. The net force is 0 if the balloon is moving at terminal velocity.  Therefore the upwards buoyancy 

force (equal to the weight of the displaced air) must be equal to the net downwards force of the 
weight of the balloon material plus the weight of the helium plus the drag force at terminal velocity.  
Find the terminal velocity, and use that to find the time to rise 12 m. 
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102. From Poiseuille’s equation, the volume flow rate Q  is proportional to 4R if all other factors are the 

same.  Thus 4Q R is constant.  Also, if the diameter is reduced by 15%, so is the radius. 

  � �
4

4final initial final final

4 4 4

final initial initial initial

    0.85 0.52
Q Q Q R
R R Q R

 o     

 The flow rate is 52% of the original value. 
 
103. Use the definition of density and specific gravity, and then solve for the fat fraction, f. 
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104. The graph is shown.  The best-fit 
equations as calculated by Excel are 
also shown.  Let P represent the 
pressure in kPa and y the altitude in m. 

 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH13.XLS,” on tab 
“Problem 13.104.” 

 
 

 (a) Quadratic fit:  � � � �7 2 2
quad 3.9409 10 1.1344 10 100.91P y y� � u � u � ,  

 

 (b) Exponential fit: 
� �41.3390 10

exp 103.81
y

P e
�� u

  
 

 (c) � � � � � � � �27 2

quad 3.9409 10 8611 1.1344 10 8611 100.91 32.45kPaP � � u � u �   

  � �� �41.3390 10 8611

exp 103.81 32.77 kPaP e
�� u   
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CHAPTER 14:  Oscillations 
 
Responses to Questions 
 
1.  Examples are: a child’s swing (SHM, for small oscillations), stereo speakers (complicated motion, 

the addition of many SHMs), the blade on a jigsaw (approximately SHM), the string on a guitar 

(complicated motion, the addition of many SHMs). 

 

2.   The acceleration of a simple harmonic oscillator is momentarily zero as the mass passes through the 

equilibrium point. At this point, there is no force on the mass and therefore no acceleration. 

 

3.  When the engine is running at constant speed, the piston will have a constant period. The piston has 

zero velocity at the top and bottom of its path. Both of these properties are also properties of SHM. 

In addition, there is a large force exerted on the piston at one extreme of its motion, from the 

combustion of the fuel–air mixture, and in SHM the largest forces occur at the extremes of the 

motion. 

 

4.  The true period will be larger and the true frequency will be smaller. The spring needs to accelerate 

not only the mass attached to its end, but also its own mass. As a mass on a spring oscillates, 

potential energy is converted into kinetic energy. The maximum potential energy depends on the 

displacement of the mass. This maximum potential energy is converted into the maximum kinetic 

energy, but if the mass being accelerated is larger then the velocity will be smaller for the same 

amount of energy. A smaller velocity translates into a longer period and a smaller frequency. 

 

5. The maximum speed of a simple harmonic oscillator is given by

k
v A

m
 .  The maximum speed 

can be doubled by doubling the amplitude, A. 

 

6.  Before the trout is released, the scale reading is zero. When the trout is released, it will fall 

downward, stretching the spring to beyond its equilibrium point so that the scale reads something 

over 5 kg. Then the spring force will pull the trout back up, again to a point beyond the equilibrium 

point, so that the scale will read something less than 5 kg. The spring will undergo damped 

oscillations about equilibrium and eventually come to rest at equilibrium. The corresponding scale 

readings will oscillate about the 5-kg mark, and eventually come to rest at 5 kg.  

 

7.  At high altitude, g is slightly smaller than it is at sea level. If g is smaller, then the period T of the 

pendulum clock will be longer, and the clock will run slow (or lose time). 

 

8.  The tire swing is a good approximation of a simple pendulum. Pull the tire back a short distance and 

release it, so that it oscillates as a pendulum in simple harmonic motion with a small amplitude. 

Measure the period of the oscillations and calculate the length of the pendulum from the expression 

2T
g

S 
l

. The length, l, is the distance from the center of the tire to the branch. The height of the 

branch is l plus the height of the center of the tire above the ground.  

 

9. The displacement and velocity vectors are in the same direction while the oscillator is moving away 

from its equilibrium position. The displacement and acceleration vectors are never in the same 

direction. 
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10.  The period will be unchanged, so the time will be (c), two seconds. The period of a simple pendulum 

oscillating with a small amplitude does not depend on the mass. 

  

11. The two masses reach the equilibrium point simultaneously. The angular frequency is independent of 

amplitude and will be the same for both systems. 

 

12.  Empty. The period of the oscillation of a spring increases with increasing mass, so when the car is 

empty the period of the harmonic motion of the springs will be shorter, and the car will bounce 

faster.  

 

13. When walking at a normal pace, about 1 s (timed). The faster you walk, the shorter the period. The 

shorter your legs, the shorter the period. 

 

14. When you rise to a standing position, you raise your center of mass and effectively shorten the 

length of the swing.  The period of the swing will decrease. 

 

15. The frequency will decrease. For a physical pendulum, the period is proportional to the square root 

of the moment of inertia divided by the mass. When the small sphere is added to the end of the rod, 

both the moment of inertia and the mass of the pendulum increase. However, the increase in the 

moment of inertia will be greater because the added mass is located far from the axis of rotation. 

Therefore, the period will increase and the frequency will decrease. 
 

16. When the 264-Hz fork is set into vibration, the sound waves generated are close enough in frequency 

to the resonance frequency of the 260-Hz fork to cause it to vibrate. The 420-Hz fork has a 

resonance frequency far from 264 Hz and far from the harmonic at 528 Hz, so it will not begin to 

vibrate. 

 

17.  If you shake the pan at a resonant frequency, standing waves will be set up in the water and it will 

slosh back and forth. Shaking the pan at other frequencies will not create large waves. The individual 

water molecules will move but not in a coherent way.  

 

18. Examples of resonance are: pushing a child on a swing (if you push at one of the limits of the 

oscillation), blowing across the top of a bottle, producing a note from a flute or organ pipe. 

 

19. Yes. Rattles which occur only when driving at certain speeds are most likely resonance phenomena. 

 

20. Building with lighter materials doesn’t necessarily make it easier to set up resonance vibrations, but 

it does shift the fundamental frequency and decrease the ability of the building to dampen 

oscillations. Resonance vibrations will be more noticeable and more likely to cause damage to the 

structure. 

 

 
Solutions to Problems 
 

1. The particle would travel four times the amplitude: from x A  to 0x   to x A �  to 0x   to  

x A .  So the total distance � �4 4 0.18m 0.72 mA   . 

 

2. The spring constant is the ratio of external applied force to displacement. 

ext
180 N 75 N 105 N

525N m 530 N m

0.85 m 0.65 m 0.20 m

F
k

x
�

    |
�
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3. The spring constant is found from the ratio of applied force to displacement. 

� � � �2

5

3

ext

68 kg 9.80 m s

1.333 10 N m

5.0 10 m

F mg
k

x x �
    u

u
 

The frequency of oscillation is found from the total mass and the spring constant. 

5

1 1 1.333 10 N m

1.467 Hz 1.5 Hz

2 2 1568 kg

k
f

mS S
u

   |  

 

4. (a) The motion starts at the maximum extension, and so is a cosine.  The amplitude is the  

displacement at the start of the motion. 

   

� � � � � � � �

� � � �

2 2

cos cos 8.8cm cos 8.8cm cos 9.520

0.66

 8.8cm cos 9.5

x A t A t t t
T

t

S SZ    

|

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹  

 (b) Evaluate the position function at t = 1.8 s. 

   � � � �� �1

8.8cm cos 9.520s 1.8s 1.252cm 1.3cmx �  � | �  

 

5. The period is 2.0 seconds, and the mass is 35 kg.  The spring constant can be calculated from Eq. 14-

7b. 

  

� �
2 2 2 2

22

35kg

2     4     4 4 350 N m

2.0s

m m m
T T k

k k T
S S S S o  o     

 

6. (a) The spring constant is found from the ratio of applied force to displacement. 

� � � �2

ext

2.4 kg 9.80m s

653N m 650 N m

0.036 m

F mg
k

x x
    |  

 (b) The amplitude is the distance pulled down from equilibrium, so 2.5cmA   

 The frequency of oscillation is found from the oscillating mass and the spring constant. 

1 1 653N m

2.625Hz 2.6 Hz

2 2 2.4 kg

k
f

mS S
   |  

 

7. The maximum velocity is given by Eq. 14-9a. 

  

� �
max

2 0.15m2

0.13m s

7.0s

A
v A

T
SSZ     

 The maximum acceleration is given by Eq. 14-9b. 
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8. The table of data is 

shown, along with 

the smoothed graph.  

Every quarter of a 

period, the mass 

moves from an 

extreme point to the 

equilibrium.  The 

graph resembles a cosine wave (actually, 

the opposite of a cosine wave). 

 

 

9. The relationship between frequency, mass, and spring constant is Eq. 14-7a,

1

2

k
f

mS
 . 

 (a) � � � �22 2 2 4
1

    4 4 4.0 Hz 2.5 10 kg 0.1579 N m 0.16 N m

2

k
f k f m

m
S S

S
� o   u  |  

 (b) 
4

1 1 0.1579 N m

2.8 Hz

2 2 5.0 10 kg

k
f

mS S �
   

u
 

 

10. The spring constant is the same regardless of what mass is attached to the spring. 

� � � � � � � � � � � �
� � � �

2 2 2

1 1 2 12

2

2 2

2 2

1

    constant      

2 4

0.68kg 0.60 Hz

 kg 0.83Hz  kg 0.68 kg 0.60 Hz     0.74 kg

0.83Hz 0.60 Hz

k k
f mf m f m f

m

m m m

S S
 o   o  o

 � o   
�

 

 

11. We assume that the spring is stretched some distance 
0

y  while the 

rod is in equilibrium and horizontal.  Calculate the net torque 

about point A while the object is in equilibrium, with clockwise 

torques as positive. 

  � �1 1

s 02 2
0Mg F g kyMW  �  �  ¦ l l l l  

Now consider the rod being displaced an additional distance y  

below the horizontal, so that the rod makes a small angle of T  as shown in the free-body diagram.  

Again write the net torque about point A.  If the angle is small, then there has been no appreciable 

horizontal displacement of the rod. 

  � � � �
2

2
1 1 1

s 02 2 3 2

d
Mg F Mg k y y I M

dt
TW D �  � �   ¦ l l l l l  

 Include the equilibrium condition, and the approximation that sin .y T T |l l  

  

2 2

2 2
1 1 1 1 1

02 3 2 2 32 2

2 2

2 2
1

3 2 2

     

3

    0

d d
Mg ky ky M Mg ky Mg M

dt dt
d d k

k M
dt dt M

T T

T TT T

� �  o � �  o

�  o  �

l l l l l l l l

l l

 

 This is the equation for simple harmonic motion, corresponding to Eq. 14-3, with 
2

3

.

k
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2 2 2

3 1 3

4     

2

k k
f f

M M
Z S

S
  o   

   

12. (a) We find the effective spring constant from the mass and the frequency of oscillation. 

� � � � � �22 2 2

1

  

2

4 4 0.055kg 3.0 Hz 19.54 N m 20 N m 2 sig fig

k
f

m

k mf

S

S S

 o

   |
 

 (b) Since the objects are the same size and shape, we anticipate that the spring constant is the same. 

 

1 1 19.54 N m

1.4 Hz

2 2 0.25kg

k
f

mS S
    

 

13. (a) For A, the amplitude is 
A

2.5mA  .  For B, the amplitude is 
B

3.5mA  . 

(b) For A, the frequency is 1 cycle every 4.0 seconds, so 
A

0.25Hzf  .  For B, the frequency is 1  

cycle every 2.0 seconds, so 
B

0.50 Hzf  . 

 (c) For C, the period is 
A

4.0sT  .  For B, the period is 
B

2.0sT   

 (d) Object A has a displacement of 0 when 0t  , so it is a sine function.   

� � � � � �1

A A A A 2
sin 2     2.5m sinx A f t x tS S o   

Object B has a maximum displacement when 0t  , so it is a cosine function.   

� � � � � �
B B B B

cos 2     3.5m cosx A f t x tS S o   

 

14. Eq. 14-4 is � �cosx A tZ I � . 

 (a) If � �0x A � , then � �1

cos     cos 1     .A A I I I S��  o  � o   

 (b) If � �0 0x  , then � �1
1

2
0 cos     cos 0     .A I I I S� o  o  r  

 (c) If � �0x A , then � �1

cos     cos 1     0 .A A I I I� o  o   

 (d) If � � 1

2
0x A , then � �11 1 1

2 2 3
cos     cos     .A A I I I S� o  o  r  

 (e) If � � 1

2
0x A � , then � �1

1 1 2

2 2 3
cos     cos     .A A I I I S��  o  � o  r  

 (f) If � �0 2x A , then � �1
1 1

4
2

2 cos     cos     .A A I I I S� o  o  r  

 The ambiguity in the answers is due to not knowing the direction of motion at t = 0. 

 

15. We assume that downward is the positive direction of motion.  For this motion, we have  

305 N mk  , 0.280 m, 0.260 kg,A m   and � �305 N m 0.260 kg 34.250 rad sk mZ    . 

 (a) Since the mass has a zero displacement and a positive velocity at t = 0, the equation is a sine  

function. 

   � � � � � �> @0.280 m sin 34.3rad sy t t  
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 (b) The period of oscillation is given by 

2 2

0.18345s

34.25 rad s

T
S S
Z

   .  The spring will have  

its maximum extension at times given by the following. 

 � �2

max
4.59 10 s 0.183 s , 0,1, 2,

4

T
t nT n n� �  u �  "  

  The spring will have its minimum extension at times given by the following. 

 � �1

min

3

1.38 10 s 0.183 s , 0,1, 2,

4

T
t nT n n� �  u �  "  

 

16. (a) From the graph, the period is 0.69 s.  The period and the mass can be used to find the spring  

constant. 

   

� �
2 2

22

0.0095kg

2     4 4 0.7877 N m 0.79 N m

0.69s

m m
T k

k T
S S S o    |   

 (b) From the graph, the amplitude is 0.82 cm.  The phase constant can be found from the initial  

conditions. 

   

� �

� � � � 1

2 2

cos 0.82cm cos

0.69

0.43

0 0.82cm cos 0.43cm    cos 1.02 rad

0.82

x A t t
T

x

S SI I

I I �

 �  �

  o   r

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

Because the graph is shifted to the RIGHT from the 0-phase cosine, the phase constant must be 

subtracted. 

   � � � � � �2

0.82cm cos 1.0  or 0.82cm cos 9.1 1.0

0.69

x t tS � �§ ·
¨ ¸
© ¹

 

 

17. (a) The period and frequency are found from the angular frequency. 

 

1 1 5 5 1

2     Hz    1.6 s

2 2 4 8

f f T
f

SZ S Z
S S

 o       

 (b) The velocity is the derivative of the position. 

   

� � � �

� � � � � � � �

5 5 5

3.8m cos         3.8m sin

4 6 4 4 6

5

0 3.8m cos 3.3m         0 3.8m sin 7.5m s

6 4 6

dx
x t v t

dt

x v

S S S S S

S S S

 �   � �

   �  �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

 (c) The acceleration is the derivative of the velocity. 

� � � �

� � � � � �

� � � � � �

2

2

2

5 5 5 5

3.8m sin         3.8m cos

4 4 6 4 4 6

5 5

2.0 3.8m sin 2.0 13m s

4 4 6

5 5

3.8m cos 2.0 29 m s

4 4 6

2.0

dv
v t a t

dt

v

a

S S S S S S

S S S

S S S

 � �   � �

 � �  �

 � �  

§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
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18. (a) The maximum speed is given by Eq. 14-9a. 

� � � �3

max
2 2 441Hz 1.5 10 m 4.2m sv f AS S �  u  . 

 (b) The maximum acceleration is given by Eq. 14-9b. 

   � � � �22 2 2 3 4 2

max
4 4 441Hz 1.5 10 m 1.2 10 m sa f AS S �  u  u . 

 

19. When the object is at rest, the magnitude of the spring force is equal to the force of gravity.  This 

determines the spring constant.  The period can then be found. 

  

vertical 0

0

0

2

0

    

0.14m

2 2 2 2 0.75s

9.80m s

mg
F kx mg k

x

m m x
T

mgk g
x

S S S S

 � o  

     

¦
 

 

20. The spring constant can be found from the stretch distance corresponding to the weight suspended on  

the spring. 

  

� � � �2

ext

1.62kg 9.80m s

73.84 N m

0.215m

F mg
k

x x
     

After being stretched further and released, the mass will oscillate.  It takes one-quarter of a period for 

the mass to move from the maximum displacement to the equilibrium position. 

 
1 1

4 4

1.62 kg

2 0.233s

2 73.84 N m

T m k
SS    

 

21. Each object will pass through the origin at the times when the argument of its sine function is a 

multiple of .S  

3 5 71 1

A A A A A A2 2 2 2 2

5 7 81 1 2 4

B B B B B B3 3 3 3 3 3 3

A:  2.0     ,  1,2,3,  so , , ,2 , ,3 , ,4 ,

B:  3.0     ,  1,2,3,  so , , , , ,2 , , ,3 ,

t n t n n t

t n t n n t

S S S S S S S S S S
S S S S S S S S S S S

 o    

 o    

! !

! !
 

 Thus we see the first three times are s, 2 s, 3 sS S S  or 3.1s, 6.3s, 9.4s .  

 

22. (a) The object starts at the maximum displacement in the positive direction, and so will be  

represented by a cosine function.  The mass, period, and amplitude are given. 

   � � � �2

0.16m ; 11.4 rad s     0.16m cos 11

0.55s

A y t
T
S SZ �

    o   

 (b) The time to reach the equilibrium is one-quarter of a period, so � �1

4
0.55s 0.14s .  

 (c) The maximum speed is given by Eq. 14-9a. 

   � � � �
max

11.4 rad s 0.16m 1.8m sv AZ    

 (d) The maximum acceleration is given by Eq. 14-9b. 

   � � � �22 2

max
11.4 rad s 0.16m 2.1m sa AZ    

The maximum acceleration occurs at the endpoints of the motion, and is first attained at the 

release point. 
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23. The period of the jumper’s motion is 

43.0 s

5.375 s

8 cycles

T   .  The spring constant can then be found  

from the period and the jumper’s mass. 

  

� �
� �

22

22

4 65.0kg4

2     88.821N m 88.8N m

5.375s

m m
T k

k T
SSS o    |  

The stretch of the bungee cord needs to provide a force equal to the weight of the jumper when he is 

at the equilibrium point.   

� � � �2

65.0 kg 9.80m s

    7.17m

88.821N m

mg
k x mg x

k
'  o '     

 Thus the unstretched bungee cord must be 25.0 m 7.17 m 17.8m�  .  

 

24. Consider the first free-body diagram for the block while it is 

at equilibrium, so that the net force is zero.  Newton’s 

second law for vertical forces, with up as positive, gives this. 

  
A B A B

0    yF F F mg F F mg � �  o �  ¦  

Now consider the second free-body diagram, in which the 

block is displaced a distance x  from the equilibrium point.  

Each upward force will have increased by an amount kx� , 

since 0x � .  Again write Newton’s second law for vertical forces. 

  � �
A B A B A B

2 2y netF F F F mg F kx F kx mg kx F F mg kxc c  � �  � � � �  � � � �  �¦  

This is the general form of a restoring force that produces SHM, with an effective spring constant of 

2k .  Thus the frequency of vibration is as follows.  

  
effective

1 1 2

2 2

k
f k m

mS S
   

 

25. (a) If the block is displaced a distance x to the right in Figure 14-32a, then the length of spring # 1  

will be increased by a distance 
1

x  and the length of spring # 2 will be increased by a distance 

2
x , where 

1 2
.x x x �   The force on the block can be written 

eff
.F k x �   Because the springs 

are massless, they act similar to a rope under tension, and the same force F is exerted by each 

spring.  Thus 
eff 1 1 2 2

.F k x k x k x �  �  �  

1 2

1 2 1 2 eff eff 1 2

eff 1 2

1 1 1 1 1

    

1 1

2 2

F F F
x x x F

k k k k k k k k

m
T m

k k k
S S

 �  � �  � �  � o  �

  �

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

 

 (b) The block will be in equilibrium when it is stationary, and so the net force at that location is  

zero.  Then, if the block is displaced a distance x to the right in the diagram, then spring # 1 will 

exert an additional force of 
1 1

F k x � , in the opposite direction to x.  Likewise, spring # 2 will 

exert an additional force 
2 2

F k x � , in the same direction as 
1

F .  Thus the net force on the 

A
F
G

mgG
mgG

B
F
G

A
cF
G

B
cF
G

x 

Jeroen
Marked ingesteld door Jeroen
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displaced block is � �
1 2 1 2 1 2

F F F k x k x k k x �  � �  � � .  The effective spring constant is thus 

1 2
k k k � , and the period is given by 

1 2

2 2

m m
T

k k k
S S  

�
. 

 

26. The impulse, which acts for a very short time, changes the momentum of the mass, giving it an initial 

velocity 
0
.v   Because this occurs at the equilibrium position, this is the maximum velocity of the 

mass.  Since the motion starts at the equilibrium position, we represent the motion by a sine function. 

  

0 0 0 max
0       

        sin sin

J k
J p m v mv mv v v A A

m m

J k J J k
A A x A t t

m m mkm km

Z

Z

 '  '  �  o     o

 o  o   
§ ·
¨ ¸
© ¹

 

 

27. The various values can be found from the equation of motion, cos 0.650cos 7.40 .x A t tZ   

(a) The amplitude is the maximum value of x, and so 0.650 m .A   

(b) The frequency is 

7.40 rad s

1.18 Hz .

2 2 rad

f
Z
S S

    

(c) The total energy can be found from the maximum potential energy. 

  � � � � � �2 22 2 21 1 1

max 2 2 2
1.15kg 7.40 rad s 0.650 m 13.303J 13.3JE U kA m AZ     |  

(d) The potential energy can be found from 
21

2
U kx , and the kinetic energy from .E U K �  

  

� � � � � �2 22 2 21 1 1

2 2 2
1.15kg 7.40 rad s 0.260 m 2.1J

13.3J 2.1J 11.2 J

U kx m x

K E U

Z    

 �  �  
 

 

28. (a) The total energy is the maximum potential energy. 

   � �2 2
1 1 1 1

2 2 2 2
        2 0.707U E kx kA x A A o  o  |  

 (b) Now we are given that 
1

3
.x A  

   

2 2
1

2

2 2
1

2

1

9

U kx x
E kA A
    

  Thus the energy is divided up into 
81

9 9
potential and  kinetic .  

 

29. The total energy can be found from the spring constant and the amplitude. 

  � � � �221 1

2 2
95 N m 0.020 m 0.019 JE kA    

That is represented by the horizontal line on the graph. 

 (a) From the graph, at 1.5cm,x   we have 0.011J .U |  

(b) From energy conservation, at 1.5cm,x   we have 0.008J .K E U �   
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(c) Find the speed from the  

estimated kinetic energy. 

� �

21

2
  

2 0.008J2

0.055kg

0.5m s  

K mv

K
v

m

 o

  

 

 

 

The spreadsheet used for this problem 

can be found on the Media Manager, 

with filename 

“PSE4_ISM_CH14.XLS,” on tab “Problem 14.29.” 

 

30. (a) At equilibrium, the velocity is its maximum.  Use Eq. 14-9a, and realize that the object can be  

moving in either direction. 

   � � � �
max equib

2 2 2.5Hz 0.15m 2.356m s     2.4 m sv A fA vZ S S    o | r  

 (b) From Eq. 14-11b, we find the velocity at any position. 

   � � � �
� �

2
2

max 22

0.10m

1 2.356m s 1 1.756m s 1.8m s

0.15m

x
v v

A
 r �  r �  r | r  

 (c) � � � �221 1

total max2 2
0.35kg 2.356 m s 0.9714 J 0.97 JE mv   |  

 (d) Since the object has a maximum displacement at t = 0, the position will be described by the  

cosine function. 

   � � � �� � � � � �0.15m cos 2 2.5 Hz     0.15m cos 5.0x t x tS S o   

 

31. The spring constant is found from the ratio of applied force to displacement. 

95.0 N

542.9 N m

0.175 m

F
k

x
    

Assuming that there are no dissipative forces acting on the ball, the elastic potential energy in the 

loaded position will become kinetic energy of the ball. 

  � �2 2
1 1

max max max max2 2

542.9 N m

        0.175m 10.2 m s

0.160 kg
i f

k
E E kx mv v x

m
 o  o     

 

32. The energy of the oscillator will be conserved after the collision.  

  � � � �2 21 1

max max2 2
    E kA m M v v A k m M  � o  �  

This speed is the speed that the block and bullet have immediately after the collision.  Linear 

momentum in one dimension will have been conserved during the (assumed short time) collision, 

and so the initial speed of the bullet can be found. 

  

� �

� �

before after max
    

0.2525kg 2250 N m

0.124 m 236 m s

0.0125kg 0.2525kg

o

o

p p mv m M v

m M k
v A

m m M

 o  �

�
   

�

 

 

 

 

0.000

0.005

0.010

0.015

0.020

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

x  (cm)

U
 (

J
)
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33. To compare the total energies, we can compare the maximum potential energies.  Since the 

frequencies and the masses are the same, the spring constants are the same. 

  

2 2
1

2high high high high

energy energy energy energy

2 2
1

2low low low low

energy energy energy energy

5    5

E kA A A

E kA A A
   o   

 

34. (a) The spring constant can be found from the mass and the frequency of oscillation. 

� � � �22 2 2

2     4 4 3.0 Hz 0.24 kg 85.27 N m 85 N m

k
f k f m

m
Z S S S  o    |  

(b) The energy can be found from the maximum potential energy. 

  � � � �22 2
1 1

2 2
85.27 N m 0.045m 8.634 10 J 0.086JE kA �   u |  

 

35. (a) The work done in compressing the spring is stored as potential energy.  The compressed  

location corresponds to the maximum potential energy and the amplitude of the ensuing motion. 

   

� �
� �

2
1

2 22

2 3.6J2

    426 N m 430 N m

0.13m

W
W kA k

A
 o    |  

(b) The maximum acceleration occurs at the compressed location, where the spring is exerting the  

maximum force.  If the compression distance is positive, then the acceleration is negative. 

   

� � � �
2

426 N m 0.13m

    3.7 kg

15m s

kx
F kx ma m

a
 �  o  �  �   

 

36. (a) The total energy of an object in SHM is constant.  When the position is at the amplitude, the  

speed is zero.  Use that relationship to find the amplitude. 

   

� � � �

2 2 2
1 1 1

tot 2 2 2

2 22 2 2 2

  

2.7 kg

0.55m s 0.020 m 5.759 10 m 5.8 10 m

280 N m

E mv kx kA

m
A v x

k
� �

 �  o

 �  �  u | u
 

 (b) Again use conservation of energy.  The energy is all kinetic energy when the object has its  

maximum velocity. 

� �

2 2 2 2
1 1 1 1

tot max2 2 2 2

2

max

  

280 N m

5.759 10 m 0.5865m s 0.59 m s

2.7 kg

E mv kx kA mv

k
v A

m
�

 �   o

  u  |
 

 

37. We assume that the collision of the bullet and block is so quick that there is no significant motion of 

the large mass or spring during the collision.  Linear momentum is conserved in this collision.  The 

speed that the combination has right after the collision is the maximum speed of the oscillating 

system. Then, the kinetic energy that the combination has right after the collision is stored in the 

spring when it is fully compressed, at the amplitude of its motion. 

  

� �

� � � �

before after 0 max max 0

2

2 2 2
1 1 1 1

max 02 2 2 2

        

      

m
p p mv m M v v v

m M
m

m M v kA m M v kA
m M

 o  � o  
�

�  o �  o
�

§ ·
¨ ¸
© ¹
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� � � �
� � � � � �

2

3

0 3

9.460 10 m

142.7 N m 7.870 10 kg 4.648kg

7.870 10 kg

   309.8m s

A
v k m M

m

�
�

�

u
 �  u �

u

 

 

 

38. The hint says to integrate Eq. 14-11a, which comes from the conservation of energy.  Let the initial 

position of the oscillator be 
0
.x   

  

� �
� � � �

0

0

2 2

2 2 2 2

0

1 1 1 0

          

cos cos cos

x t

x

x

x

k dx dx k dx k
v A x dt dt

m dt m mA x A x

x x x k
t

A A A m
� � �

 r �  o  r o  r o
� �

�  � �  r§ ·
¨ ¸
© ¹

³ ³
  

 Make these definitions:  
1 0

 ; cos .

k x
m A

Z I�{ {   Then we have the following. 

  � �1 1 10

cos cos     cos     cos

x x k x
t t x A t

A A m A
I Z Z I� � �� �  r o � �  r o  r �  

The phase angle definition could be changed so that the function is a sine instead of a cosine.  And 

the r  sign can be resolved if the initial velocity is known. 

 

39. (a) Find the period and frequency from the mass and the spring constant. 

0.785kg

2 2 0.4104s 0.410s

184 N m

1 1 1 184 N m

2.437 Hz 2.44 Hz

2 2 0.785kg

m
T

k

k
f

T m

S S

S S

   |

    |

 

 (b) The initial speed is the maximum speed, and that can be used to find the amplitude. 

   

� � � �
max

max

  

2.26m s 0.785kg 184 N m 0.1476m 0.148m

v A k m

A v m k

 o

   |
 

 (c) The maximum acceleration can be found from the mass, spring constant, and amplitude 

   � � � � � � 2

max
0.1476m 184 N m 0.785kg 34.6m sa Ak m    

 (d) Because the mass started at the equilibrium position of x = 0, the position function will be  

proportional to the sine function. 

   � � � �> @ � � � �0.148m sin 2 2.437 Hz     0.148m sin 4.87x t x tS S o   

 (e) The maximum energy is the kinetic energy that the object has when at the equilibrium position. 

   � � � �221 1

max2 2
0.785kg 2.26m s 2.00JE mv    

(f) Use the conservation of mechanical energy for the oscillator. 

  

� �
� � � � � �

22 2 2 21 1 1 1 1

2 2 2 2 2

2 2
1

2

    0.40   

1 0.40 2.00J 0.84 1.68J

E kx mv kA k A K kA

K kA

 �  o �  o

 �   
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40. We solve this using conservation of energy, equating the energy at the compressed point with the 

energy as the ball leaves the launcher.  Take the 0 location for gravitational potential energy to be at 

the level where the ball is on the compressed spring.  The 0 location for elastic potential energy is the 

uncompressed position of the spring.  Initially, the ball has only elastic potential energy.  At the point 

where the spring is uncompressed and the ball just leaves the spring, there will be gravitational 

potential energy, translational kinetic energy, and rotational kinetic energy.  The ball is rolling 

without slipping. 

  

� �

� � � � � � � � � �

� �

2

2 2 2 2 2
1 1 1 1 1 2

i f 2 2 2 2 2 5 2

22 27 7

10 1022

    sin   

0.025kg

2 sin 2 9.80 m s 0.060 m sin15 3.0 m s

0.060 m

  89.61N m 90 N m 2 sig. fig.

v
E E kx mgh mv I mgx mv mr

r
m

k gx v
x

Z T

T

 o  � �  � � o

 �  q �

 |

ª º¬ ¼  

 

41. The period of a pendulum is given by 2T L gS .  The length is assumed to be the same for the 

pendulum both on Mars and on Earth. 

  

� �

MarsMars Earth

Earth MarsEarth

Earth

Mars Earth

Mars

2

2       

2

1

1.35s 2.2s

0.37

L gT g
T L g

T gL g

g
T T

g

S
S

S
 o   o

   

 

 

42. (a) The period is given by 

50s

1.6s

32cycles

T   . 

 (b) The frequency is given by 

32cycles

0.64 Hz

50s

f   . 

 

43. We consider this a simple pendulum.  Since the motion starts at the amplitude position at t = 0, we 

may describe it by a cosine function with no phase angle, 
max

cos tT T Z .  The angular velocity can 

be written as a function of the length, 
max

cos .

g
tT T 

§ ·
¨ ¸
© ¹l

 

 (a) � � � �
2

9.80m s

0.35s 13 cos 0.35s 5.4

0.30m

tT   q  � q
§ ·
¨ ¸¨ ¸
© ¹

 

 (b) � � � �
2

9.80m s

3.45s 13 cos 3.45s 8.4

0.30m

tT   q  q
§ ·
¨ ¸¨ ¸
© ¹

 

 (c) � � � �
2

9.80m s

6.00s 13 cos 6.00s 13

0.30m

tT   q  � q
§ ·
¨ ¸¨ ¸
© ¹
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44. The period of a pendulum is given by 2T L gS . 

 (a) 
2

0.53m

2 2 1.5s

9.80m s

T L gS S    

 (b) If the pendulum is in free fall, there is no tension in the string supporting the pendulum bob, and  

so no restoring force to cause oscillations.  Thus there will be no period – the pendulum will not 

oscillate and so no period can be defined. 

 

45. If we consider the pendulum as starting from its maximum displacement, then the equation of motion 

can be written as 
0 0

2

cos cos .

t
t

T
ST T Z T    Solve for the time for the position to decrease to half the 

amplitude. 

  
11/ 2 1/ 21 1 1

1/ 2 0 0 1/ 22 2 6

2 2

cos     cos     

3

t t
t T

T T
S S ST T T �  o   o    

It takes 
1

6
T for the position to change from 10� q  to 5� q .  It takes 

1

4
T for the position to change from 

10� q  to 0.  Thus it takes 
1 1 1

4 6 12
T T T�  for the position to change from 5� q to 0.  Due to the 

symmetric nature of the cosine function, it will also take 
1

12
T for the position to change from 0 to 

5� q , and so from 5� q  to 5� q takes 
1

6
.T   The second half of the cycle will be identical to the first, 

and so the total time spent between 5� q  and 5� q is 
1

3
.T   So the pendulum spends one-third of its 

time between 5� q  and 5 .� q  

 

46. There are � � � � � �24h 60min h 60s min 86,400s  in a day.  The clock should make one cycle in 

exactly two seconds (a “tick” and a “tock”), and so the clock should make 43,200 cycles per day.  

After one day, the clock in question is 26 seconds slow, which means that it has made 13 less cycles 

than required for precise timekeeping.  Thus the clock is only making 43,187 cycles in a day. 

Accordingly, the period of the clock must be decreased by a factor of 

43,187

43,200

. 

 

� �

new old new old

2 2

new old

43,187 43,187

    2 2   

43,200 43,200

43,187 43,187

0.9930m 0.9924m

43,200 43,200

T T g gS S o  o

   

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l l

l l

 

Thus the pendulum should be shortened by 0.6 mm. 

 

47.  Use energy conservation to relate the potential energy at the  

maximum height of the pendulum to the kinetic energy at the 

lowest point of the swing.  Take the lowest point to be the zero 

location for gravitational potential energy.  See the diagram. 

  

� �
top bottom top top bottom bottom

2
1

max max2

      

0     2 2 1 cos

E E K U K U

mgh mv v gh g T

 o �  � o

�  o   �l
 

 

 

 

 

l 
T 

cosh T �l l

cosTl
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48. (a) For a physical pendulum with the small angle approximation, we may apply Eq. 14- 

14.  We need the moment of inertia and the distance from the suspension point to the 

center of mass.  We approximate the cord as a rod, and find the center of mass 

relative to the stationary end of the cord. 

   

� �
� �

� �
� �

� �
� �

2 2 2
1 1

bob cord 3 3

1 1

2 2

CM

2
1 1

3 3

1
1

2
2total

2 2 2

I I I M m M m

M m M m
h x

M m M m

M m M mI
T

M mm gh M m gM m g
M m

S S S

 �  �  �

� �
   

� �

� �
   

� ��
�

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

l l l

l l
l

l l

l

 

(b) If we use the expression for a simple pendulum we would have 
simple

2 .T gS l   Find the 

fractional error. 

   

� �
� �

� �
� �

� �
� �
� �
� �

� �
� �

1 1

3 3

1 1 1

2 2simple 2

11 1

33 3

1 1

2 2

2 2 1

error 1

2

M m M m
M m g g M mT T M m

T M mM m M m
M m g M m

S S

S

� �
� �

� �� �
    �

�� �
� �

l l

l
 

  Note that this is negative, indicating that the simple pendulum approximation is too large. 

 

49. The balance wheel of the watch is a torsion pendulum, described by KW T � .  A specific torque and 

angular displacement are given, and so the torsional constant can be determined.  The angular 

frequency is given by .K IZ    Use these relationships to find the mass. 

� � � �

5

2

5

4

22 2 2 22 2

1.1 10 m N

    

4 rad

2   

1.1 10 m N

4rad

4.1 10 kg 0.41g

4 4 3.10Hz 0.95 10 m

K K

K K
f

I mr

K
m

f r

TW T
W S

Z S

S
S S

�

�

�

�

u
 � o   

   o

u

   u  
u

<

<

 

 

50. (a) We call the upper mass M and the lower mass m.  Both masses have length  

l.  The period of the physical pendulum is given by Eq. 14-14.  Note that we 

must find both the moment of inertia of the system about the uppermost 

point, and the center of mass of the system.  The parallel axis theorem is 

used to find the moment of inertia. 

   

� � � �
� � � �

22 2 23 71 1 1

upper lower 3 12 2 3 3

31 31

2 2 2 2

CM

I I I M m m M m

M m M m
h x

M m M m

 �  � �  �

� �
   

� �
§ ·
¨ ¸
© ¹

l l l l

l l
l

 

   

� �
� �

� �
� �

2
7 71 1

3 3 3 3

31 31

2 2
2 2total

2 2 2

M m M mI
T

M mm gh M m gM m g
M m

S S S
� �
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�
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© ¹

l l

l

 

L

m

M

lM
 

m
 

l



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

458 

   

� � � �> @� �
� � � �> @� �

71

3 3

2
31

2 2

7.0kg 4.0kg 0.55m

  2 1.6495s 1.6s

7.0kg 4.0kg 9.80m s

S
�

  |
�

 

 (b) It took 7.2 seconds for 5 swings, which gives a period of 1.4 seconds.  That  

is reasonable qualitative agreement. 

 

51. (a) In the text, we are given that .KW T �   Newton’s second law for rotation,  

Eq. 10-14, says that 

2

2

.

d
I I

dt
TW D  ¦   We assume that the torque applied by the twisting of 

the wire is the only torque. 

   

2 2

2

2 2

    

d d K
I I K

dt dt I
T TW D T T Z T   � o  �  �¦  

This is the same form as Eq. 14-3, which is the differential equation for simple harmonic 

oscillation.  We exchange variables with Eq. 14-4, and write the equation for the angular 

motion. 

   � � � � 2

0
cos     cos , 

K
x A t t

I
Z I T T Z I Z � o  �   

(b) The period of the motion is found from the angular velocity .Z  

   
2

2

        2

K K I
T

I I T K
SZ Z S o   o   

 

52. The meter stick used as a pendulum is a physical pendulum.  The period is given by Eq. 14-14, 

2 .

I
T

mgh
S   Use the parallel axis theorem to find the moment of inertia about the pin.  Express 

the distances from the center of mass. 

  � �

1/ 2
2 2 2

1

2 2 2 121 1

CM 12 12

1/ 2
2 2

1 1 1 1

2 12 12 122

1

2

2

    2 2

2 1 0    0.2887 m

0.500 0.2887 0.211m  from the end

I m mh
I I mh m mh T h

mgh mgh hg

dT
h h

dh h h

x h

SS S

S
�

�
 �  � o    �

 � � �  o   

 �  � |

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l l
l

l l
l

l

 

 Use the distance for h to calculate the period. 

  

� �
1/ 2

1/ 2 2
2

1 1

12 12
2

1.00m2 2

0.2887 m 1.53s

0.2887 m9.80m s

T h
hg

S S
 �  �  

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

l
 

 

53. This is a torsion pendulum.  The angular frequency is given in the text as K IZ  , where K is the 

torsion constant (a property of the wire, and so a constant in this problem).  The rotational inertia of a 

rod about its center is 
21

12
.Ml  

  

2

    2   

K I
T

I T K
SZ S  o  o  



Chapter 14  Oscillations 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

459 

  

� � � �

� � � � � �

2
2

1

0 012

2 2
1

120 0 0 0 0 00

0

2
0.700 0.700

0.58566

2

0.58566 0.58566 5.0s 2.9s

I
MT I MK

T I M MI
K

T T

S

S
     

   

ll

l l  

 

54. The torsional constant is related to the period through the relationship given in problem 51.  The 

rotational inertia of a disk in this configuration is 
2

1

2
.I MR  

  

� � � � � �
2 2 2

1

2 22 2 2 22

2 2

3

4 4

2     2 2 0.375kg 0.0625m 0.331Hz

3.17 10 m N rad                             

I I MR
T K MR f

K T T
S SS S S

�

 o     

 u <

 

 

55. This is a physical pendulum.  Use the parallel axis theorem to find the 

moment of inertia about the pin at point A, and then use Eq. 14-14 to 

find the period. 

  

� �
� � � �

� � � �
� � � �

2 2 2 2 2
1 1

pin CM 2 2

2 2 2 2
1 1

2 2

2 2
1

2

2

2 2 2

0.200m 0.180m

  2 1.08s

9.80m s 0.180m

I I Mh MR Mh M R h

M R h R hI
T

Mgh Mgh gh
S S S

S

 �  �  �

� �
   

�
  

 

 

56. (a) The period of the motion can be found from Eq. 14-18, giving the angular frequency for the  

damped motion. 

 

� �
� �

� �
� �

2
2

22

41.0 N m 0.662 N s m

6.996rad s

4 0.835kg 4 0.835kg

2 2

0.898s

6.996rad s

k b
m m

T

Z

S S
Z

c  �  �  

   

<

   

(b) If the amplitude at some time is ,A then one cycle later, the amplitude will be 
TAe J�

.  Use this  

to find the fractional change. 

  

� �
� �

� �0.662N s m

0.898s

2 0.835kg
2

fractional change 1 1 1 0.300

bT TT mAe A
e e e

A

J
J

� ����
  �  �  �  �

<

 

 And so the amplitude decreases by 30% from the previous amplitude, every cycle. 

(c) Since the object is at the origin at t = 0, we will use a sine function to express the equation of 

motion. 

  

� �
� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

0.662N s m

1.00s

2 0.835kg

1

0.662N s m

1.00s

2 0.835kg

sin     0.120m sin 6.996rad   

0.662 N s m0.120m

0.273m  ;  0.396s

2 2 0.835kg

sin 6.996rad

tx Ae t Ae

b
A

m
e

J Z

J

�
�

�

�

c o  o
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  � � � � � �> @
1

0.396s

0.273m sin 7.00rad s

tx e t
��  

 

57. We assume that initially, the system is critically damped, so 
2

critical
4 .b mk   Then, after aging, we 

assume that after 3 cycles, the car’s oscillatory amplitude has dropped to 5% of its original 

amplitude.  That is expressed by 
2

0
.

bt
mA A e

�
  

  

� �

� �

� �

� �

33

22 2

0 0

2 2 2 2 2

critical critical

2 2 2

1/ 2

2

2

critical

3 1

    0.05     ln 0.05   

2

3 1 3 2 6

ln 0.05   

2 21

2 4 4 4

36

1 0.16

ln 0.05

bb Tbt
m fm m b

A A e A Ae Ae
m f

b b b
m mk b b b b b

m m m m

b
b

S S

S

S

�� �

�

 o   o  � o

 �  �  � o
�

� �

§ ·
¨ ¸ �  
¨ ¸ª º¬ ¼© ¹

 

And so b has decreased to about 16% of its original value, or decreased by a factor of 6.  If we used 

2% instead of 5%, we would have found that b decreased to about 20% of its original value.  And if 

we used 10% instead of 5%, we would have found that b decreased to about 6% of its original value. 

 

58. (a) Since the angular displacement is given as � �cos ,
tAe tJT Z� c  we see that the displacement at t  

= 0 is the initial amplitude, so 15 .A  q   We evaluate the amplitude 8.0 seconds later. 

  
� �8.0s 1 1

1 5.5

5.5 15     ln 0.1254s 0.13s

8.0s 15

e J J� � ��
q  q o   |§ ·

¨ ¸
© ¹

  

(b) The approximate period can be found from the damped angular frequency.  The undamped  

angular frequency is also needed for the calculation. 

  

� �

� �
� � � �

1

2

0 2
1

3

2

2
2 2 2 1

0

3

2

3 9.80m s3

0.1254s 4.157 rad s

2 2 0.85m

2 2 rad

1.5s

4.157 rad s

mgmgh g
I m

g

T

Z

Z Z J J

S S
Z

�

   

c  �  �  �  

c    
c

l

l l

l
 

(c) We solve the equation of motion for the time when the amplitude is half the original amplitude. 

  
1/ 2 1

ln 2 ln 2

7.5 15     5.5s

0.1254s

te tJ

J
�

�
q  q o     

59. (a) The energy of the oscillator is all potential energy when the cosine (or sine) factor is 1, and so  

2 2
1 1

02 2
.

bt
mE kA kA e

�
    The oscillator is losing 6.0% of its energy per cycle.  Use this to find the 

actual frequency, and then compare to the natural frequency. 

 � � � �
� �

2 2
1 1

0 02 2
0.94     0.94     0.94  

b t T bt bT
m m mE t T E t kA e kA e e
�
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�  o  o  o
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1
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1
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§ ·
¨ ¸
© ¹

 

(b) The amplitude’s decrease in time is given by 
2

0
.

bt
mA A e

�
   Find the decrease at a time of nT, and  

solve for n.  The value of 

2

b
m

 was found in part (a). 

  

� �

� �

1
2 2

0 0 0

1

        1 ln 0.94   

2 2

2

32.32 32 periods

ln 0.94

bt bnT
m m b

A A e A e A e nT nT
m T

n

� �� o  o   � o

 �  |
 

 

60. The amplitude of a damped oscillator decreases according to 
2

0 0
.

bt
t mA A e A eJ ��    The data can be 

used to find the damping constant. 

  

� �
� �

02

0
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bt
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61. (a) For the “lightly damped” harmonic oscillator, we have 

2

2

02

4         .

4

b k
b mk

m m
Z Zco o |� �    

We also assume that the object starts to move from maximum displacement, and so 

2

0
cos

bt
mx A e tZ

�
c  and 

2 2 2

0 0 0 0
cos sin sin .

2

bt bt bt
m m mdx b
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(b) The fractional loss of energy during one period is as follows.  Note that we use the  

approximation that 
0

2

   4     1.

2

b bT bT
m T m m

SZ S o o� � �  
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62. (a) From problem 25 (b), we can calculate the frequency of the undamped motion. 

� �

1 2

2 2

2 2   

2

1 2 125N s

5.43Hz

2 2 2 0.215kg

m m
T

k k k

k k
f

m m

S S

S S S

  o
�

    

 

(b) Eq. 14-16 says cos ,
tx Ae tJ Z� c which says the amplitude follows the relationship 

max
.

tx Ae J�   

Use the fact that 
1

max 2
x A  after 55 periods have elapsed, and assume that the damping is light 

enough that the damped frequency is the same as the natural frequency. 

� �55 1 1
1

2

ln 2 5.43Hz

    ln 2 ln 2 0.06843s 0.0684s

55 55 55

T f
A Ae

T
J J� � � o     |  

 (c) Again use
max

.
tx Ae J�  

1

max 4 1

ln4 ln 4

        20.3s

0.06843s

t tx Ae A Ae tJ J

J
� �

�
 o  o     

  This is the time for 110 oscillations, since 55 oscillations corresponds to a “half-life.” 

 

63. (a) Eq. 14-24 is used to calculate 
0
.I  

   

� � � �
2 2 2 2

1 10 0 0

0 0
tan     if ,   tan 0

b m b m
Z Z Z ZI Z Z I
Z Z
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 o      

(b) With 
0
,Z Z  we have 

ext 0 0
cosF F tZ  and 

0 0
sin .x A tZ   The displacement and the driving  

force are one-quarter cycle � �1

2
rad or 90S q  out of phase with each other.  The displacement is 0 

when the driving force is a maximum, and the displacement is a maximum (+A or –A) when the 

driving force is 0. 

 (c) As mentioned above, the phase difference is 90 .q  

 

64. Eq. 14-23 gives the amplitude 
0

A  as a function of driving frequency Z .  To find the frequency for 

maximum amplitude, we set 
0

0

dA
dZ

  and solve for .Z  
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65. We approximate that each spring of the car will effectively support one-fourth of the mass.  The 

rotation of the improperly-balanced car tire will force the spring into oscillation.  The shaking will be 

most prevalent at resonance, where the frequency of the tire matches the frequency of the spring.  At 

resonance, the angular velocity of the car tire, ,

v
r

Z   will be the same as the angular frequency of 

the spring system, .

k
m

Z   

� � � �1

4

16,000 N m

    0.42 m 3.1m s

1150 kg

v k k
v r

r m m
Z   o     

 

66. First, we put Eq. 14-23 into a form that explicitly shows 
0

A  as a function of Q and has the ratio  

0
.Z Z  

  

� �

� �

� � � �� �

0 0

0
2 2

2 2 2 2 2 2 2 2 2

2 20 0 0

02 2 2

0 0

2

0 0
0 0

2 2 2
2 2 2 2 2 2 2

4 4 2

0 0 02 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0

0 0

22
22 2 2 2 0

0 0 02

    

1 1

1 1 1

1

       

1

1 1

F F
A

m b m b
m

m

F mF F

b
m m

m Q Q

F k A
F k

Q

Z Z Z Z Z ZZ Z
Z Z

Z

Z Z Z Z Z ZZ Z Z
Z Z Z Z Z Z Z

Z Z Z Z Z Z

  
� �

� �

   

� � � � � �

 o  
� � �

§ ·
¨ ¸
© ¹

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

� �2

0 2

1

Q
Z Z�

 

 For a value of Q = 6.0, the following graph is obtained. 

 

The spreadsheet used for this 

problem can be found on the 

Media Manager, with filename 

“PSE4_ISM_CH14.XLS,” on 

tab “Problem 14.66.” 

 

 

 

 

 

 

 

 

67. Apply the resonance condition, 
0
,Z Z to Eq. 14-23, along with the given condition of 

0

0
23.7 .

F
A

m
   Note that for this condition to be true, the value of 23.7 must have units of 

2

s .  

  

� �
0

0
2

2 2 2 2 2

0

 

F
A

m b mZ Z Z
 o

� �
 

0

1

2

3

4

5

6

7
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0

0

A
F k

0
Z Z
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  � � 0 0 0 0 0 0

0 0 2 2
2 2 2

0
0 0

0

0

23.7     23.7

F F F F F F
A Q Q

b b m k km b m m m
m m Q

Z Z Z Z ZZ
Z

       o   

 

68. We are to show that � �
0 0
sinx A tZ I �  is a solution of 

2

02

cos

dx dx
m b kx F t

dt dt
Z� �  by direct 

substitution. 

  

� � � � � �

� � � �> @ � �> @

2

2

0 0 0 0 0 02

2

02

2

0 0 0 0 0 0 0

sin  ; cos  ; sin

cos   

sin cos sin cos

dx d x
x A t A t A t

dt dt
dx dx

m b kx F t
dt dt

m A t b A t k A t F t

Z I Z Z I Z Z I

Z

Z Z I Z Z I Z I Z

 �  �  � �

� �  o

� � � � � �  ª º¬ ¼

   

 Expand the trig functions. 

  � �> @ > @2

0 0 0 0 0 0 0 0
sin cos cos sin cos cos sin sin coskA m A t t b A t t F tZ Z I Z I Z Z I Z I Z� � � �   

 Group by function of time. 

  

� � � �2 2

0 0 0 0 0 0 0 0 0 0

0

cos sin sin sin cos cos

     cos

kA m A b A t kA m A b A t

F t

Z I Z I Z Z I Z I Z

Z

� � � � �

 

ª º ª º¬ ¼ ¬ ¼
 

 The equation has to be valid for all times, which means that the coefficients of the functions of time 

must be the same on both sides of the equation.  Since there is no sin tZ on the right side of the 

equation, the coefficient of sin tZ must be 0. 

  

� �2

0 0 0 0 0

2 2 2 2 2 2 2 2

10 0 0 0 0 0

0 0

0 0

cos sin 0  

sin

tan   tan

cos

kA m A b A

kA m A k m m m
b A b b b m b m

Z I Z I

I Z Z Z Z Z Z Z ZI I
I Z Z Z Z Z

�

� �  o

� � � � �
     o  

 

 Thus we see that Eq. 14-24 is necessary for � �
0 0
sinx A tZ I �  to be 

the solution.  This can be illustrated with the diagram shown. 

 

 Equate the coefficients of cos .tZ  

  � �2

0 0 0 0 0 0
sin cos   kA m A b A FZ I Z I� �  o  

� � � �
� � � �

2 2

02

0 0
2 2 2 2

2 2
2 2 2 2

0 02 2

 

b
mA k m b F

b b
m m

Z
Z Z

Z Z
Z ZZ Z Z Z

�
� �  o

� � � �

ª º
« »
« »
« »
« »¬ ¼

 

� �
� � � � � �

2 2

2
2 2

2
0

0

0 0 0
2 2 2 2 2 2

2 2 2
2 2 2 2 2 2

0 0 02 2 2

  

b
FmA m F A

b b b
m

m m m

Z
Z Z

Z Z ZZ Z Z Z Z Z

�
�  o  

� � � � � �

ª º
« »
« »

ª º« »
« »« »¬ ¼ « »¬ ¼

 

 Thus we see that Eq. 14-23 is also necessary for � �
0 0
sinx A tZ I �  to be the solution. 

 

0
I b mZ

2 2

0
Z Z�

� �
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69. (a) For the damped oscillator, the amplitude decays according to 
2

0
.

bt
mA A e

�
   We are also given the  

Q value, and 
0

.

m
Q

b
Z

   We use these relationships to find the time for the amplitude to 

decrease to one-third of its original value. 

 � �
� � � �

1/ 3

0 0 12

0 03

1/ 3
2

0

     ;    

2 3502 2 2

ln3 ln3 ln 3 ln3 173.7s 170s

9.80m s 0.50m

bt
m

gm b
Q A A e A

b m Q Q
m Q Q

t
b g

Z Z

Z

�
 o     o

     |

l

l

 

(b) The energy is all potential energy when the displacement is at its maximum value, which is the  

amplitude.  We assume that the actual angular frequency is very nearly the same as the natural 

angular frequency. 

  

� � � �
� �

2

2 2 2 2
1 1 2

0 0 02 2

3/ 223/ 22 2

50

0

  

2 2

0.27 kg 0.020m 9.80m s

1.3 10 W

2 2 2 350 0.50m

  ;  

bt bt bt
m m m

t

mg dE b mg
E kA m A e A e A e

dt m

gdE mg mA g
dt Q Q

Z
� � �

�

 

    � o

 �    u

§ ·
¨ ¸
© ¹

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

l l

l

l l

 

(c) Use Eq. 14-26 to find the frequency spread. 

  � � � �
� �

0 0 0

2

30 0

2 1

      

2

9.80m s 0.50m

2.0 10 Hz

2 2 2 350

f f
Q

f f Q

gf
f

Q Q Q

Z S
Z S

Z
S S S

�

' ' '
 o   o

'      u
l

 

Since this is the total spread about the resonance frequency, the driving frequency must be 

within 
3

1.0 10 Hz
�u on either side of the resonance frequency. 

 

70. Consider the conservation of energy for the person.  Call the unstretched position of the fire net the 

zero location for both elastic potential energy and gravitational potential energy.  The amount of 

stretch of the fire net is given by x, measured positively in the downward direction.  The vertical 

displacement for gravitational potential energy is given by the variable y, measured positively for the 

upward direction.  Calculate the spring constant by conserving energy between the window height 

and the lowest location of the person.  The person has no kinetic energy at either location. 

  � � � � � � � �> @
� �

2
1

top bottom top bottom bottom2

bottom 2 4

22

bottom

    

20.0m 1.1m

2 2 62 kg 9.80 m s 2.119 10 N m

1.1m

top

E E mgy mgy kx

y y
k mg

x

 o  �

� � �   u
       

(a) If the person were to lie on the fire net, they would stretch the net an amount such that the 

upward force of the net would be equal to their weight. 

   

� � � �2

2

4ext

62 kg 9.80 m s

    2.9 10 m

2.1198 10 N m

mg
F kx mg x

k
�  o    u

u
 

(b) To find the amount of stretch given a starting height of 38 m, again use conservation of energy.  

Note that 
bottom

y x � , and there is no kinetic energy at the top or bottom positions. 
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� � � � � � � � � �

2 2
1

top bottom top bottom 2

2 2

2

4 4

2

        2 2 0

62 kg 9.80 m s 62 kg 9.80 m s

2 2 38m 0  

2.1198 10 N m 2.1198 10 N m

0.057326 2.1784 0    1.5049 m , 1.4476 m

top

mg mg
E E mgy mgy kx x x y

k k

x x

x x x

 o  � o � �  

� �  o
u u

� �  o  �

 

This is a quadratic equation.  The solution is the positive root, since the net must be below the 

unstretched position.  The result is 1.5 m . 

 

71. Apply the conservation of mechanical energy to the car, calling condition # 1 to be before the 

collision and condition # 2 to be after the collision.  Assume that all of the kinetic energy of the car is 

converted to potential energy stored in the bumper.  We know that 
1

0x   and 
2

0v  . 

  

� �

2 2 2 2 2 2
1 1 1 1 1 1

1 2 1 1 2 2 1 22 2 2 2 2 2

2 1 3

          

1300 kg

2.0 m s 0.11m

430 10 N m

E E mv kx mv kx mv kx

m
x v

k

 o �  � o  o

   
u

 

 

72. (a) The frequency can be found from the length of the  

pendulum, and the acceleration due to gravity. 

   

2

1 1 9.80m s

0.6277 Hz 0.63Hz

2 2 0.63m

g
f

S S
   |

l
 

 (b) To find the speed at the lowest point, use the conservation of  

energy relating the lowest point to the release point of the 

pendulum.  Take the lowest point to be the zero level of 

gravitational potential energy. 

   

� �
top bottom top top bottom bottom

2
1

bottom2

    

0 cos 0

E E KE PE KE PE

mg L L mvT

 o �  �

� �  �
 

� � � � � � � �2

bottom
2 1 cos 2 9.80m s 0.63m 1 cos15 0.6487 m s 0.65m sv gL T �  � q  |  

 (c) The total energy can be found from the kinetic energy at the bottom of the motion. 

   � � � �22 2
1 1

total bottom2 2
0.295kg 0.6487m s 6.2 10 JE mv �   u  

 

73. The frequency of a simple pendulum is given by 

1

2

g
f

LS
 .  The pendulum is accelerating 

vertically which is equivalent to increasing (or decreasing) the acceleration due to gravity by the 

acceleration of the pendulum.  

 (a) 
new

1 1 1.50 1

1.50 1.50 1.22

2 2 2

g a g g
f f f

L L LS S S
�

      

(b) 
new

1 1 0.5 1

0.5 0.5 0.71

2 2 2

g a g g
f f f

L L LS S S
�

      

 

74. The equation of motion is 0.25sin 5.50 sinx t A tZ  .  

(a) The amplitude is 
max

0.25mA x  . 

l 
T 

cosh T �l l

cosTl
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 (b) The frequency is found by 

1

1
5.50s

2 5.50s     0.875Hz

2

f fZ S
S

�
�  o    

 (c) The period is the reciprocal of the frequency.  
1

2

1 1.14s

s

T f
S

�
   

����
. 

 (d) The total energy is given by  

� � � � � � � � 2
22 1

1 1 1

total max2 2 2
0.650kg 5.50s 0.25m 0.6145J 0.61JE mv m AZ �    |ª º¬ ¼ . 

 (e) The potential energy is given by  

� � � � � �2
22 2 2 11 1 1

potential 2 2 2
0.650kg 5.50s 0.15m 0.2212J 0.22JE kx m xZ �    | . 

  The kinetic energy is given by  

   
kinetic total potential

0.6145J 0.2212 J 0.3933J 0.39 JE E E �  �  | . 

 

75. (a) The car on the end of the cable produces tension in the cable, and stretches the cable according  

to Equation (12-4), 

1

o

F
E A

'  l l , where E  is Young’s modulus.  Rearrange this equation to 

see that the tension force is proportional to the amount of stretch, 

o

EA
F  'l

l
, and so the 

effective spring constant is 

o

EA
k  
l

.  The period of the bouncing can be found from the spring 

constant and the mass on the end of the cable. 

   

� � � �
� � � �2

9 2 3

1350 kg 20.0 m

2 2 2 0.407s 0.41s

200 10 N m 3.2 10 m

om m
T

k EA
S S S

S �
    |

u u

l
 

 (b) The cable will stretch some due to the load of the car, and then the amplitude of the bouncing  

will make it stretch even farther.  The total stretch is to be used in finding the maximum 

amplitude.  The tensile strength is found in Table 12-2. 

   

� � � �static amplitude

2

tensile strength abbrev T.S.   

k x xF
A rS

�
  o  

  

� � � � � �

� �
� �

� � � �
� �

2 2

0 0

amplitude 2 2 2

0

2

6 2 3

29 2

T.S. T.S.

T.S.

1350 kg 9.80 m s20.0 m

           500 10 N m 9 10 m 9 mm

200 10 N m 0.0032 m

r r mg mg
x

E rk E r E r
S S

S S S

S
�

 � '  �  �

 u �  u  
u

ª º
« »¬ ¼

ª º
« »
« »¬ ¼

l l
l

l
 

 

76. The spring constant does not change, but the mass does, and so the frequency will change.  Use Eq. 

14-7a to relate the spring constant, the mass, and the frequency. 

  

� �

2 2 2

O O S S2

13 13O

S O

S

1

    constant      

2 4

6.0

 3.7 10 Hz 2.6 10 Hz

32.0

k k
f f m f m f m

m

m
f f

m

S S
 o   o  o

�
  u  u
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77. The period of a pendulum is given by 2T gS l , and so the length is 

2

2

4

T g
S

 l . 

(a) 

� � � �2 2
2

Austin

Austin 2 2

2.000 s 9.793m s

0.992238m 0.9922 m

4 4

T g
S S

   |l  

(b) 

� � � �2 2
2

Paris

Paris 2 2

2.000 s 9.809m s

0.993859 m 0.9939 m

4 4

T g
S S

   |l  

Paris Austin
0.993859 m 0.992238 m 0.001621 m 1.6 mm�  �  |l l  

(c) 

� � � �2 2
2

Moon

Moon 2 2

2.00 s 1.62m s

0.164 m

4 4

T g
S S

   l  

 

78. The force of the man’s weight causes the raft to sink, and that causes the water to put a larger upward 

force on the raft.  This extra buoyant force is a restoring force, because it is in the opposite direction 

of the force put on the raft by the man.  This is analogous to pulling down on a mass–spring system 

that is in equilibrium, by applying an extra force.  Then when the man steps off, the restoring force 

pushes upward on the raft, and thus the raft–water system acts like a spring, with a spring constant 

found as follows.  

  

� � � �2

4

2

ext

75kg 9.80 m s

2.1 10 N m

3.5 10 m

F
k

x �
   u

u
 

 (a) The frequency of vibration is determined by the “spring constant” and the mass of the raft.  

   

4

1 1 2.1 10 N m

1.289 Hz 1.3Hz

2 2 320 kg
n

k
f

mS S
u

   |  

 (b) As explained in the text, for a vertical spring the gravitational potential energy can be ignored if  

the displacement is measured from the oscillator’s equilibrium position.  The total energy is 

thus 

 � � � �2
2 4 2

1 1

total 2 2
2.1 10 N m 3.5 10 m 12.86J 13JE kA �  u u  | . 

 

79. The relationship between the velocity and the position of a SHO is given by Eq. 14-11b.  Set that 

expression equal to half the maximum speed, and solve for the displacement. 

  

2 2 2 2 2 2 2 2 31 1 1

max max2 2 4 4
1     1     1       

3 2 0.866

v v x A v x A x A x A

x A A

 r �  o r �  o �  o  o

 r | r
 

 

80. For the pebble to lose contact with the board means that there is no normal force of the board on the 

pebble.  If there is no normal force on the pebble, then the only force on the pebble is the force of 

gravity, and the acceleration of the pebble will be g downward, the acceleration due to gravity.  This 

is the maximum downward acceleration that the pebble can have.  Thus if the board’s downward 

acceleration exceeds g, then the pebble will lose contact.  The maximum acceleration and the 

amplitude are related by 
2 2

max
4a f AS . 

  

� �

2

2 2 2

max 22 2 2

9.80m s

4     4.0 10 m

4 4 2.5 Hz

g
a f A g A

f
S

S S
� d o d d d u  
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81. Assume the block has a cross-sectional area of A.  In the equilibrium position, the net force on the 

block is zero, and so 
buoy

.F mg   When the block is pushed into the water (downward) an additional 

distance ,x'  there is an increase in the buoyancy force (
extra

F ) equal to the weight of the additional 

water displaced.  The weight of the extra water displaced is the density of water times the volume 

displaced. 

  � �
extra add. water add. water water

water water

F m g V g gA x gA xU U U   '  '  

This is the net force on the displaced block.  Note that if the block is pushed down, the additional 

force is upwards.  And if the block were to be displaced upwards by a distance x' , the buoyancy 

force would actually be less than the weight of the block by the amount 
extra

F  , and so there would be 

a net force downwards of magnitude 
extra

F .  So in both upward and downward displacement, there is 

a net force of magnitude � �
water

gA xU '  but opposite to the direction of displacement.  As a vector, we 

can write the following.   

  � �
net water

gAU � 'F x
G G

 

 This is the equation of simple harmonic motion, with a “spring constant” of 
water

k gAU  

 

82. (a) From conservation of energy, the initial kinetic energy of the car will all be changed into elastic  

potential energy by compressing the spring. 

2 2 2 2 2 21 1 1 1 1 1

1 2 1 1 2 2 1 22 2 2 2 2 2
          E E mv kx mv kx mv kx o �  � o  o   

� � � �
� �

2
2

4 41

22

2

25m s

950 kg 2.375 10 N m 2.4 10 N m

5.0 m

v
k m

x
   u | u  

(b) The car will be in contact with the spring for half a period, as it moves from the equilibrium 

location to maximum displacement and back to equilibrium. 

   

� �
1 1

2 2 4

950 kg

2 0.63s

2.375 10 N m

m
T

k
S S   

u
 

 

83. (a) The effective spring constant is found from the final displacement caused by the additional mass  

on the table.  The weight of the mass will equal the upward force exerted by the compressed 

springs. 

 � � � �
� �

grav springs

2

      

0.80 kg 9.80 m s

130.67 N m 130 N m

0.060 m

F F mg k y

mg
k

y

 o  ' o

   |
'

 

(b) We assume the collision takes place in such a short time that the springs do not compress a  

significant amount during the collision.  Use momentum conservation to find the speed 

immediately after the collision. 

  

� �

� � � �

before after clay clay clay table after

clay

after clay

clay table

      

0.80 kg

1.65m s 0.55m s

2.40 kg

p p m v m m v

m
v v

m m

 o  � o

   
�

 

As discussed in the text, if we measure displacements from the new equilibrium position, we 

may use an energy analysis of the spring motion without including the effects of gravity.  The 

total elastic and kinetic energy immediately after the collision will be the maximum elastic 

energy, at the amplitude location. 

Jeroen
Marked ingesteld door Jeroen
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� � � �

2 2 2
1 1 1

1 2 total after after2 2 2

2 22 2total

after after

        

2.40 kg

0.55m s 0.060 m 0.096 m 9.6cm

130.67 N m

E E m v kx kA

m
A v x

k

 o �  o

 �  �   
§ ·
¨ ¸
© ¹

 

 

84. (a) The graph is shown.  The  

spreadsheet used for this problem 

can be found on the Media 

Manager, with filename 

“PSE4_ISM_CH14.XLS,” on tab 

“Problem 14.84a.” 

 

 (b) Equilibrium occurs at the location  

where the force is 0.  Set the force 

equal to 0 and solve for the 

separation distance r. 

   � �
0 2 3

0 0

0  

C D
F r

r r
 � �  o  

3 2

0 0 02 3

0 0

    =     

C D D
Cr Dr r

r r C
 o o   

  This does match with the graph, which shows F = 0 at r = D/C. 

 (c) We find the net force at 
0

.r r r � '   Use the binomial expansion. 

   

� � � � � �
2 3

2 3 2 3

0 0 0 0 0

0 0

02 3 3

0 0 0 0 0 0 0

1 1

                  1 2 1 3 1 2 1 3

r r
F r r C r r D r r Cr Dr

r r

C r D r C r D r
r

r r r r r r C r

� �
� � � �' '

� '  � � ' � � '  � � � �

' ' ' '
| � � � �  � � � �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
ª º§ · § · § · § ·

¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« »
© ¹ © ¹ © ¹ © ¹¬ ¼

 

 > @ > @ � �
0 0 03 3 3

0 0 0

                  2 3     

C C C
r r r r r F r r r

r r r
 � � ' � � '  �' o � '  � '  

We see that the net force is proportional to the displacement and in the opposite direction to the 

displacement.  Thus the motion is simple harmonic. 

(d) Since for simple harmonic motion, the general form is ,F kx �  we see that for this situation, 

the spring constant is given by 

4

3 3

0

 .

C C
k

r D
   

 

 (e) The period of the motion can be found from Eq. 14-7b. 

   

3

4

2 2

m mD
T

k C
S S   

 

85. (a) The relationship between the velocity and the position of a SHO is given by Eq. 14-11b.   

Set that expression equal to half the maximum speed, and solve for the displacement. 

   
2 2 2 2 2 2

1 1 1

max 0 max 0 02 2 4
1     1     1   v v x x v x x x x r �  o r �  o �  o  

   
2 2 3

0 0 04
    3 2 0.866x x x x x o  r | r  

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4

r  as a fraction of D/C

F
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 (b) Since F kx ma �   for an object attached to a spring, the acceleration is proportional to the  

displacement (although in the opposite direction), as a x k m � .  Thus the acceleration will 

have half its maximum value where the displacement has half its maximum value, at 
1

02
xr  

 

86. The effective spring constant is determined by the frequency of vibration and the mass of the 

oscillator.  Use Eq. 14-7a. 

  

� � � � � �
27

2 2 2 13

1

  

2

1.66 10 kg

4 4 2.83 10 Hz 16.00u 840 N m 3 sig. fig.

1u

k
f

m

k f m

S

S S
�

 o

u
  u  

§ ·
¨ ¸
© ¹

 

 

87. We quote from the next to last paragraph of Appendix D:  “… we see that  

at points within a solid sphere, say 100 km below the Earth’s surface, only 

the mass up to that radius contributes to the net force.  The outer shells 

beyond the point in question contribute zero net gravitational effect.”  So 

when the mass is a distance r from the center of the Earth, there will be a 

force toward the center, opposite to r, due only to the mass within a sphere 

of radius r.  We call that mass .rm   It is the density of the (assumed 

uniform) Earth, times the volume within a sphere of radius r. 

 

3

3Earth Earth 4

Earth33 3
4

3Earth Earth Earth

3

Earth 3

EarthEarth

2 2 3

Earth

r r r

r

M M r
m V V r M

V R R

rGmM
Gmm GmMR

F r
r r R

U S
S

    

 �  �  �

 

The force on the object is opposite to and proportional to the displacement, and so will execute 

simple harmonic motion, with a “spring constant” of 
Earth

3

Earth

.

GmM
R

k    The time for the apple to return 

is the period, found from the “spring constant.” 

 

� �
� � � �

3
6

3

Earth

11 2 2 24

Earth
Earth

3

Earth

6.38 10 m

2 2 2 2

6.67 10 N m kg 5.98 10 kg

507s or 84.5min  

m m R
T

GmMk GM
R

S S S S
�

u
    

u u

 

<
 

 

88. (a) The rod is a physical pendulum.  Use Eq. 14-14 for the period of a physical pendulum. 

� �
� �

� �
2

1

3

2
1

2

2 1.00m2

2 2 2 2 1.64s

3 3 9.80m s

I m
T

mgh mg g
S S S S     

l l

l
 

 (b) The simple pendulum has a period given by 2 .T gS l   Use this to find the length. 

 � �simple
2 2

simple 3 3

2

2 2     1.00m 0.667m

3

T
g g

S S  o    
l l

l l  

 

m

r

Earth
R
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89. Consider energy conservation for the mass over the range of motion from 

“letting go” (the highest point) to the lowest point.  The mass falls the 

same distance that the spring is stretched, and has no kinetic energy at 

either endpoint.  Call the lowest point the zero of gravitational potential 

energy.  The variable “x” represents the amount that the spring is stretched 

from the equilibrium position. 

  
2 2 2 2

1 1 1 1

top bottom top top top bottom bottom bottom2 2 2 2
  E E mv mgy kx mv mgy kx � �  � �o  

� �

2 2 2 2
1 1 1 1

top top top bottom bottom bottom2 2 2 2

2 2
1

2

2

2 2

0 0 0 0         

2 9.80m s1 2 1

1.25Hz

2 2 2 0.320m

mv mgy kx mv mgy kx

k g g
mgH kH

m H H

g
f

H

Z Z

Z
S S S

� �  � �

� �  � � o   o  

    

 

 

90. For there to be no slippage, the child must have the same acceleration as the slab.  This will only 

happen if the force of static friction is big enough to provide the child with an acceleration at least as 

large as the maximum acceleration of the slab.  The maximum force of static friction is given by 

fr s N

max

.F FP   Since the motion is horizontal and there are not other vertical forces besides gravity 

and the normal force, we know that 
N

.F mg   Finally, the maximum acceleration of the slab will 

occur at the endpoints, and is given by Eq. 14-9b.  The mass to use in Eq. 14-9b is the mass of the 

oscillating system, .m M�  

  
s N s

fr elastic s

max max

      

F mg k
a a g A

m m m M
P P Pt o   t o

�
 

  

� � � � � � � �
2

s

430 N m

0.50m 35kg 19.8kg 20kg 2 sig. fig.

0.40 9.80m s

k
m A M

gP
t �  �  |  

 And so the child must have a minimum mass of 20 kg (about 44 lbs) in order to ride safely. 

 

91. We must make several assumptions.  Consider a static displacement of the trampoline, by someone 

sitting on the trampoline mat.  The upward elastic force of the trampoline must equal the downward 

force of gravity.  We estimate that a 75-kg person will depress the trampoline about 25 cm at its 

midpoint. 

  

� � � �2

75kg 9.80m s

    2940 N m 3000 N m

0.25m

mg
kx mg k

x
 o    |   

 

92. We may use Eq. 10-14, ,IW D ¦  as long as the axis of rotation is fixed in an 

inertial frame.  We choose the axis to be at the point of support, perpendicular 

to the plane of motion of the pendulum.  There are two forces on the 

pendulum bob, but only gravity causes any torque.  Note that if the pendulum 

is displaced in the counterclockwise direction (as shown in Fig. 14-46), then 

the torque caused by gravity will be in the clockwise direction, and vice versa.  

See the free-body diagram in order to write Newton’s second law for rotation, 

with counterclockwise as the positive rotational direction. 

  

2

2

sin

d
mg I I

dt
TW T D �   ¦ l  

x = 0

x = H y = 0

y = H

mgG

T
F
G

T
l

sinTl
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 If the angular displacement is limited to about 15 ,q  then sin .T T|  

  

2 2

2 2 2

    

d d mg mg g
mg I

dt dt I m
T TT T T T�  o  �  �  �

l l
l

l l
 

This is the equation of simple harmonic motion, with 
2

.gZ  l   Thus we can write the 

displacement of the pendulum as follows, imitating Eq. 14-4. 

  � �
max max

cos     cos

g
t tT T Z I T T I � o  �

§ ·
¨ ¸
© ¹l

 

  

93. (a) Start with Eq. 14-7b, 

2

2
4

2     .

m
T T m

k k
SS o    This fits the straight-line equation form of  

� � � �slope intercepty x y � � , if we plot 
2

vs. .T m   The slope is 
2

4 ,kS  and so 

2

4

.

slope

k
S

   

The y-intercept is expected to be 0. 

(b) The graph is included on the next page.  The slope is 
2 2

0.1278s kg 0.13s kg ,|  and the y- 

intercept is 
2 2

0.1390s 0.14s .|   The spreadsheet used for this problem can be found on the 

Media Manager, with filename “PSE4_ISM_CH14.XLS,” on tab “Problem 14.93b.” 

(c) Start with the modified Eq. 14-7b.  

0

2 2

2 0

2   

4 4

m m
T

k
m

T m
k k

S

S S

�
 o

 �

 

The spring constant is still given 

by 

2

4

slope

k
S

  and the y-intercept is 

expected to be 

2

0
4

.

m
k
S

 

  

2

2

2 2

0 0 0

0 0 2 2

4

308.9 N m 310N m
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4 0.1390s

intercept    1.088kg 1.1kg

4 slope 0.1278s kg

k

m ky y
y y m

k

S

S
S

  |

  � o     |

 

(d) The mass 
0

m  can be interpreted as the effective mass of the spring.  The mass of the spring  

does oscillate, but not all of the mass has the same amplitude of oscillation, and so 
0

m is likely 

less than the mass of the spring.  One straightforward analysis predicts that 
1

0 spring3
.m M  

 

94. There is a subtle point in the modeling of this problem.  It would be easy to assume that the net force 

on the spring is given by 
2

net
F kx cv ma � �  .  But then the damping force would always be in the 

negative direction, since 
2

0.cv t   So to model a damping force that is in the opposite direction of 

the velocity, we instead must use 
net

.F kx cv mav � �    Then the damping force will be in the 

T 2

 = 0.13 m  + 0.14

R
2

 = 0.9997
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opposite direction of the velocity, and have a magnitude of 
2

.cv   We find the acceleration as a 

function of velocity, and then use numeric integration with a constant acceleration approximation to 

estimate the speed and position of the oscillator at later times.  We take the downward direction to be 

positive, and the starting position to be y = 0. 

      

k c
F kx cv v ma a x v v

m m
 � �  o  � �  

From Example 14-5, we have � �
0

0 0.100 mx x  �  and � �
0

0 0.v v    We calculate the initial 

acceleration, 
0 0 0 0

,

k c
a x v v

m m
 � �  and assume that acceleration is constant over the next time 

interval.  Then  � �2
1

1 0 0 02
,x x v t a t � ' � '  

1 0 0
,v v a t � '  and 

1 1 1 1
.

k c
a x v v

m m
 � �   This continues 

for each successive interval.  We apply this method first for a time interval of 0.01 s, and record the 

position, velocity, and acceleration t = 2.00 s.  Then we reduce the interval to 0.005 s and again find 

the position, velocity, and acceleration at t = 2.00 s.  We compare the results from the smaller time 

interval with those of the larger time interval to see if they agree within 2%.  If not, a smaller interval 

is used, and the process repeated.  For this problem, the results for position, velocity, and 

acceleration for time intervals of 0.001 s and 0.0005 s agree to within 2%.  Here are the results for 

various intervals. 

  0.01s:t'    � �2.00s 0.0713mx   � �2.00s 0.291m sv  �    � � 2

2.00s 4.58m sa  �  

  0.005s:t'    � �2.00s 0.0632 mx   � �2.00s 0.251m sv  �    � � 2

2.00s 4.07 m sa  �
 

  0.001s:t'    � �2.00s 0.0574 mx   � �2.00s 0.222 m sv  �     � � 2

2.00s 3.71m sa  �  

  0.0005s:t'    � �2.00s 0.0567 mx   � �2.00s 0.218m sv  �    � � 2

2.00s 3.66 m sa  �  

The graphs of position, velocity, and acceleration are shown below.  The spreadsheet used can be 

found on the Media Manager, with filename “PSE4_ISM_CH14.XLS”, on tab “Problem 14.94”. 
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CHAPTER 15:  Wave Motion 
 
Responses to Questions 
 
1.  Yes. A simple periodic wave travels through a medium, which must be in contact with or connected 

to the source for the wave to be generated. If the medium changes, the wave speed and wavelength 
can change but the frequency remains constant. 

 
2.   The speed of the transverse wave is the speed at which the wave disturbance propagates down the 

cord. The individual tiny pieces of cord will move perpendicular to the cord with an average speed 
of four times the amplitude divided by the period. The average velocity of the individual pieces of 
cord is zero, but the average speed is not the same as the wave speed. 

 
3.  The maximum climb distance (4.3 m) occurs when the tall boat is at a crest and the short boat is in a 

trough. If we define the height difference of the boats on level seas as ǻh and the wave amplitude as 
A, then ǻh + 2A = 4.3 m. The minimum climb distance (2.5 m) occurs when the tall boat is in a 
trough and the short boat is at a crest.  Then ǻh – 2A = 2.5 m. Solving these two equations for A 
gives a wave amplitude of 0.45 m. 

 
4. (a) Striking the rod vertically from above will displace particles in a direction perpendicular to the  

rod and will set up primarily transverse waves. 
(b) Striking the rod horizontally parallel to its length will give the particles an initial displacement  

parallel to the rod and will set up primarily longitudinal waves. 
 

5. The speed of sound in air obeys the equation .v B U  If the bulk modulus is approximately 
constant and the density of air decreases with temperature, then the speed of sound in air should 
increase with increasing temperature. 

 
6.  First, estimate the number of wave crests that pass a given point per second. This is the frequency of 

the wave. Then, estimate the distance between two successive crests, which is the wavelength. The 
product of the frequency and the wavelength is the speed of the wave. 

 

7.  The speed of sound is defined as v B U , where B is the bulk modulus and ȡ is the density of the 
material. The bulk modulus of most solids is at least 106 times as great as the bulk modulus of air. 
This difference overcomes the larger density of most solids, and accounts for the greater speed of 
sound in most solids than in air. 

 
8.  One reason is that the wave energy is spread out over a larger area as the wave travels farther from 

the source, as can be seen by the increasing diameter of the circular wave. The wave does not gain 
energy as it travels, so if the energy is spread over a larger area, the amplitude of the wave must be 
smaller. Secondly, the energy of the wave dissipates due to damping, and the amplitude decreases.  

 
9. If two waves have the same speed but one has half the wavelength of the other, the wave with the 

shorter wavelength must have twice the frequency of the other. The energy transmitted by a wave 
depends on the wave speed and the square of the frequency. The wave with the shorter wavelength 
will transmit four times the energy transmitted by the other wave. 

 
10.  Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, 

Eq. 15-16.  
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11.  The frequency does not change at the boundary because the two sections of cord are tied to each 
other and they must oscillate together.  The wavelength and wave speed can be different, but the 
frequency must remain constant across the boundary. 

 
12.  The transmitted wave has a shorter wavelength. If the wave is inverted upon reflection at the 

boundary between the two sections of rope, then the second section of rope must be heavier. 
Therefore, the transmitted wave (traveling in the heavier rope) will have a lower velocity than the 
incident wave or the reflected wave. The frequency does not change at the boundary, so the 
wavelength of the transmitted wave must also be smaller.  

 
13. Yes, total energy is always conserved. The particles in the medium, which are set into motion by the 

wave, have both kinetic and potential energy. At the instant in which two waves interfere 
destructively, the displacement of the medium may be zero, but the particles of the medium will 
have velocity, and therefore kinetic energy.  

 
14.  Yes. If you touch the string at any node you will not disturb the motion. There will be nodes at each 

end as well as at the points one-third and two-thirds of the distance along the length of the string.   
 
15. No. The energy of the incident and reflected wave is distributed around the antinodes, which exhibit 

large oscillations. The energy is a property of the wave as a whole, not of one particular point on the 
wave. 

 
16. Yes. A standing wave is an example of a resonance phenomenon, caused by constructive 

interference between a traveling wave and its reflection. The wave energy is distributed around the 
antinodes, which exhibit large amplitude oscillations, even when the generating oscillations from the 
hand are small. 

 
17. When a hand or mechanical oscillator vibrates a string, the motion of the hand or oscillator is not 

exactly the same for each vibration. This variation in the generation of the wave leads to nodes 
which are not quite “true” nodes.  In addition, real cords have damping forces which tend to reduce 
the energy of the wave. The reflected wave will have a smaller amplitude than the incident wave, so 
the two waves will not completely cancel, and the node will not be a true node. 

 
18.  AM radio waves have a much longer wavelength than FM radio waves. How much waves bend, or 

diffract, around obstacles depends on the wavelength of the wave in comparison to the size of the 
obstacle. A hill is much larger than the wavelength of FM waves, and so there will be a “shadow” 
region behind the hill. However, the hill is not large compared to the wavelength of AM signals, so 
the AM radio waves will bend around the hill. 

 
19. Waves exhibit diffraction.  If a barrier is placed between the energy source and the energy receiver, 

and energy is still received, it is a good indication that the energy is being carried by waves. If 
placement of the barrier stops the energy transfer, it may be because the energy is being transferred 
by particles or that the energy is being transferred by waves with wavelengths smaller than the 
barrier. 

 
Solutions to Problems 
 
1. The wave speed is given by v fO .  The period is 3.0 seconds, and the wavelength is 8.0 m. 

  � � � �8.0m 3.0s 2.7m sv f TO O     

 



Chapter 15  Wave Motion 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

477 

2. The distance between wave crests is the wavelength of the wave. 

  343m s 262 Hz 1.31 mv fO     
 
3. The elastic and bulk moduli are taken from Table 12-1.  The densities are taken from Table 13-1. 

(a) For water: 
9 2

3 3

2.0 10 N m
1400m s

1.00 10 kg m
v B U u
   

u
 

 (b) For granite: 
9 2

3 3

45 10 N m
4100m s

2.7 10 kg m
v E U u
   

u
 

 (c) For steel:  
9 2

3 3

200 10 N m
5100m s

7.8 10 kg m
v E U u
   

u
 

 
4. To find the wavelength, use v fO  . 

 AM:     
8 8

1 23 3
1 2

3.00 10 m s 3.00 10 m s
545 m      188 m    AM: 190 m to 550 m

550 10 Hz 1600 10 Hz

v v
f f

O Ou u
      

u u
 

FM:    
8 8

1 26 6
1 2

3.00 10 m s 3.00 10 m s
3.41m      2.78m    FM: 2.8m to 3.4m

88 10 Hz 108 10 Hz

v v
f f

O Ou u
      

u u
 

 

5. The speed of the longitudinal wave is given by Eq. 15-3, v E U .  The speed and the frequency 
are used to find the wavelength.  The bulk modulus is found in Table 12-1, and the density is found 
in Table 13-1. 

  

9 2

3 3

100 10 N m

7.8 10 kg m
0.62m

5800Hz

E
v
f f

UO

u
u

     

 
6. To find the time for a pulse to travel from one end of the cord to the other, the velocity of the pulse 

on the cord must be known.  For a cord under tension, we have Eq. 15-2, .Tv F P  

  

� � � �

8.0m
    0.19s

140 N

0.65kg 8.0m

T

T

x F x
v t

t FP
P

' '
  o '    
'

 

 

7. For a cord under tension, we have from Eq. 15-2 that .Tv F P   The speed is also the 

displacement divided by the elapsed time, v
x
t

 
'
'

.  The displacement is the length of the cord. 

  
� � � � � �

� � � �
� �

2 2

2 2 2 2

0.40kg 7.8m
    4.3N

0.85s
T

T

F x m m
v F

t t t t
P

P
'

  o      
' ' ' '

l l l

l
 

 

8. The speed of the water wave is given by v B U , where B  is the bulk modulus of water, from 
Table 12-1, and U  is the density of sea water, from Table 13-1.  The wave travels twice the depth of 
the ocean during the elapsed time. 
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9 2

3

3 3

2 2.8s 2.0 10 N m
    2.0 10 m

2 2 2 1.025 10 kg m

vt t B
v

t U
u

 o     u
u

l
l  

 
9. (a) The speed of the pulse is given by 

   
� �2 660m

77.65m s 78m s
17s

x
v

t
'

   |
'

 

 (b) The tension is related to the speed of the pulse by  T .v F P   The mass per unit length of the  

cable can be found from its volume and density. 

 
� �

� �

2

22 2
3 3

  
2

1.5 10 m
7.8 10 kg m 1.378kg m

2 2

m m
V d

m d

U
S

P SU S
�

  o

u
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§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

l

l

 

 � � � �22
T T    77.65m s 1.378kg m 8300Nv F F vP P o     

 
10. (a) Both waves travel the same distance, so 1 1 2 2x v t v t'   .  We let the smaller speed be 1v , and  

the larger speed be 2v .  The slower wave will take longer to arrive, and so 1t  is more than 2t . 

� �

� � � �

� � � �

1 2 2 1 2 2 2

1
2

2 1

2 2

1.7min 102s    102s   

5.5km s
102s 102s 187s

8.5km s 5.5km s

8.5km s 187s 1600km

t t t v t v t

v
t

v v

x v t

 �  � o �  o

   
� �

'    

 

(b) This is not enough information to determine the epicenter.  All that is known is the distance of  
the epicenter from the seismic station.  The direction is not known, so the epicenter lies on a 
circle of radius 31.9 10 kmu  from the seismic station.  Readings from at least two other seismic 
stations are needed to determine the epicenter’s position. 

 
11. (a) The shape will not change.  The wave will move 1.10 meters to the right in 1.00 seconds.  See  

the graph.  The parts of the string that are moving up or down are indicated. 
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 (b) At the instant shown, the string at point A will be moving down.  As the wave moves to the 
right, the string at point A will move down by 1 cm in the time it takes the “valley” between 1 
m and 2 m to move to the right by about 0.25 m. 

   
1cm

4cm s
0.25m 1.10m s

y
v

t
' �

  | �
'

 

  This answer will vary depending on the values read from the graph. 
 
12. We assume that the wave will be transverse.  The speed is given by Eq. 15-2.  The tension in the 

wire is equal to the weight of the hanging mass.  The linear mass density is the volume mass density 
times the cross-sectional area of the wire.  The volume mass density is found in Table 13-1. 

  
� � � �

� � � �
2

ball ball
23 3

5.0kg 9.80m s
89 m s

7800kg m 0.50 10 m
TF m g m g

v
V AUP SU

�
     

ul

l l

 

 

13. The speed of the waves on the cord can be found from Eq. 15-2, T .v F P   The distance between 

the children is the wave speed times the elapsed time. 

  � � � �2 2T T 35N
    0.50s 18m

0.50kg

F F
x v t t x t

m x m
'  '  ' o '  '   

'
 

 
14. (a) We are told that the speed of the waves only depends on the acceleration due to gravity and the  

wavelength. 

> @2
         : 1 2     1 2

L L
v kg L T

T T

D
JD JO D D o  �  � o  ª º ª º

« » « »¬ ¼ ¬ ¼
 

: 1     1 1 2           L v k gD J J D O � o  �    

 (b) Here the speed of the waves depends only on the acceleration due to gravity and the depth of the  
water. 

> @2         : 1 2     1 2
L Lv kg h L T
T T

D
ED E D Dª º ª º o  �  � o  « » « »¬ ¼ ¬ ¼

 

   : 1     1 1 2           L v k ghD E E D � o  �    

 
15. From Eq. 15-7, if the speed, medium density, and frequency of the two waves are the same, then the 

intensity is proportional to the square of the amplitude. 

  2 2
2 1 2 1 2 1 2 13    3 1.73I I E E A A A A   o    

 The more energetic wave has the larger amplitude. 
 
16. (a) Assume that the earthquake waves spread out spherically from the source.  Under those  

conditions, Eq. (15-8ab) applies, stating that intensity is inversely proportional to the square of 
the distance from the source of the wave. 

� � � �2 2

45km 15km 15km 45km 0.11I I    
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 (b) The intensity is proportional to the square of the amplitude, and so the amplitude is inversely  
proportional to the distance from the source of the wave. 

   45km 15km 15km 45km 0.33A A    

 
17. We assume that all of the wave motion is outward along the surface of the water – no waves are 

propagated downwards.  Consider two concentric circles on the surface of the water, centered on the 
place where the circular waves are generated.  If there is no damping, then the power (energy per 
unit time) being transferred across the boundary of each of those circles must be the same.  Or, the 
power associated with the wave must be the same at each circular boundary.  The intensity depends 
on the amplitude squared, so for the power we have this. 

� � 2 2 constant 1
2 2 constant        

2
P I r kA r A A

rk r
S S

S
   o  o v  

 
18. (a) Assuming spherically symmetric waves, the intensity will be inversely proportional to the  

square of the distance from the source.  Thus 2Ir  will be constant. 

 � � � �
� �

2 2
near near far far

22
6 2 9 2 9 2far

near far 22
near

  

48km
3.0 10 W m 6.912 10 W m 6.9 10 W m

1.0km

I r I r

r
I I

r

 o

  u  u | u
 

 (b) The power passing through an area is the intensity times the area. 

   � � � �9 2 2 106.912 10 W m 2.0m 1.4 10 WP IA  u  u  

 
19. (a) The power transmitted by the wave is assumed to be the same as the output of the oscillator.   

That power is given by Eq. 15-6.  The wave speed is given by Eq. 15-2.  Note that the mass per 
unit length can be expressed as the volume mass density times the cross sectional area. 

   

� � � � � � � � � �

2 2 2 2 2 2 2 2 2 2 2 2T T
T

22 22 3 3

2 2 2 2

   2 60.0Hz 0.0050m 5.0 10 m 7800kg m 7.5N 0.38W

F F
P Svf A S f A S f A f A S F

S
S U S U S U S U

P U

S S �

    

 u  

 

(b) The frequency and amplitude are both squared in the equation.  Thus is the power is constant, 

and the frequency doubles, the amplitude must be halved, and so be 0.25cm .  

 
20. Consider a wave traveling through an area S with speed v, much like Figure 15-11.  Start with Eq. 

15-7, and use Eq. 15-6. 

  
energy

volume

P E E E
I v

S St S t S t
     u

l l

l l
 

 
21. (a) We start with Eq. 15-6.  The linear mass density is the mass of a given volume of the cord  

divided by the cross-sectional area of the cord. 

   2 2 2 2 2 22   ;      2
m V S

P Svf A S P vf A
U US U P U S P     o  

l

l l l
 

 (b) The speed of the wave is found from the given tension and mass density, according to Eq. 15-2. 

� � � � � � � �

2 2 2 2 2 2 2 2 2
T T

2 22

2 2 2

   2 120Hz 0.020m 0.10kg m 135N 420W

P vf A f A F f A FS P S P P S P
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22. (a) The only difference is the direction of motion. 
� � � �, 0.015sin 25 1200D x t x t �  

 (b) The speed is found from the wave number and the angular frequency, Eq. 15-12. 

   
1200rad s

48m s
25rad m

v
k
Z

    

 
23. To represent a wave traveling to the left, we replace x  by .x vt�   The resulting expression can be 

given in various forms. 

  
� �> @

� �

sin 2 sin 2 sin 2

sin   

x vt x t
D A x vt A A

T

A kx t

S O I S I S I
O O O

Z I

 � �  � �  � �

 � �

ª º ª º§ · § ·
¨ ¸ ¨ ¸« » « »© ¹ © ¹¬ ¼ ¬ ¼   

 
24. The traveling wave is given by � �0.22sin 5.6 34 .D x t �  

(a) The wavelength is found from the coefficient of x. 

  1

1

2 2
5.6m     1.122 m 1.1m

5.6m

S SO
O

�
�

 o   |  

(b) The frequency is found from the coefficient of t. 

  
1

1 34s
34 2     5.411Hz 5.4 Hz

2
s f fS

S

�
�  o   |  

(c) The velocity is the ratio of the coefficients of t and x. 

  
1

1

2 34s
6.071m s 6.1m s

5.6m 2
v f

SO
S

�

�
   |  

 Because both coefficients are positive, the velocity is in the negative x direction. 

(d) The amplitude is the coefficient of the sine function, and so is 0.22m .  

(e) The particles on the cord move in simple harmonic motion with the same frequency as the  
wave.  From Chapter 14, max 2 .v D fDZ S   

 � �
1

max

34s
2 2 0.22m 7.5m s

2
v fDS S

S

�

   
§ ·
¨ ¸
© ¹

 

The minimum speed is when a particle is at a turning point of its motion, at which time the 
speed is 0. 

  min 0v   
 

25. The traveling wave is given by � � � � � � � �1 1, 0.026m sin 45m 1570s 0.66 .D x t x t� � ª º� �¬ ¼  

 (a) 
� � � � � � � � � �1 1 1,

1570s 0.026m cos 45m 1570s 0.66   x

D x t
v x t

t
� � �w

  � � � o
w

ª º¬ ¼  

  � � � � � �1

max
1570s 0.026m 41m sxv �   

 (b) 
� � � � � � � � � �

2
21 1 1

2

,
1570s 0.026m sin 45m 1570s 0.66   x

D x t
a x t

t
� � �w

  � � � o
w

ª º¬ ¼   

  � � � � � �21 4 2

max
1570s 0.026m 6.4 10 m sxa �  u  
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 (c) � � � � � � � � � � � � � �1 1 11.00m,2.50s 1570s 0.026m cos 45m 1.00m 1570s 2.50s 0.66xv � � � � � �ª º¬ ¼  

                             35m s  

  � � � � � � � � � � � � � �1 1 12
1.00m,2.50s 1570s 0.026m 45m 1.00m 1570s 2.50s 0.66sinxa � � � � � �ª º¬ ¼  

  24                           3.2 10 m s u  

 
26. The displacement of a point on the cord is given by the wave, � � � �, 0.12sin 3.0 15.0 .D x t x t �   The 

velocity of a point on the cord is given by .
D
t

w
w

 

  � � � � � � � � � � � �1 10.60m,0.20s 0.12m sin 3.0m 0.60m 15.0s 0.20s 0.11mD � � �  �ª º¬ ¼  

  
� � � � � �

� � � � � � � � � � � � � �

1

1 1 1

0.12m 15.0s cos 3.0 15.0

0.60m,0.20s 0.12m 15.0s cos 3.0m 0.60m 15.0s 0.20s 0.65m s

D
x t

t
D
t

�

� � �

w
 � �

w
w

 � �  �
w

ª º¬ ¼

 

 
27. (a) The spreadsheet used for  

this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” 
on tab “Problem 15.27a.” 

 
 
 
 
 
 (b) For motion to the right, replace x  by .x vt�  

   � � � � � �> @, 0.45m cos 2.6 2.0 1.2D x t x t � �  

 (c) See the graph above. 
 (d) For motion to the left, replace x  by .x vt�   Also see the graph above. 

   � � � � � �> @, 0.45m cos 2.6 2.0 1.2D x t x t � �  

 
28. (a) The wavelength is the speed divided by the frequency. 

   
345m s

0.658m
524 Hz

v
f

O     

 (b) In general, the phase change in degrees due to a time difference is given by .
360

t
T

I' '
 

q
 

41 1 90
    4.77 10 s
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t
f t t

T f
I I �' ' ' q

  ' o '    u
q q q
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© ¹
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(c) In general, the phase change in degrees due to a position difference is given by  .
360

xI
O

' '
 

q
 

   � � � �0.044m
    360 360 24.1

360 0.658m

x xI I
O O

' ' '
 o '  q  q  q

q
 

 
29. The amplitude is 0.020 cm, the wavelength is 0.658 m, and the frequency is 524 Hz.  The 

displacement is at its most negative value at x = 0, t = 0, and so the wave can be represented by a 
cosine that is phase shifted by half of a cycle. 

  

� � � �
� � � �

� � � � � � � �

1

1

, cos

2 524 Hz2 2
0.020cm ; 9.54m  ; 2 2 524 Hz 3290rad s

345m s

, 0.020cm cos 9.54m 3290rad s  ,  in m,  in s

D x t A kx t

f
A k f

v

D x t x t x t

Z I

SS S Z S S
O

S

�

�

 � �

        

 � �ª º¬ ¼

  

 Other equivalent expressions include the following. 

  
� � � � � � � �
� � � � � � � �

1

1 3
2

, 0.020cm cos 9.54m 3290rad s

, 0.020cm sin 9.54m 3290rad s

D x t x t

D x t x t S

�

�

 � �

 � �

ª º¬ ¼
ª º¬ ¼

 

 
30. (a) For the particle of string at x = 0,  

the displacement is not at the 
full amplitude at t = 0.  The 
particle is moving upwards, and 
so a maximum is approaching 
from the right.  The general form 
of the wave is given by 
� � � �, sinD x t A kx tZ I � � .  At 

x = 0 and t = 0, � �0,0 sinD A I  
and so we can find the phase 
angle. 
 � � � � � �10,0 sin     0.80cm 1.00cm sin     sin 0.80 0.93D A I I I � o  o    

So we have � � 2
,0 sin 0.93 ,  in cm.

3.0
D x A x x

S
 �§ ·

¨ ¸
© ¹

  See the graph.  It matches the description 

given earlier.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH15.XLS,” on tab “Problem 15.30a.” 

 (b) We use the given data to write the wave function.  Note that the wave is moving to the right,  
and that the phase angle has already been determined. 

� � � �

� �

� � � � � � � �

1

1

, sin

2
1.00cm ; 2.09cm  ; 2 2 245Hz 1540rad s
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, 1.00cm sin 2.09cm 1540rad s 0.93  ,  in cm,  in s
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S Z S S�
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31. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
 

  
2

2

2

2
2

2

sin cos

cos cos   ;  sin cos

sin sin   ;  sin cos

D A kx t

D D
kA kx t k A kx t

x x
D D

A kx t A kx t
t t

Z

Z Z

Z Z Z Z

 

w w
  �

w w
w w

 �  �
w w

 

 This gives 
2 2 2

2 2 2
,

D k D
x tZ

w w
 

w w
 and since v

k
Z

  from Eq. 15-12, we have 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
 

Yes, the function is a solution. 
 

32. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
 

 (a) � �lnD A x vt �  

� � � �
2 2

2 2

2

2 2  ;    ;    ;  
D D D Av D
x x t t

A A Av
x vt x vtx vt x vt

w w w w
  �   �

w w w w� �� �
 

  This gives 
2 2

2 2 2

1
,

D D
x v t

w w
 

w w
 and so yes, the function is a solution. 

 (b) � �4
D x vt �  

  � � � � � � � �
2 2

2 2

3 2 3 224   ;  12 4   ;  12  ;  
D D D D

v v
x x t t

x vt x vt x vt x vtw w w w
   �  

w w w w
� � � �  

  This gives 
2 2

2 2 2

1
,

D D
x v t

w w
 

w w
 and so yes, the function is a solution. 

 
33. We find the various derivatives for the function from Eq. 15-13c. 

  
� � � � � � � �

� � � �

2
2

2

2
2

2

, sin   ;  cos   ;  sin ;

    cos   ;  sin

D D
D x t A kx t Ak kx t Ak kx t

x x
D D

A kx t A kx t
t t

Z Z Z

Z Z Z Z

w w
 �  �  � �

w w
w w

 �  � �
w w

 

 To satisfy the wave equation, we must have 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
 

  � � � �� �
2 2 2

2 2 2

2 2 2 2 2

1
sin sin

1
        

D D
Ak kx t A kx t k

x v t v v
ZZ Z Zw w

 � � � �
w w

o  o   

 Since ,v kZ  the wave equation is satisfied. 
 
 We find the various derivatives for the function from Eq. 15-15.  Make the substitution that 

,u x vt �  and then use the chain rule. 
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� � � � � �

2 2

2 2

2 2 2
2

2 2 2

,   ;    ;  

            ;  

D dD u dD D dD d dD u d D
D x t D x vt D u

x du x du x x du dx du x du

D dD u dD D dD dD d dD u d D d D
v v v v v v v

t du t du t t du t du du du t du du

w w w w w
 �       

w w w w w

w w w w w w
       

w w w w w w

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
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 To satisfy the wave equation, we must have 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
 

  
2 2 2 2 2

2

2 2 2 2 2 22

1 1
    

D D d D d D d D
v

x v t du du duv
w w

 
w w

o    

 Since we have an identity, the wave equation is satisfied. 
 
34. Find the various derivatives for the linear combination. 

  

� � � � � �1 1 2 2 1 1 2 2

2 2 2
1 2 1 2

1 2 1 22 2 2

2 2 2
1 2 1 2

1 2 1 22 2 2

, , ,

  ;  

  ;  

D x t C D C D C f x t C f x t

D f f D f f
C C C C

x x x x x x
D f f D f f

C C C C
t t t t t t

 �  �

w w w w w w
 �  �

w w w w w w
w w w w w w

 �  �
w w w w w w

    

 To satisfy the wave equation, we must have 
2 2

2 2 2

1
.

D D
x v t

w w
 

w w
  Use the fact that both 1f  and 2f  satisfy 

the wave equation. 

  
2 2 2 2 2 2 2 2

1 2 1 2 1 2
1 2 1 2 1 22 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1D f f f f f f D
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x x x v t v t v t t v t
w w w w w w w w

 �  �  �  
w w w w w w w w

ª º ª º ª º
« » « » « »¬ ¼ ¬ ¼ ¬ ¼

 

 Thus we see that 
2 2

2 2 2

1
,

D D
x v t

w w
 

w w
 and so D satisfies the wave equation. 

 

35. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t
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ª º ª º¬ ¼¬ ¼

ª º ª º¬ ¼ ¬ ¼  

 Since ,v
k
Z

  we have an identity.  Yes, the function is a solution. 

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

486 

36. We assume that A O�  for the wave given by � �sin .D A kx tZ �  

  

� � � � max

max
max wave max wave

max

sin     cos     

            

22 100 0.063
50

D
D A kx t v A kx t v A

t
v

A v v v v

fv A fA
v v v f

Z Z Z Z

O O ZO
Z

OSZ S S
O

wc c � o   � � o  
w

c
c co o  o

c
    |

� � � �  

  

37. (a) For the wave in the lighter cord, � � � � � � � �-1 1, 0.050m sin 7.5m 12.0s .D x t x t� �ª º¬ ¼  

   � �1

2 2
0.84m

7.5mk
S SO

�
    

 (b) The tension is found from the velocity, using Eq. 15-2. 

   � � � �
� �

212
2T

T 22 1

12.0s
    0.10kg m 0.26 N

7.5m

F
v F v

k
ZP P

P

�

�
 o      

 (c) The tension and the frequency do not change from one section to the other. 

   � �
2 2
1 2 1 1

T1 T2 1 2 2 12 2 1
1 2 2 1 2

2 2
        0.5 0.59m

7.5m
F F

k k k
Z Z P S P SP P O O

P P �
 o   o      

 

38. (a) The speed of the wave in a stretched cord is given by Eq. 15-2, T .v F P   The tensions must  

be the same in both parts of the cord.  If they were not the same, then the net longitudinal force 
on the joint between the two parts would not be zero, and the joint would have to accelerate 
along the length of the cord. 

   T HH L
T

L HT L

    
Fv

v F
v F

P PP
PP

 o    

 (b) The frequency must be the same in both sections.  If it were not, then the joint between the two  
sections would not be able to keep the two sections together.  The ends could not stay in phase 
with each other if the frequencies were different. 

 H L H H L

H L L L H

        
v v v v

f
v

O P
O O O O P

 o  o    

 (c) The ratio under the square root sign is less than 1, and so the lighter cord has the greater  
wavelength. 

 
39. (a) The distance traveled by the reflected sound wave is found from the Pythagorean theorem. 

   � � � �2 22 21 1
2 2

2
2     d D x vt t D x

v
 �  o  �  

 (b) Solve for 2t . 

   � �
2

22 2 21
22 2 2

4 4x
t D D

v v v
x �  �ª º¬ ¼  

Jeroen
Marked ingesteld door Jeroen

Jeroen
Marked ingesteld door Jeroen
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A plot of 2 2vst x  would have a slope of 21 v , which can be used to determine the value of v.  

The y intercept of that plot is 2

2

4
D

v
.  Knowing the y intercept and the value of v, the value of D 

can be determined. 
 
40. The tension and the frequency do not change from one side of the knot to the other. 

(a) We force the cord to be continuous at 0x   for all times.  This is done by setting the initial 
wave plus the reflected wave (the displacement of a point infinitesimally to the LEFT of 0x  ) 
equal to the transmitted wave (the displacement of a point infinitesimally to the RIGHT of 

0x  ) for all times.  We also use the facts that � �sin sinT T�  � and 1 1 2 2.k v k v  

   

� � � � � � � � � � � �
� � � � � � � �

R T 1 1 R 1 1 T 2 2

1 1 R 1 1 T 2 2 T 1 1

R T T R

0, 0, 0,     sin sin sin   

sin sin sin sin   

    

D t D t D t A k v t A k v t A k v t

A k v t A k v t A k v t A k v t

A A A A A A

�  o � �  � o

� �  �  � o

� �  � o  �

 

 (b) To make the slopes match for all times, we must have � � � �> @ � �> @R T, , ,D x t D x t D x t
x x

�  
w w
w w

  

when evaluated at the origin. We also use the result of the above derivation, and the facts that  
� �cos cosT T�  and 1 1 2 2.k v k v  

 

� � � �> @ � �> @

� � � � � �
� � � � � �

� �

R T
0 0

1 1 1 1 R 1 1 2 T 2 2

1 1 1 1 R 1 1 2 T 2 2

2 1
1 1 R 2 T 2 R R

2 1

, , ,   

cos cos cos   

cos cos cos   

    

x x

D x t D x t D x t
x x

k A k v t k A k v t k A k v t

k A k v t k A k v t k A k v t

k k
k A k A k A k A A A A

k k

  

w w
�  o

w w
� �  � o

�  o

�
�   � o  

�
§ ·
¨ ¸
© ¹

 

  Use 1
2 1

2

.
vk k
v

  

 

1 1 1 2
1 1

2 1 1 1 22 2 2 2
R

1 1 1 22 1 1 1 2
1 1

2 2 2 2

1

1

v v v v
k k

k k k v vv v v v
A A A A A A

v v v vk k k v vk k
v v v v

� � �
� �

     
� �� � �

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸§ · § ·
¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

 (c) Combine the results from the previous two parts. 
  

 

2 1 2 1 2 1 2 1 1
T R

2 1 2 1 2 1 2 1 2 1

1 2

1 1 2
1 1

2

2
1

2 2
   

k k k k k k k k k
A A A A A A A A

k k k k k k k k k k

k v
A A

v v vk k
v

� � � �
 �  �  �  �  

� � � � �

  
��

ª º ª º§ · § · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« » « »
© ¹ © ¹ © ¹ © ¹ © ¹¬ ¼ ¬ ¼

§ ·
¨ ¸ § ·
¨ ¸ ¨ ¸

© ¹¨ ¸¨ ¸
© ¹
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41. (a)
 
  
 
(b)
  

  
  

 (c) The energy is all kinetic energy at the moment when the string has no displacement.  There is  
no elastic potential energy at that moment.   Each piece of the string has speed but no  
displacement. 

 
42. (a) The resultant wave is the algebraic sum of the two component waves. 

   

� � � � � � � �> @
� � � �> @^ ` � � � �> @^ `

� �^ ` � �^ `

1 2

1 1
2 2

1 1
2 2

sin sin sin sin

2sin cos

2 sin 2 2 cos 2 cos sin
2 2

D D D A kx t A kx t A kx t A kx t

A kx t kx t kx t kx t

A kx t A kx t

Z Z I Z Z I

Z Z I Z Z I

I IZ I I Z

 �  � � � �  � � � �

 � � � � � � � �

 � �  � �§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

(b) The amplitude is the absolute value of the coefficient of the sine function, 2 cos
2

.A
I

  The 

wave is purely sinusoidal  because the dependence on x and t is sin
2

.kx t
IZ� �§ ·

¨ ¸
© ¹

   

 (c) If 0,2 , 4 , , 2nI S S S " , then the amplitude is � �2
2 cos 2 cos 2 cos 2 1

2 2

n
A A A n A

I S
S   r   

2A  , which is constructive interference.  If � �,3 ,5 , , 2 1nI S S S S �" , then the amplitude 

is 
� � � �1

22 cos 2 cos 2 cos 0
2 2

2 1
A A A

n
n

SI S   
�

ª º�¬ ¼ , which is destructive interference. 

 (d) If 
2

SI  , then the resultant wave is as follows. 

2 cos sin 2 cos sin 2 sin
2 2 4 4 4

D A kx t A kx t A kx t
I I S S SZ Z Z � �  � �  � �§ · § · § · § · § ·

¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹ © ¹

 

This wave has an amplitude of 2A , is traveling in the positive x direction, and is shifted to the 
left by an eighth of a cycle.  This is “halfway” between the two original waves.  The 
displacement is 1

2 A  at the origin at t = 0. 
 

43. The fundamental frequency of the full string is given by unfingered 441Hz
2

v
f   

l
.  If the length is 

reduced to 2/3 of its current value, and the velocity of waves on the string is not changed, then the 
new frequency will be as follows. 

  
� � � �fingered unfingered2

3

3 3 3
441Hz 662 Hz

2 2 2 2 2

v v
f f     § · § ·

¨ ¸ ¨ ¸
© ¹ © ¹l l
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44. The frequencies of the harmonics of a string that is fixed at both ends are given by 1nf nf , and so 

the first four harmonics are 1 2 3 4294 Hz , 588Hz , 882 Hz , 1176Hzf f f f    . 

 
45. The oscillation corresponds to the fundamental.  The frequency of that oscillation is 

1

1 1 2
Hz.

1.5s 3
f

T
     The bridge, with both ends fixed, is similar to a vibrating string, and so 

1

2
Hz, 1,2,3 .

3n

n
f nf n   !   The periods are the reciprocals of the frequency, and so 

1.5s
, 1,2,3 .nT n

n
  !  

 
46. Four loops is the standing wave pattern for the 4th harmonic, with a frequency given by 

4 14 280 Hzf f  .  Thus 1 2 3 570 Hz , 140 Hz ,  210 Hz, and  350 Hzf f f f     are all other 

resonant frequencies. 
 
47. Each half of the cord has a single node, at the center of the cord.  Thus each half of the cord is a half 

of a wavelength, assuming that the ends of the cord are also nodes.  The tension is the same in both 
halves of the cord, and the wavelengths are the same based on the location of the node.  Let subscript 
1 represent the lighter density, and subscript 2 represent the heavier density. 

  

T1 T2
1 1 1 2 2 2 1 2 T1 T2

1 2

T1

1 11 2

2 1T2

2 2

  ;  =   ;    ;  

1

2
1

F F
v f v f F F

F
f
f F

O O O O
P P

O P P
P

O P

     

   

 

 The frequency is higher on the lighter portion. 
 
48. Adjacent nodes are separated by a half-wavelength, as examination of Figure 15-26 will show. 

  
� �

1
node 2

96m s
    0.11m

2 2 445Hz

v v
x

f f
O O o '      

 
49. Since 1nf nf , two successive overtones differ by the fundamental frequency, as shown below. 

  � �1 1 1 11 320Hz 240 Hz 80Hzn nf f f n f nf f�'  �  � �   �   

 

50. The speed of waves on the string is given by Eq. 15-2, T .v F P   The resonant frequencies of a 

string with both ends fixed are given by Eq. 15-17b, 
vib2n

nv
f  

l
, where vibl  is the length of the 

portion that is actually vibrating. Combining these relationships allows the frequencies to be 
calculated. 
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  � � � � � �
T

1 3
vib

2 1 3 1

1 520 N
        320.7 Hz

2 2 0.600m 3.16 10 kg 0.900m

2 641.4 Hz     3 962.1Hz

n

n F
f f

f f f f

P �
   

u

    

l  

 So the three frequencies are 320 Hz , 640 Hz , 960 Hz , to 2 significant figures. 

 

51. The speed of the wave is given by Eq. 15-2, T .v F P   The wavelength of the fundamental is 

1 .2O  l   Thus the frequency of the fundamental is T
1

1

1
.

2
v

f
F

O P
  

l
  Each harmonic is present in 

a vibrating string, and so T
1 2

,  1,2,3,n

n F
f nf n

P
   !

l
. 

 
52. The string must vibrate in a standing wave pattern to have a certain number of loops.  The frequency 

of the standing waves will all be 120 Hz, the same as the vibrator.  That frequency is also expressed 

by Eq. 15-17b, 
2n

nv
f  

l
.  The speed of waves on the string is given by Eq. 15-2, T .v F P   The 

tension in the string will be the same as the weight of the masses hung from the end of the string,  

TF mg , ignoring the mass of the string itself.  Combining these relationships gives an expression 
for the masses hung from the end of the string. 

 (a) 
2 2

T
2

4
    

2 2 2
n

n

nv n F n mg f
f m

n g
P

P P
   o  

l

l l l
 

� � � � � �
� �

2 2 4

1 2 2

4 1.50m 120Hz 6.6 10 kg m
8.728kg 8.7kg

1 9.80m s
m

�u
  |  

 (b) 1
2 2

8.728kg
2.2 kg

2 4

m
m     

 (c) 1
5 2

8.728kg
0.35kg

5 25

m
m     

 
53. The tension in the string is the weight of the hanging mass, TF mg .  The speed of waves on the 

string can be found by T ,
F mg

v
P P

   and the frequency is given as 120 Hzf  .  The wavelength 

of waves created on the string will thus be given by  

  
� � � �
� �

2

4

0.070kg 9.80m s1 1
0.2687 m

120 Hz 6.6 10 kg m

v mg
f f

O
P �

    
u

. 

 The length of the string must be an integer multiple of half of the wavelength for there to be nodes at 
both ends and thus form a standing wave.  Thus 2, , 3 2, 2.nO O O O "l   The number of 

standing wave patterns is given by the number of integers that satisfy 0.10 m 2 1.5m.nO� �  

  
� � � �2 0.10 m 2 0.10 m

0.10 m 2     0.74
0.2687 m

n nO
O

� o !    
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� � � �2 1.5m 2 1.5m

2 1.5m    11.1
0.2687 m

n nO
O

� o �    

Thus we see that we must have n from 1 to 11, and so there are 11  standing wave patterns that may 
be achieved. 

 
54. The standing wave is given by � � � � � �2.4cm sin 0.60 cos 42 .D x t  

 (a)  The distance between nodes is half of a wavelength. 

1 1
2 2 1

2
5.236cm 5.2 cm

0.60cm
d

k
S SO

�
    |  

(b) The component waves travel in opposite directions.  Each has the same frequency and speed, 
and each has half the amplitude of the standing wave. 

� �

� � � � � �

1

1
2

node

42s
2.4 cm 1.2 cm   ;  6.685Hz 6.7 Hz   ;

2 2

2 2 5.236cm 6.685Hz 70.01cm s 70cm s  2 sig. fig.

A f

v f d f

Z
S S

O

�

     |

    |
 

 (c) The speed of a particle is given by .
D
t

w
w

 

   

� � � � � �> @ � � � � � � � �

� � � � � � � � � � � � � �> @1

2.4cm sin 0.60 cos 42 42rad s 2.4cm sin 0.60 sin 42

3.20cm, 2.5s 42 rad s 2.4cm sin 0.60cm 3.20cm sin 42rad s 2.5s

                           92cm s

D
x t x t

t t
D
t

�

w w
  �

w w
w

 �
w

 

ª º¬ ¼  

 
55. (a) The given wave is � �1 4.2sin 0.84 47 2.1D x t � � .  To produce a standing wave, we simply need  

to add a wave of the same characteristics but traveling in the opposite direction.  This is the 
appropriate wave. 

   � �2 4.2sin 0.84 47 2.1D x t � �  

 (b) The standing wave is the sum of the two component waves.  We use the trigonometric identity  
that � � � �1 1

1 2 1 2 1 22 2sin sin 2sin cosT T T T T T�  � � . 

� � � �
� � � � � �> @^ `

� � � �> @^ `
� � � � � � � �

1 2

1
2

1
2

4.2sin 0.84 47 2.1 4.2sin 0.84 47 2.1

   4.2 2 sin 0.84 47 2.1 0.84 47 2.1

                cos 0.84 47 2.1 0.84 47 2.1

   8.4sin 0.84 2.1 cos 47 8.4sin 0.84 2.1 cos 47

D D D x t x t

x t x t

x t x t

x t x t

 �  � � � � �

 � � � � �

� � � � �

 � �  �

  

  We note that the origin is NOT a node. 
 
56. From the description of the water’s behavior, there is an antinode at each end of the tub, and a node 

in the middle.  Thus one wavelength is twice the tub length. 
  � � � � � �tub2 2 0.45m 0.85 Hz 0.77m sv f fO    l  

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

492 

57. The frequency is given by 
1

.f
v F
O O P

    The wavelength and the mass density do not change 

when the string is tightened. 

  � �
2

2 2 2
2 1

1 1 11

1

1
       294 Hz 1.15 315Hz

1

F
v F f F F

f f f
f F FF

O P
O O P

O P

  o   o     

 
58. (a) Plotting one full wavelength  

means from 0x  to 

1

2 2
1.795m

3.5m
x

k
S SO

�
    

1.8m.|   The functions to be 
plotted are given below.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.58.” 

� � � �1
1 0.15m sin 3.5m 1.8D x� �ª º¬ ¼  and � � � �1

2 0.15m sin 3.5m 1.8D x� �ª º¬ ¼  
 

 (b) The sum 1 2D D�  is plotted,  
and the nodes and antinodes 
are indicated.  The analytic 
result is given below.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.58.” 
 

� � � � � � � �
� � � � � �

1 1
1 2

1

0.15m sin 3.5m 1.8 0.15m sin 3.5m 1.8

0.30 m sin 3.5m cos 1.8           

D D x x

x

� �

�

�  � � �

 

ª º ª º¬ ¼ ¬ ¼  

  This expression should have nodes and antinodes at positions given by the following. 

� � � �

1
node

1
antinode

1
21

2

3.5m , 0,1,2     0,  0.90 m, 1.80 m
3.5

3.5m , 0,1,2     0.45m, 1.35 m
3.5

n
x n n x

x n n x
n

SS

S
S

�

�

  o   

 �  o   
�

!

!
 

  The graph agrees with the calculations. 
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59. The standing wave formed from the two individual waves is given below.  The period is given by 
12 2 1.8s 3.5s.T S Z S �     

  � � � � � � � � � � � �1 1 1 1
1 2 0.15m sin 3.5m 1.8s 0.15m sin 3.5m 1.8sD D x t x t� � � ��  � � �ª º ª º¬ ¼ ¬ ¼  

  � � � � � �1 1           0.30 m sin 3.5m cos 1.8sx t� �  

 (a) For the point x =  
0, we see that the 
sum of the two 
waves is 
identically 0.  
This means that 
the point x = 0 is 
a node of the 
standing wave.   
The spreadsheet 
used for this 
problem can be 
found on the 
Media Manager, with filename “PSE4_ISM_CH15.XLS,” on tab “Problem 15.59.” 

  

 (b) For the point  
4,x O  we see 

that the ampli-
tude of that point 
is twice the 
amplitude of 
either wave.  
Thus this point is 
an antinode of 
the standing 
wave.  The 
spreadsheet used 
for this problem 
can be found on the Media Manager, with filename “PSE4_ISM_CH15.XLS,” on tab “Problem 
15.59.” 

 
60. (a) The maximum swing is twice the amplitude of the standing wave.  Three loops is 1.5  

wavelengths, and the frequency is given. 

   

� � � �

� � � � � � � � � �> @

1
2

13
2

1

8.00cm 4.00cm  ; 2  2 120 Hz 750 rad s  ;

2 2
      ;  1.64 m    1.09 m  ;  5.75m

1.09 m

sin cos 4.00cm sin 5.75m cos 750 rad s

A f

k k

D A kx t x t

Z S S
S SO O
O

Z

�

�

     

 o  o    

  ª º¬ ¼

 

 (b) Each component wave has the same wavelength, the same frequency, and half the amplitude of  
the standing wave. 

   
� � � � � �
� � � � � �

1

1

1

2

2.00cm sin 5.75m 750 rad s

2.00cm sin 5.75m 750 rad s

D x t

D x t

�

�

 �

 �

ª º¬ ¼
ª º¬ ¼
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61. Any harmonic with a node directly above the pickup will NOT be “picked up” by the pickup.  The 
pickup location is exactly 1/4 of the string length from the end of the string, so a standing wave with 
a frequency corresponding to 4 (or 8 or 12 etc.) loops will not excite the pickup.  So n = 4, 8, and 12 
will not excite the pickup. 

 
62. The gap between resonant frequencies is the fundamental frequency (which is thus 300 Hz for this 

problem), and the wavelength of the fundamental is twice the string length. 
  � � � � � � � �12 2 0.65m 300 Hz 390 m sn nv f f fO �  �   l   

 
63. The standing wave is the sum of the two individual standing waves.  We use the trigonometric 

identities for the cosine of a difference and a sum. 
� �1 2 1 2 1 2cos cos cos sin sinT T T T T T�  �  ; � �1 2 1 2 1 2cos cos cos sin sinT T T T T T�  �  

  

� � � � � � � �> @
> @
1 2 cos cos cos cos

   cos cos sin sin cos cos sin sin

   2 cos cos

D D D A kx t A kx t A kx t kx t

A kx t kx t kx t kx t

A kx t

Z Z Z Z

Z Z Z Z
Z

 �  � � �  � � �

 � � �

 

 

Thus the standing wave is 2 cos cos .D A kx tZ  The nodes occur where the position term forces 

2 cos cos 0D A kx tZ   for all time.  Thus � �cos 0    2 1 , 0,1,2,
2

kx kx n n
S

 o  r �  " .  Thus, 

since 12.0 mk � , we have � �1
2 m, 0,1,2,

2
x n n

S
 r �  " . 

 
64. The frequency for each string must be the same, to ensure continuity of the string at its junction.   

Each string will obey these relationships: T 2
,   ,  .

F
f v v

n
O O

P
   

l
  Combine these to find the 

nodes.  Note that n is the number of “loops” in the string segment, and that n loops requires 1n �  
nodes. 

  T T T2 2
 ,   ,          

2

F F n F
f v v f f

n n
O O

P P P
   o  o  

l l

l
 

  Al T Fe T Al Al Al

Al Al Fe Fe Fe Fe Fe

0.600 m 2.70g m 2
    0.400

2 2 0.882 m 7.80g m 5

n F n F n
n

P
P P P

 o     
l

l l l
 

Thus there are 3 nodes on the aluminum, since Al 2,n   and 6 nodes on the steel, since Fe 5,n  but 

one node is shared so there are 8 total nodes.  Use the formula derived above to find the lower 
frequency. 

  
� �

Al Al
3

Al Al

2 135 N
 373Hz

2 2 0.600 m 2.70 10 kg m

n F
f

P �
   

ul
 

 
65. The speed in the second medium can be found from the law of refraction, Eq. 15-19. 

  � �2 2 2
2 1

1 1 1

sin sin sin31
    8.0km s 5.2km s

sin sin sin52

v
v v

v
T T
T T

q
 o    

q
§ ·
¨ ¸
© ¹

 

 
66. The angle of refraction can be found from the law of refraction, Eq. 15-19. 

  12 2 2
2 1 2

1 1 1

sin 2.5m s
    sin sin sin35 0.512    sin 0.419 31

sin 2.8m s

v v
v v

T T T T
T

� o    o   qq  
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67. The angle of refraction can be found from the law of refraction, Eq. 15-19.  The relative velocities 
can be found from the relationship given in the problem. 

  

� �
� �

� �

2 2 2
2

1 1 1

1
2

331 0.60 15sin 331 0.60 322
    sin sin33 sin33 0.5069

sin 331 0.60 331 0.60 25 346

sin 0.5069 30  2 sig. fig.

v T
v T

T T
T

T �

� ��
  o  q  q  

� �

  q

 

 
68. (a) Eq. 15-19 gives the relationship between the angles and the speed of sound in the two media.   

For total internal reflection (for no sound to enter the water), water 90T  q  or watersin 1T  .  The air 
is the “incident” media.  Thus the incident angle is given by the following. 

   1 1 1air air air air i
air i water iM

water water water water r

sin
  ;  sin sin     sin sin

sin

v v v v
v v v v

T T T T T
T

� � �   o   
ª º ª º ª º
« » « » « »

¬ ¼¬ ¼ ¬ ¼
 

 (b) From the angle of incidence, the distance is found.  See the diagram. 

� �

1 1air
air M

water

air M

343m s
sin sin 13.8

1440 m s

tan     1.8m tan13.8 0.44 m
1.8m

v
v

x
x

T

T

� �   q

 o  q  
 

  
69. The angle of refraction can be found from the law of refraction, Eq. 15-19.  The relative velocities 

can be found from Eq. 15-3. 

  

22 2 1 1 water 1

1 1 2 2 water 21

11
2 1 2

2

sin

sin

3.6
sin sin sin38 0.70    sin 0.70 44

2.8

Ev SG SG
v SG SGE

SG
SG

UT U U
T U UU

T T T �

     

  q  o   q

 

 
70. The error of 2o is allowed due to diffraction of the waves.  If the waves are incident at the “edge” of 

the dish, they can still diffract into the dish if the relationship T O| l  is satisfied.   

  � � o 2 2

o

 rad
    0.5 m 2 1.745 10 m 2 10 m

180

O ST O T � �| o   u  u | u§ ·
¨ ¸
© ¹

l
l

 

 If the wavelength is longer than that, there will not be much diffraction, but “shadowing” instead. 
 
71. The frequency is 880 Hz and the phase velocity is 440 m/s, so the wavelength is  

440 m s
0.50 m.

880 Hz

v
f

O     

 (a) Use the ratio of distance to wavelength to define the phase difference. 

   
6 0.50 m

    0.042 m
2 12 12

x
x

S O
O S
 o     

 (b) Use the ratio of time to period to define the phase difference. 
   

 � � � �42
    2 2 1.0 10 s 880 Hz 0.55rad

2

t t
tf

T T
I SI S S
S

� o    u   

 

1.8m

x

air MT
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72. The frequency at which the water is being shaken is about 1 Hz.  The sloshing coffee is in a standing 
wave mode, with antinodes at each edge of the cup.  The cup diameter is thus a half-wavelength, or 

16 cm.O    The wave speed can be calculated from the frequency and the wavelength. 

  � � � �16 cm 1 Hz 16 cm sv fO    

 

73. The speed of a longitudinal wave in a solid is given by Eq. 15-3, .v E U   Let the density of the 

less dense material be 1U , and the density of the more dense material be 2U .  The less dense material 
will have the higher speed, since the speed is inversely proportional to the square root of the density. 

  11 2

2 12

2.5 1.6
Ev

v E

U U
UU

   |  

   
74. From Eq. 15-7, if the speed, medium density, and frequency of the two waves are the same, then the 

intensity is proportional to the square of the amplitude. 

  2 2
2 1 2 1 2 1 2 12.5    2.5 1.6I I P P A A A A   o    

 The more energetic wave has the larger amplitude. 
 

75. (a) The amplitude is half the peak-to-peak distance, so 0.05m . 

(b) The maximum kinetic energy of a particle in simple harmonic motion is the total energy, which 
is given by 21

total 2E kA .   
Compare the two kinetic energy maxima. 

   
2 221

22 max 2 2
21

21 max 1 1

0.075m
2.25

0.05m

K kA A
K kA A

    
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 

76. From Eq. 15-17b, 
2

,n

nv
f

L
  we see that the frequency is proportional to the wave speed on the 

stretched string.  From Eq. 15-2, T ,v F P  we see that the wave speed is proportional to the 

square root of the tension.  Thus the frequency is proportional to the square root of the tension. 

  
2 2

T 2 2 2
T 2 T 1 T 1 T 1

T 1 1 1

247 Hz
    0.938  

255Hz

F f f
F F F F

F f f
 o    

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 Thus the tension should be decreased by 6.2% . 

 
77.  We assume that the earthquake wave is moving the ground vertically, since it is a transverse wave.  

An object sitting on the ground will then be moving with SHM, due to the two forces on it – the 
normal force upwards from the ground and the weight downwards due to gravity.  If the object loses 
contact with the ground, then the normal force will be zero, and the only force on the object will be 
its weight.  If the only force is the weight, then the object will have an acceleration of g downwards.  
Thus the limiting condition for beginning to lose contact with the ground is when the maximum 
acceleration caused by the wave is greater than g.  Any larger downward acceleration and the ground 
would “fall” quicker than the object.  The maximum acceleration is related to the amplitude and the 
frequency as follows. 

  
� �

2
2

max 22 2 2 2

9.80m s
    0.69m

4 4 0.60Hz

g g
a A g A

f
Z

Z S S
 ! o !     
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78. (a) The speed of the wave at a point h above the lower end depends on the tension at that point and  
the linear mass density of the cord.  The tension must equal the mass of the lower segment if the 
lower segment is in equilibrium.  Use Eq. 15-2 for the wave speed. 

 T
T segment   ;  

h
mgh F

F m g mg v hg
mP

     l

l

l

  

 (b) We treat h as a variable, measured from the bottom of the cord.  The wave speed at that point is  

given above as .v hg   The distance a wave would travel up the cord during a time dt is then 

.dh vdt hg dt   To find the total time for a wave to travel up the cord, integrate over the 
length of the cord. 

   

total

0 0

total

0 0

          

2 2

t L

LL

dh dh
dh vdt hgdt dt dt

hg hg

dh h L
t

g ghg

  o  o  o

   

³ ³

³
 

 
79. (a) The spreadsheet used for this  

problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 

 
 
 
 
 
 
 
  (b) The wave function is found by replacing x in the pulse by .x vt�   

� �
� �> @

3

2 2

4.0m

2.4m s 2.0m
,D

x t
x t  

� �
 

 (c) The spreadsheet used for this  
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 
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(d) The wave function is found by  
replacing x in the pulse by 

.x vt�   The spreadsheet used 
for this problem can be found 
on the Media Manager, with 
filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 

� �> @
3

2 2

4.0m

2.4m s 2.0m
D

x t
 

� �
 

 
80. (a) The frequency is related to the tension by Eqs. 15-1 and 15-2. 

   

T T

T T T T

T1
2

T T T

1 1 1 1 1
    

2 2 2

    
2

v F df F f
f

dF F F F

f f F
f f

F F F

O O P O P O P
  o    

' '
| o ' |

'
§ ·
¨ ¸
© ¹

 

 (b) T

T T T

6
    2 2 0.0275 3%

2 436

f f F f
F F F f
' ' '

| o |    
'

§ ·
¨ ¸
© ¹

 

(c) The only change in the expression T1 F
O P

 as the overtone changes is the wavelength, and the 

wavelength does not influence the final result.  So yes, the formula still applies. 
 
81. (a) The overtones are given by 1, 2,3, 4nf nf n  !  

   
� � � �
� � � �

2 3

2 3

G :    2 392 Hz 784 Hz      3 392 Hz 1176 Hz 1180 Hz

B :    2 494 Hz 988 Hz      3 440 Hz 1482 Hz 1480 Hz

f f

f f

    |

    |
 

 (b) If the two strings have the same length, they have the same wavelength.  The frequency  
difference is then due to a difference in wave speed caused by different masses for the strings. 

   

T
2 2

GG G G A G A

A A A G A GT

A

494
   1.59

392

F
mf v v m m f

f v v m m fF
m

O
O

    o    
§ · § ·

¨ ¸¨ ¸ © ¹© ¹

l

l

 

 (c) If the two strings have the same mass per unit length and the same tension, then the wave speed  
on both strings is the same.  The frequency difference is then due to a difference in wavelength.  
For the fundamental, the wavelength is twice the length of the string. 

   G B B G BG

B G G B GB

2 494
    1.26

2 392

vf f
f v f

O O
O O

   o    
l l

l l
 

 (d) If the two strings have the same length, they have the same wavelength.  The frequency 
difference is then due to a difference in wave speed caused by different tensions for the strings. 

t  = 1.0 sec, moving left

0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
x  (m)

D
 (m

)



Chapter 15  Wave Motion 

 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

499 

   

TB
2 2

B B B TB TB B

A A A TA TA ATA

392
   0.630

494

F
m Lf v v F F f

f v v F F fF
m L

O
O

    o    
§ · § ·

¨ ¸¨ ¸ © ¹© ¹
 

 
82. Relative to the fixed needle position, the ripples are moving with a linear velocity given by  

� �2 0.108 mrev 1min
33 0.3732 m s

min 60 s 1 rev
v

S
  § ·§ · § ·
¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹ © ¹

 

 This speed is the speed of the ripple waves moving past the needle.  The frequency of the waves is 

  
3

0.3732 m s
240.77 Hz 240 Hz

1.55 10 m

v
f

O �
   |

u
 

 
83. The speed of the pulses is found from the tension and mass per unit length of the wire. 

  T 255 N
129.52 m s

0.152 kg 10.0 m

F
v

P
    

 The total distance traveled by the two pulses will be the length of the wire.  The second pulse has a 
shorter time of travel than the first pulse, by 20.0 ms. 

  

� �
� � � �

� �
� � � �

2
1 2 1 2 1 1

22
2

1

2
1 1

2.00 10

10.0m 2.00 10 129.52m s2.00 10
4.8604 10 s

2 2 129.52 m s

129.52m s 4.8604 10 s 6.30m

d d vt vt vt v t

v
t

v

d vt

�

��
�

�

 �  �  � � u

� u� u
   u

  u  

l

l
 

 The two pulses meet 6.30m  from the end where the first pulse originated. 

 

84. We take the wave function to be � � � �, sinD x t A kx tZ � .  The wave speed is given by ,v
k f
Z O

   

while the speed of particles on the cord is given by .
D
t

w
w

 

� �
max

cos     

1 10.0cm
    1.59cm

2 2

D D
A kx t A

t t

A v A
k k

Z Z Z

Z OZ
S S

w w
 � � o  

w w

  o     

§ ·
¨ ¸
© ¹  

 
85. For a resonant 

condition, the free 
end of the string 
will be an 
antinode, and the 
fixed end of the 
string will be a 
node.  The 
minimum distance 
from a node to an antinode is 4O .  Other wave patterns that fit the boundary conditions of a node at 

-1

0

1

0 1n = 5 
n = 3

n = 1
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one end and an antinode at the other end include 3 4  , 5 4  , O O ! .  See the diagrams.  The general 

relationship is � �2 1 4  , 1,2,3,n nO �  "l .  Solving for the wavelength gives 

4
 , 1,2,3,

2 1
n

n
O   

�
"

l
. 

 
86. The addition of the support will force the bridge to have its lowest mode of oscillation to have a node 

at the center of the span, which would be the first overtone of the fundamental frequency.  If the 
wave speed in the bridge material remains constant, then the resonant frequency will double, to 
6.0 Hz.  Since earthquakes don’t do significant shaking at that frequency, the modifications would be 
effective at keeping the bridge from having large oscillations during an earthquake. 

 
87. From the figure, we can see that the amplitude is 3.5 cm, and the wavelength is 20 cm.  The 

maximum of the wave at x = 0 has moved to x = 12 cm at t = 0.80 s, which is used to find the 
velocity.  The wave is moving to the right.  Finally, since the displacement is a maximum at x = 0 
and t = 0, we can use a cosine function without a phase angle. 

  

� � � � � � � �

1 12cm
3.5cm;  20cm    0.10 cm ;   15cm s;  1.5 rad s

0.80s

, cos 3.5cm cos 0.10 1.5 ,  in cm,  in s

A k v vk

D x t A kx t x t x t

SO S Z S
O

Z S S

��
  o       

 �  �
 

 
88. From the given data, 0.50 mA   and 2.5m 4.0s 0.625m s.v     We use Eq. 15-6 for the average 

power, with the density of sea water from Table 13-1.  We estimate the area of the chest as 

� �2
0.30m .   Answers may vary according to the approximation used for the area of the chest. 

  
� � � � � � � � � �2 2 22 2 2 2 32 2 1025kg m 0.30m 0.625m s 0.25Hz 0.50m

  18W

P Svf AS U S  

 
   

 
89. The unusual decrease of water corresponds to a trough in Figure 15-4.  The crest or peak of the wave 

is then one-half wavelength from the shore.  The peak is 107.5 km away, traveling at 550 km/hr. 

  
� �1

2 215km 60 min
    11.7 min 12 min

550 km hr 1hr

x
x vt t

v
'

'  o    |
§ ·
¨ ¸
© ¹

 

 
90. At t = 1.0 s, the leading edge of 

each wave is 1.0 cm from the 
other wave.  They have not yet 
interfered.  The leading edge of 
the wider wave is at 22 cm, and 
the leading edge of the narrower 
wave is at 23 cm. 

 
 
 
 
 
 
 
 

t  = 1.0 s
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 At t = 2.0 s, the waves are 
overlapping.  The diagram uses 
dashed lines to show the parts of 
the original waves that are 
undergoing interference. 

 
 
 
 
 
 
 
 
 

At t = 3.0 s, the waves have 
“passed through” each other, 
and are no longer interfering. 
 
 
 
 
 
 
 
 
 

 
91. Because the radiation is uniform, the same energy must pass through every spherical surface, which 

has the surface area 24 .rS   Thus the intensity must decrease as 21 .r   Since the intensity is 

proportional to the square of the amplitude, the amplitude will decrease as 1 .r   The radial motion 

will be sinusoidal, and so we have � �sin .
A

D kr t
r

Z �§ ·
¨ ¸
© ¹

 

 
92. The wavelength is to be 1.0 m.  Use Eq. 15-1. 

344m s
    340Hz

1.0m

v
v f fO

O
 o     

There will be significant diffraction only for wavelengths larger than the width of the window, and 
so waves with frequencies lower than 340 Hz would diffract when passing through this window. 

 
93. The value of k was taken to be 11.0m�  for this problem.  The peak of the wave moves to the right by 

0.50 m during each second that elapses.  This can be seen qualitatively from the graph, and 
quantitatively from the spreadsheet data.  Thus the wave speed is given by the constant c, 0.50m s .   

The direction of motion is in the positive x direction.  The wavelength is seen to be m .O S   Note 

that this doesn’t agree with the relationship 
2

.
k
SO    The period of the function 2sin T  is S , not 2S  

as is the case for sinT .  In a similar fashion the period of this function is 2 s .T S  Note that this 

t  = 2.0 s
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x  (cm)

t  = 3.0 s
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doesn’t agree with the relationship 
2

,kv
T
SZ   again because of the 

behavior of the 2sin T  function.  But 

the relationship v
T
O
  is still true for 

this wave function.  The spreadsheet 
used for this problem can be found 
on the Media Manager, with 
filename “PSE4_ISM_CH15.XLS,” 
on tab “Problem 15.93.” 

 
Further insight is gained by re-writing the function using the trigonometric identity 

2 1 1
2 2sin cos2 ,T T �  because function cos2T  has a period of .S  

 
94. (a) The graph shows the wave moving  

3.0 m to the right each second, which 
is the expected amount since the 
speed of the wave is 3.0 m/s and the 
form of the wave function says the 
wave is moving to the right.  The 
spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” on tab 
“Problem 15.94a.” 

 
 

 
 (b) The graph shows the wave moving  

3.0 m to the left each second, which 
is the expected amount since the 
speed of the wave is 3.0 m/s and the 
form of the wave function says the 
wave is moving to the left.  The 
spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” on tab 
“Problem 15.94b.” 
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CHAPTER 16:  Sound 
 
Responses to Questions 
 
1.  Sound exhibits diffraction, refraction, and interference effects that are characteristic of waves. Sound 

also requires a medium, a characteristic of mechanical waves. 
 
2.   Sound can cause objects to vibrate, which is evidence that sound is a form of energy. In extreme 

cases, sound waves can even break objects. (See Figure 14-24 showing a goblet shattering from the 
sound of a trumpet.) 

 
3.  Sound waves generated in the first cup cause the bottom of the cup to vibrate. These vibrations 

excite vibrations in the stretched string which are transmitted down the string to the second cup, 
where they cause the bottom of the second cup to vibrate, generating sound waves which are heard 
by the second child. 

 
4.  The wavelength will change. The frequency cannot change at the boundary since the media on both 

sides of the boundary are oscillating together. If the frequency were to somehow change, there 
would be a “pile-up” of wave crests on one side of the boundary.  

 
5. If the speed of sound in air depended significantly on frequency, then the sounds that we hear would 

be separated in time according to frequency. For example, if a chord were played by an orchestra, we 
would hear the high notes at one time, the middle notes at another, and the lower notes at still 
another. This effect is not heard for a large range of distances, indicating that the speed of sound in 
air does not depend significantly on frequency. 

 
6.  Helium is much less dense than air, so the speed of sound in the helium is higher than in air. The 

wavelength of the sound produced does not change, because it is determined by the length of the 
vocal cords and other properties of the resonating cavity. The frequency therefore increases, 
increasing the pitch of the voice.  

 
7.  The speed of sound in a medium is equal to ,v B U  where B is the bulk modulus and ȡ is the 

density of the medium. The bulk moduli of air and hydrogen are very nearly the same. The density 
of hydrogen is less than the density of air.  The reduced density is the main reason why sound travels 
faster in hydrogen than in air. 

 
8.  The intensity of a sound wave is proportional to the square of the frequency, so the higher-frequency 

tuning fork will produce more intense sound.  
 
9. Variations in temperature will cause changes in the speed of sound and in the length of the pipes. As 

the temperature rises, the speed of sound in air increases, increasing the resonance frequency of the 
pipes, and raising the pitch of the sound. But the pipes get slightly longer, increasing the resonance 
wavelength and decreasing the resonance frequency of the pipes and lowering the pitch. As the 
temperature decreases, the speed of sound decreases, decreasing the resonance frequency of the 
pipes, and lowering the pitch of the sound. But the pipes contract, decreasing the resonance 
wavelength and increasing the resonance frequency of the pipes and raising the pitch. These effects 
compete, but the effect of temperature change on the speed of sound dominates. 

 
10.  A tube will have certain resonance frequencies associated with it, depending on the length of the 

tube and the temperature of the air in the tube. Sounds at frequencies far from the resonance 
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frequencies will not undergo resonance and will not persist. By choosing a length for the tube that 
isn’t resonant for specific frequencies you can reduce the amplitude of those frequencies.  

  
11.  As you press on frets closer to the bridge, you are generating higher frequency (and shorter 

wavelength) sounds. The difference in the wavelength of the resonant standing waves decreases as 
the wavelengths decrease, so the frets must be closer together as you move toward the bridge. 

 
12.  Sound waves can diffract around obstacles such as buildings if the wavelength of the wave is large 

enough in comparison to the size of the obstacle. Higher frequency corresponds to shorter 
wavelength. When the truck is behind the building, the lower frequency (longer wavelength) waves 
bend around the building and reach you, but the higher frequency (shorter wavelength) waves do 
not. Once the truck has emerged from behind the building, all the different frequencies can reach 
you.  

 
13. Standing waves are generated by a wave and its reflection.  The two waves have a constant phase 

relationship with each other. The interference depends only on where you are along the string, on 
your position in space. Beats are generated by two waves whose frequencies are close but not equal. 
The two waves have a varying phase relationship, and the interference varies with time rather than 
position. 

 
14.  The points would move farther apart. A lower frequency corresponds to a longer wavelength, so the 

distance between points where destructive and constructive interference occur would increase.  
 
15. According to the principle of superposition, adding a wave and its inverse produces zero 

displacement of the medium. Adding a sound wave and its inverse effectively cancels out the sound 
wave and substantially reduces the sound level heard by the worker. 

 
16. (a) The closer the two component frequencies are to each other, the longer the wavelength of the 

beat. If the two frequencies are very close together, then the waves very nearly overlap, and the 
distance between a point where the waves interfere constructively and a point where they interfere 
destructively will be very large.  

 
17. No. The Doppler shift is caused by relative motion between the source and observer. 
 
18.  No. The Doppler shift is caused by relative motion between the source and observer. If the wind is 

blowing, both the wavelength and the velocity of the sound will change, but the frequency of the 
sound will not. 

 
19. The child will hear the highest frequency at position C, where her speed toward the whistle is the 

greatest. 
 
20. The human ear can detect frequencies from about 20 Hz to about 20,000 Hz. One octave corresponds 

to a doubling of frequency. Beginning with 20 Hz, it takes about 10 doublings to reach 20,000 Hz. 
So, there are approximately 10 octaves in the human audible range.  

 
21. If the frequency of the sound is halved, then the ratio of the frequency of the sound as the car recedes 

to the frequency of the sound as the car approaches is equal to ½. Substituting the appropriate 
Doppler shift equations in for the frequencies yields a speed for the car of 1/3 the speed of sound. 
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Solutions to Problems 
 
In these solutions, we usually treat frequencies as if they are significant to the whole number of units.  For 
example, 20 Hz is taken as to the nearest Hz, and 20 kHz is taken as to the nearest kHz.  We also treat all 
decibel values as good to whole number of decibels.  So 120 dB is good to the nearest decibel. 
 
1. The round trip time for sound is 2.0 seconds, so the time for sound to travel the length of the lake is  

1.0 seconds.  Use the time and the speed of sound to determine the length of the lake. 
  � � � �343m s 1.0 s 343 m 340md vt   |  

 
2. The round trip time for sound is 2.5 seconds, so the time for sound to travel the length of the lake is  

1.25 seconds.  Use the time and the speed of sound in water to determine the depth of the lake. 

  � �� � 31560m s 1.25 s 1950 m 2.0 10 md vt    u  
 

3. (a) 2
20 Hz 20 kHz 4

343m s 343m s
17 m      1.7 10 m

20 Hz 2.0 10 Hz
v v
f f

O O �      u
u

 

So the range is from 1.7 cm to 17 m. 

(b) 5
6

343m s
2.3 10 m

15 10 Hz
v
f

O �   u
u

 

 
4. The distance that the sounds travels is the same on both days.  That distance is equal to the speed of 

sound times the elapsed time.  Use the temperature-dependent relationships for the speed of sound in 
air. 

� �� �> @� � � �� �> @� �1 1 2 2 2

2

    331 0.6 27 m s 4.70s 331 0.6 m s 5.20s   

29 C

d v t v t T

T

  o �  � o

 � q
 

 
5. (a) The ultrasonic pulse travels at the speed of sound, and the round trip distance is twice the  

distance d to the object. 
� � � �31 1

min min min min2 22     343m s 1.0 10 s 0.17 md vt d vt � o   u   

 (b) The measurement must take no longer than 1/15 s.  Again, the round trip distance is twice the  
distance to the object. 

� � � �1 1 1
max max max max2 2 152     343m s s 11md vt d vt o     

(c) The distance is proportional to the speed of sound.  So the percentage error in distance is the  
same as the percentage error in the speed of sound.  We assume the device is calibrated to work 
at 20 C.q  

  
� �> @23 C 20 C

20 C

331 0.60 23 m s 343m s
0.005248 0.5%

343m s
d v v v

d v v
q q

q

� �' ' �
    |     

 
6. (a) For the fish, the speed of sound in seawater must be used. 

   
1350m

    0.865s
1560m s

d
d vt t

v
 o     

 (b) For the fishermen, the speed of sound in air must be used. 

   
1350m

    3.94s
343m s

d
d vt t

v
 o     
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7. The total time T is the time for the stone to fall � �downt  plus the time for the sound to come back to 

the top of the cliff � �upt :  up downT t t � .  Use constant acceleration relationships for an object 

dropped from rest that falls a distance h in order to find downt , with down as the positive direction.  

Use the constant speed of sound to find upt  for the sound to travel a distance h. 

  

� �

2 21 1
0 0 down down down snd up up2 2

snd

2
22 2 2 2snd1 1 1

down up snd snd2 2 2
snd

down:               up:      

      2 0

h
y y v t at h gt h v t t

v

vh
h gt g T t g T h v T h T v

v g

 � � o   o  

  �  � o � � �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

This is a quadratic equation for the height.  This can be solved with the quadratic formula, but be 
sure to keep several significant digits in the calculations. 

  
� � � � � �

� �

2 22
2

2 6 2

343m s
2 343m s 3.0s 3.0s 343m s 0  

9.80 m s

26068 m 1.0588 10 m 0    26028 m , 41m

h h

h h h

� � �  o

� � u  o  

§ ·
¨ ¸
© ¹  

 The larger root is impossible since it takes more than 3.0 sec for the rock to fall that distance, so the  
correct result is 41mh  . 

 
8. The two sound waves travel the same distance.  The sound will travel faster in the concrete, and thus 

take a shorter time. 

� � concrete
air air concrete concrete concrete air air

concrete air

concrete
air air air

concrete air

0.75s     0.75s

0.75s

v
d v t v t v t t

v v

v
d v t v

v v

   � o  
�

  
�

§ ·
¨ ¸
© ¹

 

The speed of sound in concrete is obtained from Table 16-1 as 3000 m/s. 

  � � � �3000m s
343m s 0.75s 290m

3000m s 343m s
d   

�
§ ·
¨ ¸
© ¹

 

 
9. The “5 second rule” says that for every 5 seconds between seeing a lightning strike and hearing the 

associated sound, the lightning is 1 mile distant.  We assume that there are 5 seconds between seeing 
the lightning and hearing the sound. 
(a) At 30oC, the speed of sound is � �> @331 0.60 30 m s 349m s�  .  The actual distance to the  

lightning is therefore � �� �349 m s 5s 1745 md vt   .  A mile is 1610 m. 

� �1745 1610
% error 100 8%

1745
�

 |  

(b) At 10oC, the speed of sound is � �> @331 0.60 10 m s 337 m s�  .  The actual distance to the  

lightning is therefore � �� �337 m s 5s 1685 md vt   .  A mile is 1610 m. 

� �1685 1610
% error 100 4%

1685
�

 |  
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10. The relationship between the pressure and displacement amplitudes is given by Eq. 16-5. 

(a) � � � � � �
3

9M
M 3

3.0 10 Pa
2     7.5 10 m

2 2 1.29 kg m 331m s 150 Hz
P

P vAf A
vf

SU
SU S

�
�' u

'  o    u   

(b) � � � � � �
3

11M
3 3

3.0 10 Pa
7.5 10 m

2 2 1.29 kg m 331m s 15 10 Hz
P

A
vfSU S

�
�' u

  u
u

  

 
11. The pressure amplitude is found from Eq. 16-5. The density of air is 31.29 kg m .  

 (a) � � � � � � � �3 10 5
M 2 2 1.29 kg m 331m s 3.0 10 m 55Hz 4.4 10 PaP vAfSU S � �'   u  u  

 (b) � � � � � � � �3 10 3
M 2 2 1.29 kg m 331m s 3.0 10 m 5500 Hz 4.4 10 PaP vAfSU S � �'   u  u  

 
12. The pressure wave can be written as Eq. 16-4. 
 (a) � �M cosP P kx tZ'  �' �  

� �

� � � � � �

5 1
M

5 1

110 rad s
4.4 10 Pa ; 2 2 55Hz 110 rad s  ; 0.33 m

331m s

4.4 10 Pa cos 0.33 m 110 rad s

P f k
v

P x t

Z SZ S S S S

S S

� �

� �

'  u       

'  � u �ª º¬ ¼

 

 (b) All is the same except for the amplitude and � � 42 2 5500 Hz 1.1 10 rad s.fZ S S S   u   

  � � � � � �3 1 44.4 10 Pa cos 0.33 m 1.1 10 rad sP x tS S� �'  � u � uª º¬ ¼  

 
13. The pressure wave is � � � � � �1 10.0035Pa sin 0.38 m 1350 s .P x tS S� �'  ª º�¬ ¼  

 (a) 1

2 2
5.3m

0.38 mk
S SO

S �
    

 (b) 
11350 s

675Hz
2 2

f
Z S
S S

�

    

 (c) 1

11350 s
3553 3600 m s

0.38 m
m sv

k
Z S

S �

�

   |  

 (d) Use Eq. 16-5 to find the displacement amplitude. 

   � �
� � � � � �

M

13M
3

2   

0.0035Pa
1.0 10 m

2 2 2300 kg m 3553m s 675Hz

P vAf

P
A

vf

SU

SU S
�

'  o

'
   u

 

 

14. � �12 12 12 2 2120
120 0

0

120 dB 10log     10 10 1.0 10 W m 1.0 W m
I

I I
I

� o   u   

� �2 2 12 2 10 220
20 0

0

20 dB 10log     10 10 1.0 10 W m 1.0 10 W m
I

I I
I

� � o   u  u  

The pain level is 1010  times more intense than the whisper. 
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15. 
6 2

12 2
0

2.0 10 W m
10log 10log 63 dB

1.0 10 W m
I
I

E
�

�

u
   

u
 

 
16. From Figure 16-6, at 40 dB the low frequency threshold of hearing is about 70 80 Hz� .  There is  

no intersection of the threshold of hearing with the 40 dB level on the high frequency side of the 
chart, and so a 40 dB signal can be heard all the way up to the highest frequency that a human can 
hear, 20, 000 Hz . 

 
17. (a) From Figure 16-6, at 100 Hz, the threshold of hearing (the lowest detectable intensity by the  

ear) is approximately 9 25 10 W m�u .  The threshold of pain is about 25 W m .  The ratio of 

highest to lowest intensity is thus 
2

9
9 2

5 W m
10

5 10 W m�
 

u
. 

 (b) At 5000 Hz, the threshold of hearing is about 13 210 W m� , and the threshold of pain is about  

1 210 W m� .  The ratio of highest to lowest intensity is 
1 2

12
13 2

10 W m
10

10 W m

�

�
 . 

 Answers may vary due to estimation in the reading of the graph. 
 
18. Compare the two power output ratings using the definition of decibels. 

  150

100

150 W
10log 10log 1.8dB

100 W
P
P

E     

 This would barely be perceptible. 
 
19. The intensity can be found from the decibel value. 

  � �/10 12 12 2 2
0

0

10 log     10 10 10 W m 1.0 W m
I

I I
I

EE � o     

Consider a square perpendicular to the direction of travel of the sound wave.  The intensity is the 
energy transported by the wave across a unit area perpendicular to the direction of travel, per unit 

time.  So I
E

S t
 
'
'

, where S is the area of the square.  Since the energy is “moving” with the wave, 

the “speed” of the energy is v, the wave speed.  In a time t' , a volume equal to V Sv t'  '  would 
contain all of the energy that had been transported across the area S.  Combine these relationships to 
find the energy in the volume. 

  
� � � �32

9
1.0 W m 0.010 m

    2.9 10 J
343m s

E I V
I E IS t

S t v
�' '

 o '  '    u
'

 

 
20. From Example 12-4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.   

Thus the sound level for one firecracker will be 95 dB 3 dB 92 dB�  . 
 
21. From Example 16-4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.   

Thus, if two engines are shut down, the intensity will be cut in half, and the sound level will be 127  
dB.  Then, if one more engine is shut down, the intensity will be cut in half again, and the sound  
level will drop by 3 more dB, to a final value of 124 dB . 
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22. � � � � 6.2 6
Signal Noise Signal Noisetape tape

62dB 10log     10 1.6 10I I I I o   u  

� � � � 9.8 9
Signal Noise Signal Noisetape tape

98dB 10log     10 6.3 10I I I I o   u  

 
23. (a) According to Table 16-2, the intensity in normal conversation, when about 50 cm from the  

speaker, is about 6 23 10 W m�u .  The intensity is the power output per unit area, and so the 
power output can be found.  The area is that of a sphere. 

   � � � � � �22 6 2 6 6    4 3 10 W m 4 0.50 m 9.425 10 W 9.4 10 W
P

I P IA I r
A

S S� � � o    u  u | u  

 (b) 6 6
6

1 person
75W 7.96 10 8.0 10 people

9.425 10 W�
 u | u

u
§ ·
¨ ¸
© ¹

 

 
24. (a) The energy absorbed per second is the power of the wave, which is the intensity times the area. 

   
� �

� �� �

5 5 12 2 7 2
0

0

7 2 5 2 12

50 dB 10log     10 10 1.0 10 W m 1.0 10 W m

1.0 10 W m 5.0 10 m 5.0 10 W

I
I I

I

P IA

� �

� � �

 o   u  u

  u u  u

 

 (b) 3
12 7

1 s 1 yr
1 J 6.3 10 yr

5.0 10 J 3.16 10 s�
 u

u u
§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

 

 
25. The intensity of the sound is defined to be the power per unit area.  We assume that the sound  

spreads out spherically from the loudspeaker. 

(a) 
� �

2
2 250

250 2502 12 2
0

250W 1.624 W m
1.624 W m      10log 10log 122dB

1.0 10 W m4 3.5m
I

I
I

E
S �

     
u

 

� �

2
2 45

45 452 12 2
0

45W 0.2923W m
0.2923W m       10log 10log 115dB

1.0 10 W m4 3.5m
I

I
I

E
S �

     
u

 

(b) According to the textbook, for a sound to be perceived as twice as loud as another means that  
the intensities need to differ by a factor of 10.  That is not the case here – they differ only by a 

factor of 
1.624

6
0.2598

| .  The expensive amp will not sound twice as loud as the cheaper one.  

 
26. (a) Find the intensity from the 130 dB value, and then find the power output corresponding to that  

intensity at that distance from the speaker. 

   � �13 13 12 2 22.8m
2.8m 0

0

130 dB 10log     10 10 1.0 10 W m 10W m
I

I I
I

E �  o   u   

   � � � �22 24 4 2.2 m 10W m 608W 610WP IA r IS S    |  

 (b) Find the intensity from the 85 dB value, and then from the power output, find the distance  
corresponding to that intensity. 

   

� �

� �

8.5 8.5 12 2 4 2
0

0

2
4 2

85dB 10log     10 10 1.0 10 W m 3.16 10 W m

608W
4     390m

4 4 3.16 10 W m

I
I I

I

P
P r I r

I

E

S
S S

� �

�

  o   u  u

 o    
u
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27. The first person is a distance of 1 100mr  from the explosion, while the second person is a distance  

� �2 5 100mr   from the explosion.  The intensity detected away from the explosion is inversely 
proportional to the square of the distance from the explosion. 

 
� �

2
2

1 2 1
2

2 1 2

5 100m
5  ;  10log 10log5 7.0dB

100m
I r I
I r I

E      
ª º
« »
¬ ¼

 

 
28. (a) The intensity is proportional to the square of the amplitude, so if the amplitude is 2.5 times  

greater, the intensity will increase by a factor of 6.25 6.3| . 

 (b) 010log 10log6.25 8dBI IE     

 
29. (a) The pressure amplitude is seen in Eq. 16-5 to be proportional to the displacement amplitude and  

to the frequency.  Thus the higher frequency wave has the larger pressure amplitude, by a factor 
of 2.6. 

(b) The intensity is proportional to the square of the frequency.  Thus the ratio of the intensities is  
the square of the frequency ratio. 

 � �2
2.6

2

2.6
6.76 6.8f

f

I f
I f

  |  

 
30. The intensity is given by Eq. 15-7, 2 2 22 ,I v f AS U  using the density of air and the speed of sound  

in air. 

  
� � � � � � � �222 2 2 3 2 4 2

2

12 2
0

2 2 1.29 kg m 343m s 380 Hz 1.3 10 m 21.31W m

21.31W m
10log 10log 133dB 130dB

1.0 10 W m

I v f A

I
I

U S S

E

�

�

  u  

   |
u

 

 Note that this is above the threshold of pain. 
 
31. (a) We find the intensity of the sound from the decibel value, and then calculate the displacement  

amplitude from Eq. 15-7. 

   

� �

� � � � � �

/10 12 12 2 2
0

0

2 2 2

2
5

3

10 log     10 10 10 W m 1.0 W m

2   

1 1 1.0 W m
3.2 10 m

2 330 Hz 2 1.29 kg m 343m s

I
I I

I

I v f A

I
A

f v

EE

S U

S U S

�

�

 o    

 o

   u

  

 (b) The pressure amplitude can be found from Eq. 16-7. 

   

� �

� � � � � � � �

2
M

3 2
M

  
2

2 2 343m s 1.29 kg m 1.0 W m 30 Pa 2 sig. fig.

P
I

v

P v I

U

U

'
 o

'    

 

 
32. (a) We assume that there has been no appreciable absorption in this 25 meter distance.  The  

intensity is the power divide by the area of a sphere of radius 25 meters.  We express the sound 
level in dB. 
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� �

� � � �
5

22 2 12 2
0 0

5.0 10 W
 ; 10 log 10log 10log 138dB

4 4 4 25m 10 W m
P I P

I
r I r I

E
S S S �

u
       

(b) We find the intensity level at the new distance, and subtract due to absorption. 

  

� �
� � � �

� � � �

5

22 12 2
0

with
absorption

5.0 10 W
10log 10log 106dB

4 4 1000 m 10 W m

106dB 1.00 km 7.0dB km 99 dB

P
r I

E
S S

E

�

u
   

 �  

 

(c) We find the intensity level at the new distance, and subtract due to absorption. 

  

� �
� � � �

� � � �

5

22 12 2
0

with
absorption

5.0 10 W
10log 10log 88.5dB

4 4 7500 m 10 W m

88.5dB 7.50 km 7.0dB km 36dB

P
r I

E
S S

E

�

u
   

 �  

 

 

33. For a closed tube, Figure 16-12 indicates that 1 4
.v

f  
l

  We assume the bass clarinet is at room 

temperature. 

   
� �1

1

343m s
    1.24 m

4 4 4 69.3Hz
v v

f
f

 o    l
l

 

 

34. For a vibrating string, the frequency of the fundamental mode is given by T1
2 2

Fv
f

L L m L
  . 

  � �� � � �22 4T
T

1
    =4 4 0.32 m 440 Hz 3.5 10 kg 87 N

2
F

f F Lf m
L m L

� o  u   

 
35. (a) If the pipe is closed at one end, only the odd harmonic frequencies are present, and are given by  

1, 1,3,5
4n

nv
f nf n

L
   " . 

� �1

343m s
69.2 Hz

4 4 1.24 m
v

f
L

    

3 1 5 1 7 13 207 Hz      5 346 Hz      7 484 Hzf f f f f f       

 (b) If the pipe is open at both ends, all the harmonic frequencies are present, and are given by   

12n

nv
f nf  

l
.  

 
� �1

343m s
138.3Hz 138 Hz

2 2 1.24 m
v

f    |
l

 

   2 1 3 1 4 1

3 2
2 277 Hz      3 415Hz      4 553Hz

2
v v v

f f f f f f         
l l l

 

 
36. (a) The length of the tube is one-fourth of a wavelength for this (one end closed) tube, and so the  

wavelength is four times the length of the tube. 
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� �
343m s

410 Hz
4 0.21m

v
f

O
    

 (b) If the bottle is one-third full, then the effective length of the air column is reduced to 14 cm. 

   
� �
343m s

610 Hz
4 0.14 m

v
f

O
    

37. For a pipe open at both ends, the fundamental frequency is given by 1 2
v

f  
l

, and so the length for a  

given fundamental frequency is 
12

v
f

 l . 

 
� � � �

3
20 Hz 20 kHz

343m s 343m s
8.6 m           8.6 10 m

2 20 Hz 2 20,000 Hz
�    ul l  

 
38. We approximate the shell as a closed tube of length 20 cm, and calculate the fundamental frequency. 

� �
343m s

429 Hz 430 Hz
4 4 0.20 m
v

f    |
l

 

 
39. (a) We assume that the speed of waves on the guitar string does not change when the string is  

fretted.  The fundamental frequency is given by 
2
v

f  
l

, and so the frequency is inversely 

proportional to the length. 

   
1

    constantf fv o  
l

l  

� �E
E E A A A E

A

330 Hz
    0.73 m 0.5475 m

440 Hz
f

f f
f

 o    § ·
¨ ¸
© ¹

l l l l  

  The string should be fretted a distance 0.73 m 0.5475 m 0.1825 m 0.18 m�  |  from the nut  
of the guitar. 

 

 (b) The string is fixed at both ends and is vibrating in its fundamental mode.  Thus the wavelength  
is twice the length of the string (see Fig. 16-7).   

� �2 2 0.5475 m 1.095m 1.1 mO    |l  

(c) The frequency of the sound will be the same as that of the string, 440 Hz .  The wavelength is  
given by the following. 

 
343m s

0.78 m
440 Hz

v
f

O      

 
40. (a) At o15 CT  , the speed of sound is given by � �� �331 0.60 15 m s 340 m sv  �   (with 3  

significant figures).  For an open pipe, the fundamental frequency is given by 
2
v

f  
l

. 

 
� �
340 m s

    0.649 m
2 2 2 262 Hz
v v

f
f

 o    
l

l  

 (b) The frequency of the standing wave in the tube is 262 Hz .  The wavelength is twice the  

length of the pipe, 1.30 m . 
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 (c) The wavelength and frequency are the same in the air, because it is air that is resonating in the  
organ pipe.  The frequency is 262 Hz  and the wavelength is 1.30 m .  

 
41. The speed of sound will change as the temperature changes, and that will change the frequency of  

the organ.  Assume that the length of the pipe (and thus the resonant wavelength) does not change.  

  � �
� �

22 5.0 5.0 22
22 5.0 5.0 22

5.0 22

25.0

22 22

          

331 0.60 5.0
1 1 2.96 10 3.0%

331 0.60 22

v v v v
f f f f f

v v
f v

vf v

O O O

O

O

�

�
  '  �  

�
�'

  �  �  � u  �
�

 

 

42. A flute is a tube that is open at both ends, and so the fundamental frequency is given by 
2
v

f  
l

,  

where l  is the distance from the mouthpiece (antinode) to the first open side hole in the flute tube 
(antinode). 

  
� �
343m s

    0.491m
2 2 2 349 Hz
v v

f
f

 o    
l

l  

 
43. For a tube open at both ends, all harmonics are allowed, with 1nf nf .  Thus consecutive harmonics 

differ by the fundamental frequency.  The four consecutive harmonics give the following values for 
the fundamental frequency. 

  1 523Hz 392 Hz 131Hz,  659 Hz 523Hz 136 Hz,  784 Hz 659 Hz 125Hzf  �  �  �   
The average of these is � �1

1 3 131Hz 136 Hz 125Hz 131Hz.f  � � |   We use that for the fundamental 
frequency. 

 (a) 
� �1

1

343m s
    1.31m

2 2 2 131Hz
v v

f
f

 o    l
l

 

  Note that the bugle is coiled like a trumpet so that the full length fits in a smaller distance. 

 (b) G4 C5
1 G4 C5

1 1

392 Hz 523Hz
    2.99 ; 3.99 ;

131Hz 131Hzn
f f

f nf n n
f f

 o        

E5 G5
E5 G5

1 1

659 Hz 784 Hz
5.03 ; 5.98

131Hz 131Hz
f f

n n
f f

       

The harmonics are 3, 4, 5,  and 6 .  

 
44. (a) The difference between successive overtones for this pipe is 176 Hz.  The difference between  

successive overtones for an open pipe is the fundamental frequency, and each overtone is an 
integer multiple of the fundamental.  Since 264 Hz is not a multiple of 176 Hz, 176 Hz cannot 
be the fundamental, and so the pipe cannot be open.  Thus it must be a  closed  pipe. 

 (b) For a closed pipe, the successive overtones differ by twice the fundamental frequency.  Thus  
176 Hz must be twice the fundamental, so the fundamental is 88 Hz .  This is verified since 

264 Hz is 3 times the fundamental, 440 Hz is 5 times the fundamental, and 616 Hz is 7 times the 
fundamental. 
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45. The tension and mass density of the string do not change, so the wave speed is constant.  The 

frequency ratio for two adjacent notes is to be 1/122 .   The frequency is given by 
2

.v
f  

l
 

  

1st 1st
fret fret unfingered1/12

1st 1/12 1/12
fretunfingered

unfingered

1st
fret unfingered unfingered

2nd nth nth unfinge1/12 2 /12 /12
fret fret fret

 2
65.0cm

   2     61.35cm
2 2 2

2

      ;  
2 2 2n

v
f

v
f

vf

x

 o   o    

  o   

l
l

l
l

l

l
l l

l l l � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

/12
red nth unfingered

fret

1/12 2 /12
1 2

3/12 4 /12
3 4

5 /12 6 /12
5 6

1 2

65.0cm 1 2 3.6cm   ;  65.0cm 1 2 7.1cm

65.0cm 1 2 10.3cm   ;  65.0cm 1 2 13.4cm

65.0cm 1 2 16.3cm   ;  65.0cm 1 2 19.0cm

n

x x

x x

x x

�

� �

� �

� �

�  �

 �   �  

 �   �  

 �   �  

l l

 

   
46. (a) The difference between successive overtones for an open pipe is the fundamental frequency.   

1 330 Hz 275Hz 55 Hzf  �   

(b) The fundamental frequency is given by 1 2
v

f  
l

.  Solve this for the speed of sound. 

  � � � � 2
12 2 1.80 m 55 Hz 198m s 2.0 10 m sv f   | ul   

 
47. The difference in frequency for two successive harmonics is 40 Hz.  For an open pipe, two 

successive harmonics differ by the fundamental, so the fundamental could be 40 Hz, with 240 Hz 
being the 6th harmonic and 280 Hz being the 7th harmonic.  For a closed pipe, two successive 
harmonics differ by twice the fundamental, so the fundamental could be 20 Hz.  But the overtones of 
a closed pipe are odd multiples of the fundamental, and both overtones are even multiples of 30 Hz.  
So the pipe must be an  open pipe . 

  
� �> @

� �
331 0.60 23.0 m s

    4.3m
2 2 2 40 Hz
v v

f
f

�
 o    
l

l  

 

48. (a) The harmonics for the open pipe are 
2n

nv
f  

l
.  To be audible, they must be below 20 kHz. 

   
� � � �4

4
2 2.48m 2 10 Hz

2 10 Hz    289.2
2 343m s
nv

n
u

� u o �  
l

 

  Since there are 289 harmonics, there are 288 overtones .  

 (b) The harmonics for the closed pipe are 
4n

nv
f  

l
, n odd.  Again, they must be below 20 kHz. 

   
� � � �4

4
4 2.48m 2 10 Hz

2 10 Hz    578.4
4 343m s
nv

n
u

� u o �  
l

 

  The values of n must be odd, so n = 1, 3, 5, …, 577.  There are 289 harmonics, and so there are  
288 overtones .  
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49. A tube closed at both ends will have standing waves with displacement nodes at each end, and so has 
the same harmonic structure as a string that is fastened at both ends.  Thus the wavelength of the 
fundamental frequency is twice the length of the hallway, 1 2 16.0 m.O   l  

  1
1

2 1
343m s

21.4 Hz 42.8 Hz
16.0 m

=   ;  2v
f f f

O
     

 
50. To operate with the first harmonic, we see from the figure that the thickness must be half of a 

wavelength, so the wavelength is twice the thickness.  The speed of sound in the quartz is given by 
,v G U  analogous to Eqs. 15-3 and 15-4. 

  
� � � �10 2 2

41 1 1 1
2 2 2 2 6

2.95 10 N m 2650 kg m
= 1.39 10 m

12.0 10 Hz
Gv

t
f f

U
O �

u
    u

u
   

 
51. The ear canal can be modeled as a closed pipe of length 2.5 cm.  The resonant frequencies are given 

by ,  odd
4n

nv
f n 

l
.  The first several frequencies are calculated here. 

  

� �
� � � �2

1 3 5

343m s
3430 Hz ,  odd

4 4 2.5 10 m

3430 Hz     10,300 Hz     17,200 Hz

n

nnv
f n n

f f f

�
   

u

   

l  

 

In the graph, the most sensitive frequency is between 3000 and 4000 Hz.  This corresponds to the 
fundamental resonant frequency of the ear canal.  The sensitivity decrease above 4000 Hz, but is 
seen to “flatten out” around 10,000 Hz again, indicating higher sensitivity near 10,000 Hz than at 
surrounding frequencies.  This 10,000 Hz relatively sensitive region corresponds to the first overtone 
resonant frequency of the ear canal. 

 
52. From Eq. 15-7, the intensity is proportional to the square of the amplitude and the square of the 

frequency.  From Fig. 16-14, the relative amplitudes are 2

1

0.4
A
A

|  and 3

1

0.15.
A
A

|  

  

� �

� �

2 22 2 2 2 2
22 2 2 22 2 2 2 2 2 2

2 2 2 2 2
1 1 1 1 1 1 1

2 2
223 3 3

1 1 1

2 3
2 1 3 1

1 1

2
2     2 0.4 0.64

2

3 0.15 0.20

10log 10log 0.64 2dB 10log 10log 0.24 7 dB  ;  

I v f A f A f A
I v f A

I v f A f A f A

I f A
I f A

I I
I I

S US U
S U

E E� �

 o      

   

   �    �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

  
53. The beat period is 2.0 seconds, so the beat frequency is the reciprocal of that, 0.50 Hz.  Thus the  

other string is off in frequency by 0.50 Hzr .  The beating does not tell the tuner whether the 
second string is too high or too low. 

 
54. The beat frequency is the difference in the two frequencies, or 277 Hz 262 Hz 15 Hz�  .  If the  

frequencies are both reduced by a factor of 4, then the difference between the two frequencies will 
also be reduced by a factor of 4, and so the beat frequency will be � �1

4 15 Hz 3.75Hz 3.8 Hz | . 

Jeroen
Marked ingesteld door Jeroen
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55. Since there are 4 beats/s when sounded with the 350 Hz tuning fork, the guitar string must have a  
frequency of either 346 Hz or 354 Hz.  Since there are 9 beats/s when sounded with the 355 Hz 
tuning fork, the guitar string must have a frequency of either 346 Hz or 364 Hz.  The common value 
is 346 Hz . 

 
56.  (a) Since the sounds are initially 180q  out of phase,  

another 180q  of phase must be added by a path  
length difference.  Thus the difference of the distances from the speakers to the point of 
constructive interference must be half of a wavelength.  See the diagram. 

 � � � �
1 1 1

min2 2 2

343m s
    2     0.583m

2 2 294 Hz
v

d x x d x d
f

O O O� �  o  � o      

This minimum distance occurs when the observer is right at one of the speakers.  If the speakers 
are separated by more than 0.583 m, the location of constructive interference will be moved 
away from the speakers, along the line between the speakers. 

 (b) Since the sounds are already 180q  out of phase, as long as the listener is equidistant from the  
speakers, there will be completely destructive interference.  So even if the speakers have a tiny 
separation, the point midway between them will be a point of completely destructive 
interference.  The minimum separation between the speakers is 0. 

 
57. Beats will be heard because the difference in the speed of sound for the two flutes will result in two  

different frequencies. 

  
� �> @

� �
1

1

331 0.60 28 m s
263.4 Hz

2 2 0.66 m
v

f
�

   
l

 

  
� �> @

� �
2

2

331 0.60 5.0 m s
253.0 Hz         263.4 Hz 253.0 Hz 10 beats sec

2 2 0.66 m
v

f f
�

   '  �  
l

 

 
58. (a) The microphone must be moved to the right until the difference  

in distances from the two sources is half a wavelength.  See the 
diagram.  We square the expression, collect terms, isolate the 
remaining square root, and square again. 

� � � �

� � � �

1
2 1 2

2 22 21 1 1
2 2 2

2 22 21 1 1
2 2 2

  

 

 

S S

D x D x

D x D x

O

O

O

�  o

� � � � �  o

� �  � � � o

l l

l l

� � � � � � � �

� � � � � �

� �
� �

2 2 22 2 2 21 1 1 1 1
2 4 2 2 2

2 22 2 2 2 2 4 2 21 1 1 1 1
4 2 4 16 2

2 21 1
4 162 2 2 4 2 2 2 2 2 21 1

16 4 2 2

2   

2     4 2 2

4     
4

D x D x D x

Dx D x D x Dx D x

D
D x Dx D Dx x x

D

O O

O O O O O

O
O O O O O O O

O

�
�

� �  � � � � � � o

�  � � o � �  � �

� �
� �  � � � o  

�

ª º¬ ¼

l l l

l l

l
l

 

  The values are 3.00m, 3.20m,D   l and � � � �343m s 494 Hz 0.694m.v fO     

   � � � � � � � �
� � � �

2 21 1
4 16

2 2

3.00 m 3.20 m 0.694 m
0.694 m 0.411m

4 3.00 m 0.694 m
x

� � �
  

�
 

 

A B
x d x�

D

l 

x 

S  2 S 1
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 (b) When the speakers are exactly out of phase, the maxima and minima will be interchanged.  The  
intensity maxima are 0.411 m to the left or right of the midpoint, and the intensity minimum is 
at the midpoint. 

 
59. The beat frequency is 3 beats per 2 seconds, or 1.5 Hz.  We assume the strings are the same length 

and the same mass density. 
(a) The other string must be either 220.0 Hz 1.5 Hz 218.5 Hz�   or 220.0 Hz 1.5 Hz�  

221.5 Hz . 

 (b) Since T1
2 2

,v F
f

P
  
l l

 we have 
2

T T

T T

T        
f f f

f F F F
fF F

c c
cv o  o  

c
§ ·
¨ ¸
© ¹

. 

To change 218.5 Hz to 220.0 Hz:  
2

T

220.0
1.014, 1.4% increase .

218.5
F Fc   § ·

¨ ¸
© ¹

 

To change 221.5 Hz to 220.0 Hz:  
2

T

220.0
0.9865, 1.3% decrease

221.5
.F Fc   § ·

¨ ¸
© ¹

 

 
60. (a) To find the beat frequency, calculate the frequency of each sound, and then subtract the two  

frequencies. 

   � �beat 1 2
1 2

1 1
 343m s 3.821Hz 4 Hz

2.64 m 2.72 m
v v

f f f
O O

 �  �  �  |  

 (b) The speed of sound is 343 m/s, and the beat frequency is 3.821 Hz.  The regions of maximum  
intensity are one “beat wavelength” apart. 

� �343m s
89.79 m 90 m 2 sig. fig.

3.821Hz
v
f

O    |  

 
61. (a) Observer moving towards stationary source. 

   � �obs

snd

30.0 m s
 1 1 1350 Hz 1470 Hz

343m s
v

f f
v

c  �  �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 (b) Observer moving away from stationary source. 

   � �obs

snd

30.0 m s
 1 1 1350 Hz 1230 Hz

343m s
v

f f
v

c  �  �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 
62. The moving object can be treated as a moving “observer” for calculating the frequency it receives 

and reflects.  The bat (the source) is stationary. 

  object
object bat

snd

 1
v

f f
v

c  �
§ ·
¨ ¸
© ¹

 

Then the object can be treated as a moving source emitting the frequency object f c , and the bat as a 
stationary observer. 

  
� �
� �

object

snd objectobject snd
bat bat bat

object object snd object

snd snd

1
 

1 1

v
v vf v

f f f
v v v v
v v

�
c �

cc    
�

� �

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹
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  � �4 4343m s 30.0 m s
      5.00 10 Hz 4.20 10 Hz

343m s 30.0 m s
�

 u  u
�

 

 
63. (a) For the 18 m/s relative velocity: 

   

� �

� �

source
moving src

snd

src
observer
moving snd

1 1
 2300 Hz 2427 Hz 2430 Hz

18m s
11

343m s

18 m s
 1 2300 Hz 1 2421Hz 2420 Hz

343m s

f f
v
v

v
f f

v

c    |
��

c  �  �  |

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

  

  The frequency shifts are slightly different, with source observer
moving moving

f fc c! .  The two frequencies are  

close, but they are not identical.  As a means of comparison, calculate the spread in frequencies 
divided by the original frequency. 

 
source observer
moving moving

source

2427 Hz 2421Hz
 0.0026 0.26%

2300 Hz

f f

f

c c�
�

    

(b) For the 160 m/s relative velocity: 

� �

� �

source
moving src

snd

src
observer
moving snd

1 1
 2300 Hz 4311Hz 4310 Hz

160 m s
11

343m s

160 m s
 1 2300 Hz 1 3372 Hz 3370 Hz

343m s

f f
v
v

v
f f

v

c    |
��

c  �  �  |

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

  The difference in the frequency shifts is much larger this time, still with source observer
moving moving

f fc c! . 

  
source observer
moving moving

source

4311Hz 3372 Hz
 0.4083 41%

2300 Hz

f f

f

c c�
�

    

(c) For the 320 m/s relative velocity: 

� �source
moving src

snd

1 1
 2300 Hz 34,300 Hz

320 m s
11

343m s

f f
v
v

c    
��

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

� �src
observer
moving snd

320 m s
  1 2300 Hz 1 4446 Hz 4450 Hz

343m s
v

f f
v

c  �  �  |
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

  The difference in the frequency shifts is quite large, still with source observer
moving moving

f fc c! . 

   
source observer
moving moving

source

34,300 Hz 4446 Hz
 12.98 1300%

2300 Hz

f f

f

c c�
�

    

 (d) The Doppler formulas are asymmetric, with a larger shift for the moving source than for the  
moving observer, when the two are getting closer to each other.  In the following derivation, 
assume src snd ,v v� and use the binomial expansion. 
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1

src src
source observer
moving movingsnd sndsrc

snd

1
 1 1

1

v v
f f f f f

v vv
v

�

c c  � | �  
�

§ · § ·
¨ ¸ ¨ ¸§ · © ¹ © ¹

¨ ¸
© ¹

  

 
64. The frequency received by the stationary car is higher than the frequency emitted by the stationary  

car, by 4.5 Hzf'  . 

  

� �

source
obs source

source

snd

snd
source

source

   
1

343m s
1 4.5 Hz 1 98 Hz

15m s

f
f f f

v
v

v
f f

v

 � '  o
�

 ' �  �  

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 
65. (a) The observer is stationary, and the source is moving.  First the source is approaching, then the  

source is receding. 

   � �

� �

source
moving src
towards

snd

source
moving src
away

snd

1m s
 120.0 km h 33.33m s

3.6 km h

1 1
 1280 Hz 1420 Hz

33.33m s
11

343m s

1 1
1280 Hz 1170 Hz

33.33m s
11

343m s

f f
v
v

f f
v
v

 

c    
��

c    
��

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

§ · § ·
¨ ¸ ¨ ¸
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(b) Both the observer and the source are moving, and so use Eq. 16-11. 

  
1m s

 90.0 km h 25m s
3.6 km h

 
§ ·
¨ ¸
© ¹

 

  

� �
� � � � � �

� �
� �
� � � � � �

� �

snd obs
approaching

snd src

snd obs
receding

snd src

343m s 25m s
 1280 Hz 1520 Hz

343m s 33.33m s

343m s 25m s
1280 Hz 1080 Hz

343m s 33.33m s

v v
f f

v v

v v
f f

v v

� �c    
� �

� �c    
� �

 

(c) Both the observer and the source are moving, and so again use Eq. 16-11. 

  
� �
� � � � � �

� �

� �
� � � � � �

� �

snd obs
police
car snd src
approaching

snd obs
police
car snd src
receding

1m s
 80.0 km h 22.22 m s

3.6 km h

343m s 22.22 m s
 1280 Hz 1330 Hz

343m s 33.33m s

343m s 22.22 m s
1280 Hz 1240 Hz

343m s 33.33m s

v v
f f

v v

v v
f f

v v

 

� �c    
� �

� �c    
� �

§ ·
¨ ¸
© ¹
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66. The wall can be treated as a stationary “observer” for calculating the frequency it receives.  The bat  
is flying toward the wall. 

  wall bat

bat

snd

1
 

1
f f

v
v

c  
�

§ ·
¨ ¸
© ¹

 

Then the wall can be treated as a stationary source emitting the frequency wallf c , and the bat as a 
moving observer, flying toward the wall. 

  

� �
� �

� �

snd batbat bat
bat wall bat bat

snd snd snd batbat

snd

4 4

1
 1 1

1

343m s 7.0 m s
     3.00 10 Hz 3.13 10 Hz

343m s 7.0 m s

v vv v
f f f f

v v v vv
v

�cc c �  �  
�

�

�
 u  u

�

§ · § ·
¨ ¸ ¨ ¸§ ·© ¹ © ¹

¨ ¸
© ¹  

 
67. We assume that the comparison is to be made from the frame of reference of the stationary tuba.   

The stationary observers would observe a frequency from the moving tuba of 

  source
obs beat

source

snd

75 Hz
 78 Hz        78 Hz 75Hz 3Hz

12.0 m s
11

343m s

f
f f

v
v

    �  
��

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

. 

 
68. For the sound to be shifted up by one note, we must have � �1/12

source
moving

2 .f fc   

  � �1/12
source
moving src

snd

1
 2   

1
f f f

v
v

c   o
�

§ ·
¨ ¸
© ¹

 

  � �src snd1/12 1/12

1 1 3.6 km h
 1 1 343m s 19.25m s 69.3km h

2 2 m s
v v �  �   

§ ·§ · § ·
¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹ © ¹

 

 
69. The ocean wave has  44 mO  and 18 m sv  relative to the ocean floor.  The frequency of the  

ocean wave is then 
18 m s

 0.409 Hz.
 44 m

v
f

O
    

(a) For the boat traveling west, the boat will encounter a Doppler shifted frequency, for an observer 
moving towards a stationary source.  The speed 18 m sv  represents the speed of the waves in 
the stationary medium, and so corresponds to the speed of sound in the Doppler formula.  The 
time between encountering waves is the period of the Doppler shifted frequency. 

  
� �obs

observer
moving snd

15m s
 1 1 0.409 Hz 0.750 Hz  

18m s

1 1
1.3s

0.750 Hz

v
f f

v

T
f

c  �  �  o

   

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹  

(b) For the boat traveling east, the boat will encounter a Doppler shifted frequency, for an observer 
moving away from a stationary source. 
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� �obs

observer
moving snd

15m s
 1 1 0.409 Hz 0.0682 Hz  

18m s

1 1
15s

0.0682 Hz

v
f f

v

T
f

c  �  �  o

   

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹  

 
70. The Doppler effect occurs only when there is relative motion of the source and the observer along  

the line connecting them.  In the first four parts of this problem, the whistle and the observer are not 
moving relative to each other and so there is no Doppler shift.  The wind speed increases (or 
decreases) the velocity of the waves in the direction of the wind, as if the speed of sound were 
different, but the frequency of the waves doesn’t change.  We do a detailed analysis of this claim in 
part (a). 

 (a) The wind velocity is a movement of the medium, and so adds or subtracts from the speed of  
sound in the medium.  Because the wind is blowing away from the observer, the effective speed 
of sound is snd wind.v v�   The wavelength of the waves traveling towards the observer is 

� �snd wind 0 ,a v v fO  �  where 0f  is the frequency emitted by the factory whistle.  This 
wavelength approaches the observer at a relative speed of snd wind .v v�   Thus the observer hears 
the frequency calculated here. 

 snd wind snd wind
0

snd wind

0

720 Hza
a

v v v v
f f

v v
f

O
� �

    
�

 

(b) Because the wind is blowing towards the observer, the effective speed of sound is snd wind .v v�    

The same kind of analysis as applied in part (a) gives that 720 Hz .bf   

(c) Because the wind is blowing perpendicular to the line towards the observer, the effective speed  
of sound along that line is snd .v   Since there is no relative motion of the whistle and observer, 

there will be no change in frequency, and so 720 Hz .cf    

(d) This is just like part (c), and so 720 Hz .df    

 (e) Because the wind is blowing toward the cyclist, the effective speed of sound is snd wind.v v�   The  
wavelength traveling toward the cyclist is � �snd wind 0 .e v v fO  �   This wavelength approaches 
the cyclist at a relative speed of snd wind cycle .v v v� �   The cyclist will hear the following 
frequency. 

   

� � � �
� �

� �
� � � �snd wind cycle snd wind cycle

0
snd wind

343 15.0 12.0 m s
720 Hz

343 15.0

744 Hz   

e
e

v v v v v v
f f

v vO
� � � � � �

   
� �

 

 

 (f) Since the wind is not changing the speed of the sound waves moving towards the cyclist, the  
speed of sound is 343 m/s.  The observer is moving towards a stationary source with a speed of 
12.0 m/s. 

   � �obs

sns

12.0 m s
1 720 Hz 1 745Hz

343m s
v

f f
v

c  �  �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
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71. The maximum Doppler shift occurs when the heart has its maximum velocity.  Assume that the heart 
is moving away from the original source of sound.  The beats arise from the combining of the 
original 2.25 MHz frequency with the reflected signal which has been Doppler shifted.  There are 
two Doppler shifts – one for the heart receiving the original signal (observer moving away from 
stationary source) and one for the detector receiving the reflected signal (source moving away from 
stationary observer). 

  

� �
� �

heart

snd heartsndheart heart
heart original detector original original

snd snd heartheart heart

snd snd

original detector original origin

1
 1       

1 1

 

v
v vvv f

f f f f f
v v vv v

v v

f f f f f

�
c �c cc �    

�
� �

cc'  �  �

§ ·
¨ ¸§ · © ¹

¨ ¸ § · § ·© ¹
¨ ¸ ¨ ¸
© ¹ © ¹
� �
� � � �

snd blood blood
al original

snd blood snd blood

2
    

v v v
f

v v v v
�

 o
� �

 

� � � �
3

blood snd 6
original

2260 Hz
1.54 10 m s 8.9 10 m s

2 2 2.25 10 Hz 260 Hz
f

v v
f f

�'
  u  u

� ' u �
 

 If instead we had assumed that the heart was moving towards the original source of sound, we would  

get blood snd
original2

f
v v

f f
'

 
� '

.  Since the beat frequency is much smaller than the original frequency, 

the f'  term in the denominator does not significantly affect the answer. 
 
72. (a) The angle of the shock wave front relative to the direction of motion is given by Eq. 16-12. 

   1 osnd snd

obj snd

1 1
sin     sin 30

2.0 2.0 2.0
v v
v v

T T �   o    (2 sig. fig.) 

 (b) The displacement of the plane � �objv t  from the time it  

passes overhead to the time the shock wave reaches the 
observer is shown, along with the shock wave front.  From the 
displacement and height of the plane, the time is found. 

� � � �

obj obj

o

tan     
tan

6500 m
18s

2.0 310 m s tan 30

h h
t

v t v
T

T
 o  

  
 

 
73. (a) The Mach number is the ratio of the object’s speed to the speed of sound. 

   
� �4

obs

sound

1m s
1.5 10 km hr

3.6 km hr
92.59 93

45m s
v

M
v

u
   |

§ ·
¨ ¸
© ¹  

 (b) Use Eq. 16-125 to find the angle. 

   1 1 1snd

obj

1 1
sin sin sin 0.62

92.59
v
v M

T � � �    q  

 
 
 

objv t

h

T
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74. From Eq. 16-12, snd

obj

sin
v
v

T  . 

 (a) 1 1 osnd

obj

343m s
sin sin 2.2

8800 m s
v
v

T � �    

 (b) 1 1 osnd

obj

1560 m s
sin sin 10

8800 m s
v
v

T � �    (2 sig. fig.) 

 
75. Consider one particular wave as shown in the diagram, created at the 

location of the black dot.  After a time t has elapsed from the creation 
of that wave, the supersonic source has moved a distance objv t , and the 

wave front has moved a distance sndv t .  The line from the position of 
the source at time t is tangent to all of the wave fronts, showing the 
location of the shock wave.  A tangent to a circle at a point is perpendicular to the radius connecting 
that point to the center, and so a right angle is formed.  From the right triangle, the angle T  can be 
defined. 

  snd snd

obj obj

sin
v t v
v t v

T    

 
76. (a) The displacement of the plane from the time it passes  

overhead to the time the shock wave reaches the listener 
is shown, along with the shock wave front.  From the 
displacement and height of the plane, the angle of the 
shock wave front relative to the direction of motion can 
be found.  Then use Eq. 16-12. 

   1 o1.25 km 1.25
tan     tan 32

2.0 km 2.0
T T � o     

(b) obj
o

snd

1 1
1.9

sin sin 32
v

M
v T

     

 
77.  Find the angle of the shock wave, and then find the distance the 

plane has traveled when the shock wave reaches the observer.  
Use Eq. 16-12. 

  

1 1 1snd snd

obj snd

1
sin sin sin 27

2.2 2.2

9500 m 9500 m
tan     18616 m 19 km

tan 27

v v
v v

D
D

T

T

� � �    q

 o    
q

  

 
78. The minimum time between pulses would be the time for a pulse to travel from the boat to the  

maximum distance and back again.  The total distance traveled by the pulse will be 150 m, at the 
speed of sound in fresh water, 1440 m/s. 

 
150 m

    0.10s
1440 m s

d
d v t t

v
 o     

 
 

objv t
T

sndv t

2.0 km

1.25 km

T

D

9500m

T
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79. Assume that only the fundamental frequency is heard.  The fundamental frequency of an open pipe is  

given by 
2
v

f
L

 . 

 (a) 
� � � �3.0 2.5

343m s 343m s
57 Hz           69 Hz

2 2 3.0 m 2 2 2.5 m
v v

f f
L L

       

  
� � � �

� �

2.0 1.5

1.0

343m s 343m s
86 Hz           114.3Hz 110 Hz

2 2 2.0 m 2 2 1.5 m

343m s
171.5 Hz 170 Hz

2 2 1.0 m

v v
f f

L L

v
f

L

      |

   |
 

 (b) On a noisy day, there are a large number of component frequencies to the sounds that are being  
made – more people walking, more people talking, etc.  Thus it is more likely that the 
frequencies listed above will be a component of the overall sound, and then the resonance will 
be more prominent to the hearer.  If the day is quiet, there might be very little sound at the 
desired frequencies, and then the tubes will not have any standing waves in them to detect. 

 
80. The single mosquito creates a sound intensity of 12 2

0 1 10 W mI � u .  Thus 100 mosquitoes will  
create a sound intensity of 100 times that of a single mosquito. 

0
0

0

100
100      10log 10log100 20dB

I
I I

I
E    . 

 
81. The two sound level values must be converted to intensities, then the intensities added, and then  

converted back to sound level. 
8.2 882

82 82 0 0
0

:   82dB 10log     10 1.585 10
I

I I I I
I

 o   u  

� �
� �

8.9 887
89 89 0 0

0

8
total 82 89 0

8
80

total
0

:   89dB 10log     10 7.943 10

9.528 10   

9.528 10
10log 10log 6.597 10 89.8dB 90dB  2 sig. fig.

I
I I I I

I

I I I I

I
I

E

 o   u

 �  u o

u
  u  |

 

 
82. The power output is found from the intensity, which is the power radiated per unit area. 

� �11.5 11.5 12 2 1 2
0

0

115 dB 10log     10 10 1.0 10 W m 3.162 10 W m
I

I I
I

� � o   u  u  

� � � �22 1 2
2

    4 4 9.00 m 3.162 10 W m 322 W
4

P P
I P r I

A r
S S

S
�  o   u   

 
83. Relative to the 1000 Hz output, the 15 kHz output is –12 dB. 

15 kHz 15 kHz 15 kHz
15 kHz

1.212 dB 10log     1.2 log     10     11W
175W 175 W 175W
P P P

P��  o �  o  o   
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84. The 130 dB level is used to find the intensity, and the intensity is used to find the power.  It is 
assumed that the jet airplane engine radiates equally in all directions. 

  
� �

� � � �

13 13 12 2 1 2
0

0

22 1 2 2

130dB 10log     10 10 1.0 10 W m 1.0 10 W m

1.0 10 W m 2.0 10 0.013W

I
I I

I

P IA I r

E

S S

�

�

  o   u  u

   u u  

 

 

85. The gain is given by out
3

in

125 W
10log 10log 51dB

1.0 10 W
P
P

E
�

   
u

. 

 
86. It is desired that the sound from the speaker arrives at a listener 30 ms after the sound from the singer  

arrives.  The fact that the speakers are 3.0 m behind the singer adds in a delay of 
3.0 m

343m s
   

38.7 10 s,�u or about 9 ms.  Thus there must be 21 ms of delay added into the electronic circuitry. 
 
87. The strings are both tuned to the same frequency, and both have the same length.  The mass per unit 

length is the density times the cross sectional area.  The frequency is related to the tension by Eqs. 
15-1 and 15-2. 

  

2 2 2T T T
T2

2 2 22 2 2 1
2T high high high high

2 2 2 1
2T low low low low

1 1
 ;         4   

2 2 2

4 0.724 mm
1.07

4 0.699 mm

v F F F
f v f F f r

r

F f r r d
F f r r d

U S
P P US

U S
U S

  o   o  o

     
§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸

© ¹© ¹ © ¹

l
l l l

l

l

  

   
88. The strings are both tuned to the same frequency, and both have the same length.  The mass per unit 

length is the density times the cross sectional area.  The frequency is related to the tension by Eqs. 
15-1 and 15-2. 

  

2 2 2T T T
T2

2 2 2 2
T acoustic acoustic acoustic acoustic acoustic acoustic acoust

2 2 2 2
T electric electric electric electric electric electric

1 1
 ;         4   

2 2 2

4
4

v F F F
f v f F f r

r

F f r r d
F f r r

U S
P P US

U S U U
U S U U

  o   o  o

   
§ ·
¨ ¸
© ¹

l
l l l

l

l

2

ic

electric

23

3

7760 kg m 0.33m
           1.7

7990 kg m 0.25m

d

  

§ ·
¨ ¸
© ¹

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹

  

   
89. (a) The wave speed on the string can be found from the length and the fundamental frequency. 

   � � � �    2 2 0.32 m 440 Hz 281.6 280 m s
2

m sv
f v f o    |l

l
 

  The tension is found from the wave speed and the mass per unit length. 

� � � �22 4T
T    7.21 10 kg m 281.6 m s 57 N

F
v F vP

P
� o   u   

 (b) The length of the pipe can be found from the fundamental frequency and the speed of sound. 

� �
343m s

    0.1949 m 0.19 m
4 4 4 440 Hz
v v

f
f

 o    |l
l
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 (c) The first overtone for the string is twice the fundamental.  880 Hz  

  The first overtone for the open pipe is 3 times the fundamental.  1320 Hz  
 
90. The apparatus is a closed tube.  The water level is the closed end, and so is a node of air  

displacement.  As the water level lowers, the distance from one resonance level to the next 
corresponds to the distance between adjacent nodes, which is one-half wavelength. 

� �1
2     2 2 0.395m 0.125m 0.540 m

343m s
635 Hz

0.540 m
v

f

O O

O

'  o  '  �  

   

l l

 

 

91. The fundamental frequency of a tube closed at one end is given by 1 .
4

f
v 
l

  The change in air 

temperature will change the speed of sound, resulting in two different frequencies. 

  

� � � �
� �

30.0 C

30.0 C 30.0 C 30.0 C
30.0 C 25.0 C

25.0 C25.0 C 25.0 C 25.0 C

30.0 C
30.0 C 25.0 C 25.0 C

25.0 C

4     

4
331 0.60 30.0

1 349 Hz 1 3Hz
331 0.60 25.0

v
f v v

f f
vf v v

v
f f f f

v

q

q q q
q q

qq q q

q
q q q

q

  o  

�
'  �  �  �  

�

§ ·
¨ ¸
© ¹

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

l

l
 

  
92. Call the frequencies of four strings of the violin A B C D,  ,  , f f f f  with Af  the lowest pitch.  The mass  

per unit length will be named P .  All strings are the same length and have the same tension.  For a 

string with both ends fixed, the fundamental frequency is given by T
1

1
2 2
v F

f
P

  
l l

. 

 
� �

T T A
B A B A2

B A

1 1
1.5     1.5     0.44

2 2 1.5
F F

f f
PP P

P P
 o  o   

l l
 

� � � �
� �

� � � �
� �

2 2T T A
C B A C A4

C A

3 3T T A
D C A D A6

D A

1 1
1.5 1.5     1.5    0.20

2 2 1.5

1 1
1.5 1.5     1.5    0.088

2 2 1.5

F F
f f f

F F
f f f

PP P
P P

PP P
P P

  o  o   

  o  o   

l l

l l

 

 
93. The effective length of the tube is � �1 1

3 3eff. 0.60 m 0.030 m 0.61m.D�  �   l l  

Uncorrected frequencies: 
� �2 1

, 1,2,3   
4n

n v
f n

�
  o!

l
 

� � � �1 4

343m s
2 1 143Hz, 429 Hz, 715Hz, 1000 Hz

4 0.60 m
f n�  �   

Corrected frequencies:  
� �

eff

2 1
, 1,2,3   

4n

n v
f n

�
  o!

l
 

� � � �1 4

343m s
2 1 141Hz, 422 Hz, 703Hz, 984 Hz

4 0.61m
f n�  �   
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94. Since the sound is loudest at points equidistant from the two sources, the two sources must be in 
phase.  The difference in distance from the two sources must be an odd number of half-wavelengths 
for destructive interference. 

  0.28m 2     0.56m             343m s 0.56 m 610 Hzf vO O O o      

  � �0.28 m 3 2     0.187 m         343m s 0.187 m 1840 Hz out of rangef vO O O o      
 

95. As the train approaches, the observed frequency is given by approach
train

snd

 1f
v

f
v

c  �
§ ·
¨ ¸
© ¹

.  As the train 

recedes, the observed frequency is given by train
recede

snd

 1
v

f f
v

c  �
§ ·
¨ ¸
© ¹

.  Solve each expression for f , 

equate them, and then solve for trainv . 

  � �
� � � � � �

� �

train train
approach recede

snd snd

approach recede
train snd

approach recede

1 1   

552 Hz 486 Hz
343m s 22 m s

552 Hz 486 Hz

v v
f f

v v

f f
v v

f f

c c�  � o

c c� �
   

c c� �

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
96. The Doppler shift is 3.5 Hz, and the emitted frequency from both trains is 516 Hz.  Thus the 

frequency received by the conductor on the stationary train is 519.5 Hz.  Use this to find the moving 
train’s speed. 

  
� � � �snd

source snd
snd source

516 Hz
    1 1 343m s 2.31m s

 519.5 Hz
v f

f f v v
v v f

c  o  �  �  
c�

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

 

 
97. (a) Since both speakers are moving towards the observer at the same speed, both frequencies have  

the same Doppler shift, and the observer hears no beats . 
(b) The observer will detect an increased frequency from the speaker moving towards him and a  

decreased frequency from the speaker moving away.  The difference in those two frequencies 
will be the beat frequency that is heard. 

   
� � � �

� � � �

towards away
train train

snd snd

snd snd
towards away

snd train snd traintrain train

snd snd

1 1
            

1 1

1 1

1 1

343m s 343m s
348 Hz

343m s 10.0 m s 343m s

f f f f
v v
v v

v v
f f f f f

v v v vv v
v v

c c  
� �

c c�  �  �
� �

� �

�
�

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

ª º
« »§ · § · ¬ ¼

¨ ¸ ¨ ¸
© ¹ © ¹

� � � �20 Hz 2 sig. fig.
10.0 m s

 
�

ª º
« »
¬ ¼

 

 (c) Since both speakers are moving away from the observer at the same speed, both frequencies  
have the same Doppler shift, and the observer hears no beats . 
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98. For each pipe, the fundamental frequency is given by 
2
v

f  
l

.  Find the frequency of the shortest  

pipe. 

� �
343m s

71.46 Hz
2 2 2.40 m
v

f    
l

 

The longer pipe has a lower frequency.  Since the beat frequency is 8.0 Hz, the frequency of the 
longer pipe must be 63.46 Hz.  Use that frequency to find the length of the longer pipe. 

� �
343m s

    2.70 m
2 2 2 63.46 Hz
v v

f
f

 o    
l

l  

 
99. Use Eq. 16-11, which applies when both source and observer are in motion.  There will be two  

Doppler shifts in this problem – first for the emitted sound with the bat as the source and the moth as 
the observer, and then the reflected sound with the moth as the source and the bat as the observer. 

  
� �
� �

� �
� �

� �
� �

� �
� �

snd moth snd bat snd moth snd bat
moth bat bat moth bat

snd bat snd moth snd bat snd moth

      
v v v v v v v v

f f f f f
v v v v v v v v

� � � �c cc c   
� � � �

 

  � � � �
� �

� �
� �

343 5.0 343 7.5
                                              51.35kHz 55.23kHz

343 7.5 343 5.0
� �

  
� �

 

 
100. The beats arise from the combining of the original 3.80 MHz frequency with the reflected signal 

which has been Doppler shifted.  There are two Doppler shifts – one for the blood cells receiving the 
original frequency (observer moving away from stationary source) and one for the detector receiving 
the reflected frequency (source moving away from stationary observer). 

  
� �
� �

blood

snd bloodsndblood blood
blood original detector original original

snd snd bloodblood blood

snd snd

1
 1       

1 1

v
v vvv f

f f f f f
v v vv v

v v

�
c �c cc �    

�
� �

§ ·
¨ ¸§ · © ¹

¨ ¸ § · § ·© ¹
¨ ¸ ¨ ¸
© ¹ © ¹

 

  

� �
� � � �

� � � �
� �

snd blood blood
original detector original original original

snd blood snd blood

6
3

2
 

2 0.32 m s
    3.80 10 Hz 1600 Hz

1.54 10 m s 0.32 m s

v v v
f f f f f f

v v v v
�cc'  �  �  
� �

 u  
u �

 

 
101. It is 70.0 ms from the start of one chirp to the start of the next.  Since the chirp itself is 3.0 ms long, it  

is 67.0 ms from the end of a chirp to the start of the next.  Thus the time for the pulse to travel to the 
moth and back again is 67.0 ms.  The distance to the moth is half the distance that the sound can 
travel in 67.0 ms, since the sound must reach the moth and return during the 67.0 ms. 

  � � � �31
snd 2 343m s 67.0 10 s 11.5 md v t �  u   

 
102. (a) We assume that src snd ,v v� and use the binomial expansion. 

   
1

src src
source observer
moving movingsnd sndsrc

snd

1
 1 1

1

v v
f f f f f

v vv
v

�

c c  � | �  
�

§ · § ·
¨ ¸ ¨ ¸§ · © ¹ © ¹

¨ ¸
© ¹
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 (b) We calculate the percent error in general, and then substitute in the given relative velocity. 

   

src

snd src

snd

src

snd

1
1

1
approx. exact

 % error 100 100
1exact

1

v
f f

v v
v

f
v
v

� �
�

�
  

�

§ ·§ ·
¨ ¸¨ ¸ § ·© ¹¨ ¸¨ ¸¨ ¸§ · © ¹

¨ ¸ ¨ ¸© ¹ ¨ ¸
§ ·¨ ¸
¨ ¸¨ ¸© ¹© ¹

 

   
2 2

src src src

snd snd snd

18.0 m s
           100 1 1 1 100 100 0.28%

343m s
v v v
v v v

 � � �  �  �  �
ª º§ ·§ · § · § ·
¨ ¸¨ ¸ ¨ ¸« » ¨ ¸

© ¹© ¹© ¹ © ¹¬ ¼
 

  The negative sign indicates that the approximate value is less than the exact value. 
 

103. The person will hear a frequency walk
towards

snd

 1
v

f f
v

c  �
§ ·
¨ ¸
© ¹

 from the speaker that they walk towards. 

The person will hear a frequency walk
away

snd

 1
v

f f
v

c  �
§ ·
¨ ¸
© ¹

 from the speaker that they walk away from.  

The beat frequency is the difference in those two frequencies. 

  � �walk walk walk
towards away

snd snd snd

1.4 m s
1 1 2 2 282 Hz 2.3Hz

343m s
v v v

f f f f f
v v v

c c�  � � �    
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

  

 
104. There will be two Doppler shifts in this problem – first for a stationary source with a moving 

“observer” (the blood cells), and then for a moving source (the blood cells) and a stationary 
“observer” (the receiver).  Note that the velocity component of the blood parallel to the sound 
transmission is  1

blood blood2
cos 45 .v vq    It is that component that causes the Doppler shift. 

  
� �
� �

� �

1
blood2

blood original
snd

1
blood2

1
snd blood2sndblood

detector original original1 1 1
blood blood2 2 snd blood2

snd snd

original detector
blood

 1

1
   

1 1

 
2

 

v
f f

v

v
v vvf

f f f
v v v v

v v

f f
v

c  �

�
�c

cc    o
�

� �

cc�
 

cc

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

� � snd
detector original

v
f f�

 

Since the cells are moving away from the transmitter / receiver combination, the final frequency 
received is less than the original frequency, by 780 Hz.  Thus detector original 780 Hz.f fcc  �   

  

� �
� �

� �
� �

� �
� � � �

original detector
blood snd snd

detector original original

6

 780 Hz
2 2

 2 780 Hz

780 Hz
2 1540m s 0.17 m s

2 5.0 10 Hz 780 Hz
      

f f
v v v

f f f

cc�
  

cc � �

  
u �ª º¬ ¼
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105. The apex angle is 15o, so the shock wave angle is 7.5o.  The angle of the shock wave is also given by  
wave objectsin v vT  . 

  o
wave object object wavesin     sin 2.2 km h sin 7.5 17 km hv v v vT T o     

 
106. First, find the path difference in the original configuration.  Then move the obstacle to the right by 

d' so that the path difference increases by 1
2 .O   Note that the path difference change must be on the 

same order as the wavelength, and so ,d d' � l since , .dO � l  

� � � � � � � � � �

� � � � � � � �� � � �� �
� � � � � �

2 2 22 1 1
2 2initial final

2 2 221 1 1
2 2 2final initial

2 2 221 1 1
2 2 2

2   ;  2

2 2   

2 2

D d D d d

D D d d d

d d d

O

O

'  � � '  � ' � �

' � '   � ' � � � � � o

� ' �  � �

l l l l

l l l l

l l

 

 Square the last equation above. 

� � � � � � � � � �2 2 2 22 2 2 21 1 1 1 1
2 4 2 2 24 2 2 2 4d d d d d dO O� ' � ' �  � � � �ª º ª º¬ ¼ ¬ ¼l l l  

We delete terms that are second order in the small quantities d'  and .O  

 � � � �2 22 21 1
2 28 2     

4
d d d d d

d
OO'  � o '  �l l  

 
107. (a) The “singing” rod is manifesting standing waves.  By holding the rod at its midpoint, it has a  

node at its midpoint, and antinodes at its ends.  Thus the length of the rod is a half wavelength.  
The speed of sound in aluminum is found in Table 16-1. 

   
5100 m s

3400 Hz
2 1.50 m

v v
f

LO
     

 (b) The wavelength of sound in the rod is twice the length of the rod, 1.50 m . 

 (c) The wavelength of the sound in air is determined by the frequency and the speed of sound in air. 

   
343m s

0.10 m
3400 Hz

v
f

O     

 
108. The displacement amplitude is related to the intensity by Eq. 15-7.  The intensity can be calculated 

from the decibel value.  The medium is air. 

  � � � �10 10.5 12 2 2
0

0

10 log     10 10 10 W m 0.0316 W m
I

I I
I

EE � o     

(a) 2 2 22   I v f AS U o  

 � � � � � �
2

7
3 3

1 1 0.0316 W m
2.4 10 m

2 8.0 10 Hz 2 343m s 1.29 kg m
I

A
f vS U S

�   u
u

 

(b) 
� � � � � �

2
5

3

1 1 0.0316 W m
5.4 10 m

2 35 Hz 2 343m s 1.29 kg m
I

A
f vS U S

�   u  
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109. (a) The spreadsheet used for this problem can be found on the Media Manager, with filename  
“PSE4_ISM_CH16.XLS,” on tab “Problem 16.109a.”  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) The spreadsheet used for this problem can be found on the Media Manager, with filename \ 
  “PSE4_ISM_CH16.XLS,” on tab “Problem 16.109b.” 
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CHAPTER 21:  Electric Charges and Electric Field 
 
Responses to Questions 
 
1.  Rub a glass rod with silk and use it to charge an electroscope. The electroscope will end up with a 

net positive charge. Bring the pocket comb close to the electroscope. If the electroscope leaves move 
farther apart, then the charge on the comb is positive, the same as the charge on the electroscope. If 
the leaves move together, then the charge on the comb is negative, opposite the charge on the 
electroscope. 

 
2.  The shirt or blouse becomes charged as a result of being tossed about in the dryer and rubbing 

against the dryer sides and other clothes. When you put on the charged object (shirt), it causes 
charge separation within the molecules of your skin (see Figure 21-9), which results in attraction 
between the shirt and your skin.  

 
3.  Fog or rain droplets tend to form around ions because water is a polar molecule, with a positive 

region and a negative region. The charge centers on the water molecule will be attracted to the ions 
(positive to negative). 

 
4.  See also Figure 21-9 in the text. The negatively 

charged electrons in the paper are attracted to the 
positively charged rod and move towards it within 
their molecules. The attraction occurs because the 
negative charges in the paper are closer to the 
positive rod than are the positive charges in the 
paper, and therefore the attraction between the 
unlike charges is greater than the repulsion 
between the like charges. 

 
5.  A plastic ruler that has been rubbed with a cloth is charged. When brought near small pieces of 

paper, it will cause separation of charge in the bits of paper, which will cause the paper to be 
attracted to the ruler. On a humid day, polar water molecules will be attracted to the ruler and to the 
separated charge on the bits of paper, neutralizing the charges and thus eliminating the attraction. 

 
6. The net charge on a conductor is the difference between the total positive charge and the total 

negative charge in the conductor. The “free charges” in a conductor are the electrons that can move 
about freely within the material because they are only loosely bound to their atoms. The “free 
electrons” are also referred to as “conduction electrons.” A conductor may have a zero net charge 
but still have substantial free charges.  

 
7.  Most of the electrons are strongly bound to nuclei in the metal ions. Only a few electrons per atom 

(usually one or two) are free to move about throughout the metal. These are called the “conduction 
electrons.”  The rest are bound more tightly to the nucleus and are not free to move. Furthermore, in 
the cases shown in Figures 21-7 and 21-8, not all of the conduction electrons will move. In Figure 
21-7, electrons will move until the attractive force on the remaining conduction electrons due to the 
incoming charged rod is balanced by the repulsive force from electrons that have already gathered at 
the left end of the neutral rod. In Figure 21-8, conduction electrons will be repelled by the incoming 
rod and will leave the stationary rod through the ground connection until the repulsive force on the 
remaining conduction electrons due to the incoming charged rod is balanced by the attractive force 
from the net positive charge on the stationary rod.  

 

+ + + + + + +

- +

- +

- +

- +
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8. The electroscope leaves are connected together at the top. The horizontal component of this tension 
force balances the electric force of repulsion. (Note: The vertical component of the tension force 
balances the weight of the leaves.) 

 
9.  Coulomb’s law and Newton’s law are very similar in form.  The electrostatic force can be either 

attractive or repulsive; the gravitational force can only be attractive. The electrostatic force constant 
is also much larger than the gravitational force constant. Both the electric charge and the 
gravitational mass are properties of the material. Charge can be positive or negative, but the 
gravitational mass only has one form.  

 
10. The gravitational force between everyday objects on the surface of the Earth is extremely small. 

(Recall the value of G: 6.67 x 10-11 Nm2/kg2.) Consider two objects sitting on the floor near each 
other. They are attracted to each other, but the force of static fiction for each is much greater than the 
gravitational force each experiences from the other. Even in an absolutely frictionless environment, 
the acceleration resulting from the gravitational force would be so small that it would not be 
noticeable in a short time frame. We are aware of the gravitational force between objects if at least 
one of them is very massive, as in the case of the Earth and satellites or the Earth and you.  

 

 The electric force between two objects is typically zero or close to zero because ordinary objects are 
typically neutral or close to neutral. We are aware of electric forces between objects when the 
objects are charged. An example is the electrostatic force (static cling) between pieces of clothing 
when you pull the clothes out of the dryer. 

 
11.  Yes, the electric force is a conservative force. Energy is conserved when a particle moves under the 

influence of the electric force, and the work done by the electric force in moving an object between 
two points in space is independent of the path taken. 

 
12. Coulomb observed experimentally that the force between two charged objects is directly 

proportional to the charge on each one. For example, if the charge on either object is tripled, then the 
force is tripled. This is not in agreement with a force that is proportional to the sum of the charges 
instead of to the product of the charges. Also, a charged object is not attracted to or repelled from a 
neutral object, which would be the case if the numerator in Coulomb’s law were proportional to the 
sum of the charges. 

 
13.  When a charged ruler attracts small pieces of paper, the charge on the ruler causes a separation of 

charge in the paper. For example, if the ruler is negatively charged, it will force the electrons in the 
paper to the edge of the paper farthest from the ruler, leaving the near edge positively charged. If the 
paper touches the ruler, electrons will be transferred from the ruler to the paper, neutralizing the 
positive charge. This action leaves the paper with a net negative charge, which will cause it to be 
repelled by the negatively charged ruler. 

 
14. The test charges used to measure electric fields are small in order to minimize their contribution to 

the field. Large test charges would substantially change the field being investigated. 
 
15. When determining an electric field, it is best, but not required, to use a positive test charge. A 

negative test charge would be fine for determining the magnitude of the field. But the direction of 
the electrostatic force on a negative test charge will be opposite to the direction of the electric field. 
The electrostatic force on a positive test charge will be in the same direction as the electric field. In 
order to avoid confusion, it is better to use a positive test charge. 
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16. See Figure 21-34b. A diagram of the electric field lines around two negative charges would be just 
like this diagram except that the arrows on the field lines would point towards the charges instead of 
away from them. The distance between the charges is l. 

 
17. The electric field will be strongest to the right of the positive charge (between the two charges) and 

weakest to the left of the positive charge. To the right of the positive charge, the contributions to the 
field from the two charges point in the same direction, and therefore add. To the left of the positive 
charge, the contributions to the field from the two charges point in opposite directions, and therefore 
subtract. Note that this is confirmed by the density of field lines in Figure 21-34a. 

18. At point C, the positive test charge would experience zero net force. At points A and B, the direction 
of the force on the positive test charge would be the same as the direction of the field. This direction 
is indicated by the arrows on the field lines. The strongest field is at point A, followed (in order of 
decreasing field strength) by B and then C.   

 
19.  Electric field lines can never cross because they give the direction of the electrostatic force on a 

positive test charge. If they were to cross, then the force on a test charge at a given location would be 
in more than one direction. This is not possible. 

 
20.  The field lines must be directed radially toward or away from the point charge (see rule 1). The 

spacing of the lines indicates the strength of the field (see rule 2). Since the magnitude of the field 
due to the point charge depends only on the distance from the point charge, the lines must be 
distributed symmetrically.  

 
21.  The two charges are located along a line as shown in the 

diagram. 
(a) If the signs of the charges are opposite then the point on  

the line where E = 0 will lie to the left of Q. In that region 
the electric fields from the two charges will point in 
opposite directions, and the point will be closer to the 
smaller charge. 

(b) If the two charges have the same sign, then the point on the line where E = 0 will lie between  
the two charges, closer to the smaller charge. In this region, the electric fields from the two 
charges will point in opposite directions. 

 
22. The electric field at point P would point in the negative x-direction. The magnitude of the field 

would be the same as that calculated for a positive distribution of charge on the ring: 

    
� �3/ 22 2

1
4 o

QxE
x aSH

 
�

 

 
23. The velocity of the test charge will depend on its initial velocity. The field line gives the direction of 

the change in velocity, not the direction of the velocity. The acceleration of the test charge will be 
along the electric field line. 

 
24. The value measured will be slightly less than the electric field value at that point before the test 

charge was introduced. The test charge will repel charges on the surface of the conductor and these 
charges will move along the surface to increase their distances from the test charge. Since they will 
then be at greater distances from the point being tested, they will contribute a smaller amount to the 
field. 

 
 

Ɛ 
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25. The motion of the electron in Example 21-16 is projectile motion. In the case of the gravitational 
force, the acceleration of the projectile is in the same direction as the field and has a value of g; in 
the case of an electron in an electric field, the direction of the acceleration of the electron and the 
field direction are opposite, and the value of the acceleration varies. 

 
26. Initially, the dipole will spin clockwise. It will “overshoot” the equilibrium position (parallel to the 

field lines), come momentarily to rest and then spin counterclockwise. The dipole will continue to 
oscillate back and forth if no damping forces are present. If there are damping forces, the amplitude 
will decrease with each oscillation until the dipole comes to rest aligned with the field.  

 
27.  If an electric dipole is placed in a nonuniform electric field, the charges of the dipole will experience 

forces of different magnitudes whose directions also may not be exactly opposite. The addition of 
these forces will leave a net force on the dipole. 

 
Solutions to Problems 
 
1. Use Coulomb’s law to calculate the magnitude of the force.  

  � � � �� �
� �

19 19
9 2 2 31 2

22 12

1.602 10 C 26 1.602 10 C
8.988 10 N m C 2.7 10 N

1.5 10 m

Q Q
F k

r

� �

�

�

u u u
  u �  u

u
 

 
2. Use the charge per electron to find the number of electrons. 

� �6 14
19

1 electron
38.0 10 C 2.37 10 electrons

1.602 10 C
�

�
� u  u

� u
§ ·
¨ ¸
© ¹

 

 
3. Use Coulomb’s law to calculate the magnitude of the force.  

  � � � � � �
� �

6 3
9 2 21 2

22

25 10 C 2.5 10 C
8.988 10 N m C 7200 N

0.28m
Q Q

F k
r

� �u u
  u  <  

 
4. Use Coulomb’s law to calculate the magnitude of the force.  

  � � � �
� �

219
9 2 21 2

22 15

1.602 10 C
8.988 10 N m C 14 N

4.0 10 m

Q Q
F k

r

�

�

u
  u �  

u
 

 
5. The charge on the plastic comb is negative, so the comb has gained electrons. 

� �
31

6
19

16 14

1e 9.109 10 kg
3.0 10 C

1.602 10 C 1e
4.9 10 4.9 10 %

0.035kg
m

m

� �
�

� �
� �

u
u

u'
  u  u

§ ·§ ·
¨ ¸¨ ¸
© ¹© ¹  

 
6. Since the magnitude of the force is inversely proportional to the square of the separation distance, 

2

1
F

r
v , if the distance is multiplied by a factor of 1/8, the force will be multiplied by a factor of 64. 

  � �2
064 64 3.2 10 N 2.0 NF F �  u   
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7. Since the magnitude of the force is inversely proportional to the square of the separation distance, 

2

1
F

r
v , if the force is tripled, the distance has been reduced by a factor of 3 . 

  0 8.45 cm
4.88 cm

3 3
r

r     

 
8. Use the charge per electron and the mass per electron. 

� �

� �

6 14 14
19

31
14 16

1 electron
46 10 C 2.871 10 2.9 10 electrons

1.602 10 C

9.109 10 kg
2.871 10 e 2.6 10 kg

1 e

�

�

�
� �

�

� u  u | u
� u

u
u  u

§ ·
¨ ¸
© ¹
§ ·
¨ ¸
© ¹

 

 
9. To find the number of electrons, convert the mass to moles, the moles to atoms, and then multiply by  

the number of electrons in an atom to find the total electrons.  Then convert to charge. 

� �
23 19

8

1mole Al 6.022 10 atoms 79electrons 1.602 10 C
15kg Au 15kg Au

0.197 kg 1 mole 1molecule electron

             5.8 10 C

�u � u
 

 � u

§ ·§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹© ¹  

 The net charge of the bar is 0C , since there are equal numbers of protons and electrons. 

 
10. Take the ratio of the electric force divided by the gravitational force. 

� �� �
� �� �� �

1 2 29 2 2 19
2

39E 1 2
11 2 2 31 27

1 2G 1 2
2

8.988 10 N m C 1.602 10 C
2.3 10

6.67 10 N m kg 9.11 10 kg 1.67 10 kg

Q Q
kF kQ Qr

m mF Gm mG
r

�

� � �

u � u
    u

u � u u
 

 The electric force is about 392.3 10u times stronger than the gravitational force for the given scenario. 
 
11. (a) Let one of the charges be q , and then the other charge is T .Q q�   The force between the  

charges is � � � �2T
E T2 2

.q Q q k
F k qQ q

r r
�

  �   To find the maximum and minimum force, set the 

first derivative equal to 0.  Use the second derivative test as well. 

� � � �

� �

2 E
E T2

E
E

1
T T22

2
1

T22 2 max

  ;  2 0    

2
0     gives 

k F
F qQ q

r

F
F

d k
Q q q Q

dq r

d k
q Q

dq r

 �  �  o  

 � � o  

 

So 1
1 2 T2q q Q   gives the maximum force. 

 (b) If one of the charges has all of the charge, and the other has no charge, then the force between  
them will be 0, which is the minimum possible force.  So 1 2 T0,  q q Q   gives the minimum 

force. 
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12. Let the right be the positive direction on the line of charges.  Use the fact that like charges repel and 
unlike charges attract to determine the direction of the forces.  In the following expressions, 

9 2 28.988 10 N m Ck  u � . 
� � � �

� �
� � � �

� �
� � � �

� �
� � � �

� �
� � � �

� �
� � � �

� �

75 2 2

48 2 2

85 2 2

75 C 48 C 75 C 85 C ˆ147.2 N 150 N
0.35m 0.70m

75 C 48 C 48 C 85 Cˆ ˆ ˆ ˆ563.5N 560 N
0.35m 0.35m

85 C 75 C 85 C 48 C ˆ416.3N 420 N
0.70m 0.35m

ˆ ˆ ˆ

ˆ ˆ ˆ

k k

k k

k k

P P P P

P P P P

P P P P

�

�

�

 � �  � | �

 �  |

 � �  � | �

F i

F i i i i

F i

i i i

i i i

G

G

G

 

 
13. The forces on each charge lie along a line connecting the charges.  Let the 

variable d represent the length of a side of the triangle.  Since the triangle 
is equilateral, each angle is 60o.  First calculate the magnitude of each 
individual force. 

� � � � � �
� �

� � � � � �
� �

6 6
9 2 21 2

12 22

6 6
9 2 21 3

13 22

7.0 10 C 8.0 10 C
8.988 10 N m C

1.20m

    0.3495N

7.0 10 C 6.0 10 C
8.988 10 N m C

1.20m

    0.2622 N

Q Q
F k

d

Q Q
F k

d

� �

� �

u u
  u �

 

u u
  u �

 

 � � � �� �
� �

6 6
9 2 22 3

23 3222

8.0 10 C 6.0 10 C
8.988 10 N m C 0.2996 N

1.20m

Q Q
F k F

d

� �u u
  u �    

Now calculate the net force on each charge and the direction of that net force, using components.  
 

 

� � � �
� � � �

o o 2
1 12 13

o o 1
1 12 13

1
12 2 1 1

1 1 1 1 2
1

0.3495N cos60 0.2622 N cos60 4.365 10 N

0.3495N sin 60 0.2622 N sin 60 5.297 10 N

5.297 10 N
0.53N        tan tan 265

4.365 10 N

x x x

y y y

y
x y

x

F F F

F F F

F
F F F

F
T

�

�

�
� �

�

 �  � �  � u

 �  � �  � u

� u
 �     q

� u

 

  

� � � �
� �

o 1
2 21 23

o 1
2 21 23

1
22 2 1 1

2 2 2 2 1
2

0.3495N cos60 0.2996 N 1.249 10 N

0.3495N sin 60 0 3.027 10 N

3.027 10 N
0.33N        tan tan 112

1.249 10 N

x x x

y y y

y
x y

x

F F F

F F F

F
F F F

F
T

�

�

�
� �

�

 �  �  � u

 �  �  u

u
 �     q

� u

 

 

� � � �
� �

o 1
3 31 32

o 1
3 31 32

1
32 2 1 1

3 3 3 3 1
3

0.2622 N cos60 0.2996 N 1.685 10 N

0.2622 N sin 60 2.271 10 N

2.271 10 N
0.26 N        tan tan 53

1.685 10 N

0
x x x

y y y

y
x y

x

F F F

F F F

F
F F F

F
T

�

�

�
� �

�

 �  � �  u

 �   u

u
 �     q

u

�  

 
 

1Q

2Q 3Q

12F
G

d

13F
G

d

d
32F
G

31F
G

21F
G

23F
G
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14. (a) If the force is repulsive, both charges must be positive since the total charge is positive.  Call the  
total charge Q. 

   

� �

� � � � � � � �
� �

2
21 11 2

1 2 1 12 2

2 2
2 2

1

2
26 61

2 9 2 2

              0

4 4

2 2

12.0N 1.16 m
   90.0 10 C 90.0 10 C 4

8.988 10 N m C

kQ Q QkQ Q Fd
Q Q Q F Q QQ

d d k

Fd Fd
Q Q Q Q

k kQ

� �

�
�    o � �  

r � r �
  

 u r u �
u �

ª º
« »
« »¬ ¼

 

   6 660.1 10 C , 29.9 10 C  � � u u  
 (b) If the force is attractive, then the charges are of opposite sign.  The value used for F must then  

be negative.  Other than that, the solution method is the same as for part (a). 

   

� �

� � � � � � � �
� �

2
21 11 2

1 2 1 12 2

2 2
2 2

1

2
26 61

2 9 2 2

6 6

              0

4 4

2 2

12.0N 1.16 m
   90.0 10 C 90.0 10 C 4

8.988 10 N m C

  106.8 10 C , 16.8 10 C

kQ Q QkQ Q Fd
Q Q Q F Q QQ

d d k

Fd Fd
Q Q Q Q

k kQ

� �

� �

�
�    o � �  

r � r �
  

�
 u r u �

u �

 u � u

ª º
« »
« »¬ ¼

 

 
15. Determine the force on the upper right charge, and then use the 

symmetry of the configuration to determine the force on the other three 
charges.  The force at the upper right corner of the square is the vector 
sum of the forces due to the other three charges.  Let the variable d  
represent the 0.100 m length of a side of the square, and let the variable 
Q  represent the 4.15 mC charge at each corner. 

  

2 2

41 41 412 2

2 2 2 2
o

42 42 422 2 2 2

2 2

43 43 432 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

x y

x y

x y

Q Q
F k F k F

d d
Q Q Q Q

F k F k k F k
d d d d

Q Q
F k F F k

d d

 o   

 o    

 o   

 

 Add the x and y components together to find the total force, noting that 4 4x yF F . 

  
2 2 2

4 41 42 43 42 2 2

2 2
0 1

4 4x x x x y

Q Q Q
F F F F k k k F

d d d
 � �  � �  �  

§ ·
¨ ¸
© ¹

 

2 2
2 2

4 4 4 2 2

2 1
1 2 2

4 2x y

Q Q
F F F k k

d d
 �  �  �

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

41F
G1Q

2Q 3Q

d

4Q

43F
G

42F
G
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� � � �
� �

23
9 2 2 7

2

4.15 10 C 1
    8.988 10 N m C 2 2.96 10 N

20.100m

�u
 u � �  u§ ·

¨ ¸
© ¹

 

41 o

4

tan 45y

x

F
F

T �   above the x-direction. 

For each charge, the net force will be the magnitude determined above, and will lie along the line 
from the center of the square out towards the charge. 

 
16. Determine the force on the upper right charge, and then use the symmetry of the configuration to 

determine the force on the other charges. 
 

The force at the upper right corner of the square is the vector sum of the 
forces due to the other three charges.  Let the variable d  represent the 
0.100 m length of a side of the square, and let the variable Q  represent 
the 4.15 mC charge at each corner. 

  

2 2

41 41 412 2

2 2 2 2
o

42 42 422 2 2 2

2 2

43 43 432 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

x y

x y

x y

Q Q
F k F k F

d d
Q Q Q Q

F k F k k F k
d d d d

Q Q
F k F F k

d d

 o  �  

 o    

 o   �

 

 Add the x and y components together to find the total force, noting that 4 4x yF F . 

  
2 2 2 2

4 41 42 43 42 2 2 2

2 2
0 1 0.64645

4 4x x x x y

Q Q Q Q
F F F F k k k k F

d d d d
 � �  � � �  � �  �  

§ ·
¨ ¸
© ¹

 

� � � �
2 2

2 2
4 4 4 2 2

0.64645 2 0.9142x y

Q Q
F F F k k

d d
 �    

� � � �
� �

� �
23

9 2 2 7
2

4.15 10 C
    8.988 10 N m C 0.9142 1.42 10 N

0.100m

�u
 u �  u  

41 o

4

tan 225y

x

F

F
T �   from the x-direction, or exactly towards the center of the square. 

For each charge, there are two forces that point towards the adjacent corners, and one force that 
points away from the center of the square.  Thus for each charge, the net force will be the magnitude 

of 71.42 10 Nu  and will lie along the line from the charge inwards towards the center of the square. 
 
17. The spheres can be treated as point charges since they are spherical, and so Coulomb’s law may be  

used to relate the amount of charge to the force of attraction.  Each sphere will have a magnitude Q  
of charge, since that amount was removed from one sphere and added to the other, being initially 
uncharged.  

  
� �

2 2
1 2

2 2 9 2 2

7 12
19

1.7 10 N
    0.12 m

8.988 10 N m C

1 electron
                                           1.650 10 C 1.0 10 electrons

1.602 10 C

Q Q Q F
F k k Q r

r r k

�

�

�

u
  o   

u �

 u  u
u

§ ·
¨ ¸
© ¹

 

41F
G

1Q

2Q 3Q

d

4Q
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G
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x 

0Q� Q
04Q�

l 

l – x

Q Qq

d x�d x�

18.  The negative charges will repel each other, and so the third charge 
must put an opposite force on each of the original charges.  
Consideration of the various possible configurations leads to the 
conclusion that the third charge must be positive and must be between 
the other two charges.  See the diagram for the definition of variables.  
For each negative charge, equate the magnitudes of the two forces on the charge.  Also note that 
0 .x� � l  

  

� �

� �

� �

2 2
0 0 0 0

22 2 2

0 0 1
322

2 2
0 0 4

0 0 0922 2 2

4 4 4
left:         right:   

4
    

4 4
    4

3

Q Q Q Q Q Q
k k k k

x x

Q Q Q Q
k k x

x x

Q Q Q x
k k Q Q Q Q

x

  o
�

 o  
�

 o    

l ll

l
l

l l

 

 Thus the charge should be of magnitude 4
09 Q , and a distance 1

0 03 from  towards 4Q Q� �l . 

 
19. (a) The charge will experience a force that is always pointing  

towards the origin.  In the diagram, there is a greater force of 

� �2
04
Qq
d xSH �

to the left, and a lesser force of 
� �2

04
Qq
d xSH �

to 

the right.  So the net force is towards the origin.  The same would be true if the mass were to the 
left of the origin.  Calculate the net force. 

   
� � � � � � � �

� � � �

� � � � � � � �

2 2
net 2 2 2 2

2 2 2 2

0 0 0

0 0

4

4 4 4

     
4

Qq Qq Qq
F d x d x

d x d x d x d x

Qqd Qqd
x x

d x d x d x d x

SH SH SH

SH SH

 �  � � �
� � � �

� �
  

� � � �

ª º¬ ¼
 

  We assume that .x d�  

   
� � � �net 2 2 3

00

Qqd Qq
F x x

dd x d x SHSH
� �

 |
� �

 

This has the form of a simple harmonic oscillator, where the “spring constant” is elastic 3
0

.
Qq

k
dSH

   

The spring constant can be used to find the period.  See Eq. 14-7b. 

   
3

0

elastic
3

0

2 2 2
m m m d

T
Qqk Qq

d

SH
S S S

SH

    

(b) Sodium has an atomic mass of 23. 

   

� � � � � � � �
� �

327 12 2 2 103
0

219

12
13

29 1.66 10 kg 8.85 10 C N m 3 10 m
2 2

1.60 10 C

10 ps
2.4 10 s 0.24 ps 0.2 ps

1s

m d
T

Qq

SSH
S S

� � �

�

�

u u u
  

u

 u  |
§ ·
¨ ¸
© ¹
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20. If all of the angles to the vertical (in both cases) are assumed to 
be small, then the spheres only have horizontal displacement, 
and so the electric force of repulsion is always horizontal.  
Likewise, the small angle condition leads to tan sinT T T| |  
for all small angles.  See the free-body diagram for each sphere, 
showing the three forces of gravity, tension, and the 
electrostatic force.  Take to the right to be the positive 
horizontal direction, and up to be the positive vertical direction. Since the spheres are in equilibrium, 
the net force in each direction is zero. 
(a) 1 T1 1 E1 E1 T1 1sin 0    sinxF F F F FT T �  o  ¦  

1 1
1 T1 1 1 T1 E1 1 1 1 1 1

1 1

cos         sin tan
cos cosy

m g m g
F F m g F F m g m gT T T T

T T
 � o  o    ¦  

A completely parallel analysis would give E2 2 2F m gT .  Since the electric forces are a 
Newton’s third law pair, they can be set equal to each other in magnitude. 

   E1 E2 1 1 2 2 1 2 2 1        1F F m g m g m mT T T T o  o    
 (b) The same analysis can be done for this case. 
   E1 E2 1 1 2 2 1 2 1 1        2F F m g m g m mT T T T o  o    
 (c) The horizontal distance from one sphere to the other is  

s by the small angle approximation.  See the diagram.  Use the 
relationship derived above that EF mgT  to solve for the distance. 

  Case 1: � �1 2 1 12     
2
d

d T T T T �  o  l l
l

    

   � � 1/ 32

1 1 E1 2

2 4
    

2
kQ Q d kQ

m g F mg d
d mg

T    o  
§ ·
¨ ¸
© ¹

l

l
 

  Case 2: � �1 2 1 1

3 2
    

2 3
d

d T T T T �  o  l l
l

 

    � � 1/ 32

1 1 E1 2

2 2 3
    

3
kQ Q d kQ

m g F mg d
d mg

T    o  
§ ·
¨ ¸
© ¹

l

l
 

 
21. Use Eq. 21–3 to calculate the force.  Take east to be the positive x direction. 

  � � � �19 16 16ˆ ˆ    1.602 10 C 1920 N C 3.08 10 N 3.08 10 N westq
q

� � � o   � u  � u  u
F

E F E i i
G

G G G
 

  
22. Use Eq. 21–3 to calculate the electric field.  Take north to be the positive y direction. 

  
14

5 5
19

ˆ2.18 10 N ˆ1.36 10 N C 1.36 10 N C  south
1.602 10 Cq

�

�

� u
   � u  u

u
F j

E j
G

G
   

 
23. Use Eq. 21–4a to calculate the electric field due to a point charge. 

  � �
� �

6
9 2 2 7

22

33.0 10 C
8.988 10 N m C 1.10 10 N C up

0.164 m
Q

E k
r

�u
  u �  u   

 Note that the electric field points away from the positive charge. 
 

1m gGE1F
G

T1F
G

1T

2m gG E2F
G

T2F
G

2T

1sinTl

l
1T 2T l

2sinTl
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24. Use Eq. 21–3 to calculate the electric field. 

  5
6

8.4 Ndown
9.5 10 N C up

8.8 10 Cq �
   u

� u

F
E

G
G

   

 
25. Use the definition of the electric field, Eq. 21-3. 

  
� �4

6

ˆ7.22 10 N ˆ172 N C
4.20 10 Cq

�

�

u
   

u

jF
E j

G
G

   

 
26. Use the definition of the electric field, Eq. 21-3. 

  
� � � �

3

6

ˆ ˆ3.0 3.9 10 N ˆ ˆ2400 3100 N C
1.25 10 Cq

�

�

� u
   �

u

i jF
E i j

G
G

   

 
27. Assuming the electric force is the only force on the electron, then Newton’s second law may be used  

to find the acceleration. 

  
� �
� � � �

19
14 2

net 31

1.602 10 C
    576 N C 1.01 10 m s

9.109 10 kg
q

m q a E
m

�

�

u
  o    u

u
F a E
G GG

 

 Since the charge is negative, the direction of the acceleration is opposite to the field . 

 
28. The electric field due to the negative charge will point  

toward the negative charge, and the electric field due to the 
positive charge will point away from the positive charge.  
Thus both fields point in the same direction, towards the 
negative charge, and so can be added. 

 
� � � �

� �

� �
� �

� �

1 2 1 2
1 2 1 22 22 2 2

1 2

9 2 2
6 6 7

2

4
/ 2 / 2

4 8.988 10 N m C
   8.0 10 C 5.8 10 C 7.8 10 N C

0.080m

Q Q Q Q k
E E E k k k k Q Q

r r

� �

 �  �  �  �

u �
 u � u  u

ll l

 

 The direction is towards the negative charge . 

 
29.   
 
 
 
 
 
 
 
 
30. Assuming the electric force is the only force on the electron, then Newton’s second law may be used  

to find the electric field strength. 
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27 6 2
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31. The field at the point in question is the vector sum of the two fields shown in Figure 21-56.  Use the 
results of Example 21-11 to find the field of the long line of charge. 

  

� �

� � � �
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2 2
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2 22 2 1

2
0

1 1ˆ ˆ ˆ  ;  cos sin   
2 4

1 1 1ˆ ˆcos sin
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 � u � � u  u
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32. The field due to the negative charge will point towards  

the negative charge, and the field due to the positive charge 
will point towards the negative charge.  Thus the 
magnitudes of the two fields can be added together to find 
the charges. 

  
� �
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� �

22
10

net 2 2 9 2 2

586 N C 0.160m8
2 2     2.09 10 C

8 8 8.988 10 N m C/ 2Q

Q kQ E
E E k Q

k
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u �
l

ll
 

 
33. The field at the upper right corner of the square is the vector sum of  

the fields due to the other three charges.  Let the variable l  represent 
the 1.0 m length of a side of the square, and let the variable Q  represent 
the charge at each of the three occupied corners. 

  

1 1 12 2

o
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 Add the x and y components together to find the total electric field, noting that x yE E . 
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�u
 u � �  u§ ·

¨ ¸
© ¹

 

1tan 45.0y

x

E
E

T �  q  from the x-direction. 

 
34. The field at the center due to the two 27.0 CP� negative charges 

on opposite corners (lower right and upper left in the diagram) 
will cancel each other, and so only the other two charges need to 
be considered.  The field due to each of the other charges will 
point directly toward the charge.  Accordingly, the two fields are 
in opposite directions and can be combined algebraically. 

1 2 1 2
1 2 2 2 22 2 2

Q Q Q Q
E E E k k k

�
 �  �  

l l l

� � � �
� �

6
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2

6
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0.525m 2
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�� u
 u �

 u �

 

 
35. Choose the rightward direction to be positive.  Then the field due to +Q will be positive, and the  

field due to –Q will be negative. 

  
� � � � � � � � � �2 2 2 2 22 2

1 1 4Q Q kQxa
E k k kQ

x a x a x a x a x a

�
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 The negative sign means the field points to the  left . 
 
36. For the net field to be zero at point P, the magnitudes of the fields created by 1Q  and 2Q  must be  

equal.  Also, the distance x  will be taken as positive to the left of 1Q .  That is the only region where 
the total field due to the two charges can be zero.  Let the variable l  represent the 12 cm distance, 
and note that 1

1 22Q Q . 
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G
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l

l

l

Q�

BE
G

A

B

37. Make use of Example 21-11.  From that, we see that the electric field due to the line charge along the 

y axis is 1
0

1 ˆ.
2 x

O
SH

 E i
G

  In particular, the field due to that line of charge has no y dependence.  In a 

similar fashion, the electric field due to the line charge along the x axis is 2
0

1 ˆ.
2 y

O
SH

 E j
G

  Then the 

total field at � �,x y is the vector sum of the two fields. 
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38. (a) The field due to the charge at A will point straight downward, and  

the field due to the charge at B will point along the line from A to  
the origin, 30o below the negative x axis. 
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o
B B2 2 2

o
B 2 2

A B A B2 2

2 2 2 2 2 2
2 2

4 4 4 2

    0 , 

3
    cos30 ,

2

                        sin 30
2

3 3
       

2 2

3 9 12 3
4 4 4

t

x x

x

y

x x x y y y

x y

Q Q
E k E E k
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 (b) Now reverse the direction of AE
G
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�

�

l
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39. Near the plate, the lines should come from it almost vertically, 

because it is almost like an infinite line of charge when the 
observation point is close.  When the observation point is far 
away, it will look like a point charge. 

 
 
 
 
 
40. Consider Example 21-9.  We use the result from this example, but 

shift the center of the ring to be at 1
2x  l  for the ring on the right, 

and at 1
2x  � l  for the ring on the left.  The fact that the original 

expression has a factor of x results in the interpretation that the sign 
of the field expression will give the direction of the field.  No special 
consideration needs to be given to the location of the point at which 
the field is to be calculated. 
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41. Both charges must be of the same sign so that the electric fields created by the two charges oppose 

each other, and so can add to zero.  The magnitudes of the two electric fields must be equal. 
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1 2 2 1
1 2 12 2
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42. In each case, find the vector sum of the field caused by the charge on the left � �leftE

G
 and the field 

caused by the charge on the right � �rightE
G

 
 

Point A:  From the symmetry of the geometry, in 
calculating the electric field at point A only the vertical 
components of the fields need to be considered.  The 
horizontal components will cancel each other. 
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 � �
� �

6
9 2 2 6

A A22

5.7 10 C
2 sin 2 8.988 10 N m C sin 26.6 3.7 10 N C      90
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 Point B:  Now the point is not symmetrically placed, and 
so horizontal and vertical components of each individual 
field need to be calculated to find the resultant electric 
field. 
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 The results are consistent with Figure 21-34b.  In the figure, the field at Point A points straight up, 
matching the calculations.  The field at Point B should be to the right and vertical, matching the 
calculations.  Finally, the field lines are closer together at Point B than at Point A, indicating that the 
field is stronger there, matching the calculations. 

 
43. (a) See the diagram.  From the symmetry of the charges, we see that  

the net electric field points along the y axis. 
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 (b) To find the position where the magnitude is a maximum, set the  
first derivative with respect to y equal to 0, and solve for the y 
value. 
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This has to be a maximum, because the magnitude is positive, the field is 0 midway between the 
charges, and 0E o  as .y of  

 

44. From Example 21-9, the electric field along the x-axis is 
� �

3
22 2

0

1
4

Qx
E

x aSH
 

�
.  To find the position 

where the magnitude is a maximum, we differentiate and set the first derivative equal to zero. 
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Note that 0E   at 0x   and x  f , and that 0E !  for 0 x� � f .  Thus the value of the magnitude 

of E at Mx x  must be a maximum.  We could also show that the value is a maximum by using the 
second derivative test. 

 
45. Because the distance from the wire is much smaller than the length of the wire, we can approximate 

the electric field by the field of an infinite wire, which is derived in Example 21-11. 

   � �

6

62
9

2 2
0 0

4.75 10 C
2

1.8 10 N C,2.0m1 1 2 N m
8.988 10

2 4 C 2.4 10 m away from the wire
E

x x
O O

SH SH

�

�

u
u

   u  
u

§ ·
¨ ¸§ · © ¹

¨ ¸
© ¹

<
  

 
46. This is essentially Example 21-11 again, but with different limits of 

integration.  From the diagram here, we see that the maximum 

angle is given by 
� �22

2
sin .

2x
T  

�

l

l

  We evaluate the results at 

that angle. 
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47. If we consider just one wire, then from the answer to problem 46, we 

would have the following.  Note that the distance from the wire to the 

point in question is � �22 2 .x z � l  
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 But the total field is not simply four times the above expression, 
because the fields due to the four wires are not parallel to each other. 
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Consider a side view of the problem.  The two dots represent two parallel wires, on opposite sides of 
the square.  Note that only the vertical component of the field due to each wire will actually 
contribute to the total field.  The horizontal components will cancel. 

  � � � �
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wire wire wire 22
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The direction is vertical, perpendicular to the loop. 
 
48. From the diagram, we see that the x components of the two fields will cancel each other at the point 

P.  Thus the net electric field will be in the negative 
y-direction, and will be twice the y-component of 
either electric field vector. 
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49. Select a differential element of the arc which makes an 

angle of T  with the x axis.  The length of this element 
is ,RdT  and the charge on that element is .dq RdO T   
The magnitude of the field produced by that element is 

2
0

1
.

4
Rd

dE
R

O T
SH

   From the diagram, considering 

pieces of the arc that are symmetric with respect to the x 
axis, we see that the total field will only have an x 
component.  The vertical components of the field due to 
symmetric portions of the arc will cancel each other.  
So we have the following. 
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50. (a) Select a differential element of the arc which makes an  
angle of T with the x axis.  The length of this element 
is ,RdT  and the charge on that element is .dq RdO T  
The magnitude of the field produced by that element is 

2
0

1
.

4
Rd

dE
R

O T
SH

  From the diagram, considering 

pieces of the arc that are symmetric with respect to the 
x axis, we see that the total field will only have a y 
component, because the magnitudes of the fields due 
to those two pieces are the same.  From the diagram 
we see that the field will point down.  The horizontal components of the field cancel.  
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 (b) The force on the electron is given by Eq. 21-3.  The acceleration is found from the force. 
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51. (a) If we follow the first steps of Example 21-11, and refer to Figure 21-29, then the differential  

electric field due to the segment of wire is still � �2 2
0

1
.

4
dy

dE
x y
O

SH
 

�
  But now there is no 

symmetry, and so we calculate both components of the field. 
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  The anti-derivatives needed are in Appendix B4. 
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  Note that 0,yE � and so the electric field points to the right and down. 
 (b) The angle that the electric field makes with the x axis is given as follows. 
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As ,o fl  the expression becomes tan 1T  � , and so the field makes an angle of 
45  below the  axis .xq  

 
52. Please note:  the first printing of the textbook gave the length of the charged wire as 6.00 m, but it 

should have been 6.50 m.  That error has been corrected in later printings, and the following solution 
uses a length of 6.50 m. 
(a) If we follow the first steps of Example 21-11, and refer to Figure 21-29, then the differential  

electric field due to the segment of wire is still � �2 2
0

1
.

4
dy

dE
x y
O

SH
 

�
  But now there is no 

symmetry, and so we calculate both components of the field. 
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  The anti-derivatives needed are in Appendix B4. 
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 (b) We calculate the infinite line of charge result, and calculate the errors. 
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And so we see that xE is only about 0.3% away from the value obtained from the infinite line of 
charge, and yE  is only about 2% of the value obtained from the infinite line of charge.  The 
field of an infinite line of charge result would be a good approximation for the field due to this 
wire segment. 

 
53. Choose a differential element of the rod dxc a 

distance xc  from the origin, as shown in the 
diagram.  The charge on that differential element is 

.
Q

dq dxc 
l

  The variable xc  is treated as positive, 

so that the field due to this differential element is 
� � � �2 2
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1
.

4 4
dq Q dx

dE
x x x xSH SH

c
  

c c� �l
  Integrate 

along the rod to find the total field. 
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54. As suggested, we divide the plane into long narrow strips of width dy and length l.  The charge on 
the strip is the area of the strip times the charge per unit area: .dq dyV l   The charge per unit length 

on the strip is .
dq

dyO V  
l

  From Example 21-11, the field due to that narrow strip is 

2 2 2 2
0 0

.
2 2

dy
dE

y z y z

O V

SH SH
  

� �
  From Figure 21-68 in the textbook, we see that this field 

does not point vertically.  From the symmetry of the plate, there is another long narrow strip a 
distance y on the other side of the origin, which would create the same magnitude electric field.  The 
horizontal components of those two fields would cancel each other, and so we only need calculate 
the vertical component of the field.  Then we integrate along the y direction to find the total field. 
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55. Take Figure 21-28 and add the angle I , measured from the –z axis, 

as indicated in the diagram.  Consider an infinitesimal length of the 
ring .adI   The charge on that infinitesimal length is � �dq adO I  

� � .
Q Q

ad d
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I I
S S

    The charge creates an infinitesimal electric 

field, ,d E
G

 with magnitude 
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  From the 

symmetry of the figure, we see that the z component of d E
G

 will be cancelled by the z component 
due to the piece of the ring that is on the opposite side of the y axis.  The trigonometric relationships 
give cosxdE dE T  and sin sin .ydE dE T I �   The factor of sinI  can be justified by noting that 

0ydE   when 0,I   and sinydE dE T �  when 2.I S  
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 We can write the electric field in vector notation. 
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56. (a)   Since the field is uniform, the electron will experience a constant force in the direction opposite  

to its velocity, so the acceleration is constant and negative.  Use constant acceleration 
relationships with a final velocity of 0. 
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(b) Find the elapsed time from constant acceleration relationships.  Upon returning to the original  
position, the final velocity will be the opposite of the initial velocity. 
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57. (a) The acceleration is produced by the electric force. 
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(b) The direction is found from the components of the velocity. 
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 This is the direction relative to the x axis.  The direction of motion relative to the initial 
direction is measured from the y axis, and so is 166T  q counter-clockwise from the initial 
direction. 

 
58. (a) The electron will experience a force in the opposite direction to the electric field.  Since the  

electron is to be brought to rest, the electric field must be in the same direction as the initial 
velocity of the electron, and so is to the  right . 

(b) Since the field is uniform, the electron will experience a constant force, and therefore have a 
constant acceleration.  Use constant acceleration relationships to find the field strength. 
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59. The angle is determined by the velocity.  The x component of the velocity is constant.  The time to 

pass through the plates can be found from the x motion.  Then the y velocity can be found using 
constant acceleration relationships. 
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60. Since the field is constant, the force on the electron is constant, and so the acceleration is constant.  

Thus constant acceleration relationships can be used.  The initial conditions are 0 0,x   0 0,y   

0 1.90m s,xv   and 0 0.yv   
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61. (a) The field along the axis of the ring is given in Example 21-9, with the opposite sign because this  

ring is negatively charged.  The force on the charge is the field times the charge q.  Note that if 
x is positive, the force is to the left, and if x is negative, the force is to the right.  Assume that 

.x R�   
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This has the form of a simple harmonic oscillator, where the “spring constant” is 
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0

.
4

Qq
k

RSH
  

(b)   The spring constant can be used to find the period.  See Eq. 14-7b. 
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62. (a) The dipole moment is given by the product of the positive charge and the separation distance. 

   � � � �19 9 28 281.60 10 C 0.68 10 m 1.088 10 C m 1.1 10 C mp Q � � � �  u u  u | u< <l  

 (b) The torque on the dipole is given by Eq. 21-9a. 

   � � � � � �28 4 24sin 1.088 10 C m 2.2 10 N C sin 90 2.4 10 C mpEW T � �  u u q  u< <  

 (c) � � � � � �28 4 24sin 1.088 10 C m 2.2 10 N C sin 45 1.7 10 N mpEW T � �  u u q  u< <  

 (d) The work done by an external force is the change in potential energy.  Use Eq. 21-10. 
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63. (a) The dipole moment is the effective charge of each atom times the separation distance. 
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(b) 
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0.21

1.60 10 C
Q
e

�

�

u
  

u
  No, the net charge on each atom is not an integer multiple of e.  This 

is an indication that the H and Cl atoms are not ionized – they haven’t fully gained or lost an 
electron.  But rather, the electrons spend more time near the Cl atom than the H atom, giving the 
molecule a net dipole moment.  The electrons are not distributed symmetrically about the two 
nuclei. 

 (c) The torque is given by Eq. 21-9a. 

   � � � �30 4 26
maxsin 3.4 10 C m 2.5 10 N C 8.5 10 N m    pE pEW T W � �   u u  uo < <  

 (d) The energy needed from an external force is the change in potential energy.  Use Eq. 21-10. 
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64. (a) From the symmetry in the diagram, we see that the resultant field  

will be in the y direction.  The vertical components of the two 
fields add together, while the horizontal components cancel. 
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(b) Both charges are the same sign.  A long distance away from the  

charges, they will look like a single charge of magnitude 2 ,Q  and so 
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4
q Q
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r rSH

   

 
65. (a) There will be a torque on the dipole, in a direction to decrease .T   That torque will give the  

dipole an angular acceleration, in the opposite direction of .T  
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If T  is small, so that sin ,T T| then the equation is in the same form as Eq. 14-3, the equation 
of motion for the simple harmonic oscillator. 

   
2 2

2 2
sin 0    d pE pE d pE

dt I I dt I
T T

T T T � | �  o �  

 (b) The frequency can be found from the coefficient of T  in the equation of motion. 
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66. If the dipole is of very small extent, then the potential energy is a function of position, and so Eq. 21-

10 gives � � � �.U x x �p E
GG<   Since the potential energy is known, we can use Eq. 8-7. 
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 Since the field does not depend on the y or z coordinates, all other components of the force will be 0. 
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67. (a) Along the x axis the fields from the two charges are  

parallel so the magnitude is found as follows. 
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  The same result is obtained if the point is to the left of .Q�  
 (b) The electric field points in the same direction as the dipole moment vector. 
 
68. Set the magnitude of the electric force equal to the magnitude of the force of gravity and solve for  

the distance. 
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69. Water has an atomic mass of 18, so 1 mole of water molecules has a mass of 18 grams.  Each water 

molecule contains 10 protons. 
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70. Calculate the total charge on all electrons in 3.0 g of copper, and compare 38 CP  to that value. 
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71. Use Eq. 21-4a to calculate the magnitude of the electric charge on the Earth. 
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 Since the electric field is pointing towards the Earth’s center, the charge must be  negative . 
 
72. (a) From problem 71, we know that the electric field is pointed towards the Earth’s center.  Thus an  

electron in such a field would experience an upwards force of  magnitude EF eE .  The force 
of gravity on the electron will be negligible compared to the electric force. 
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 (b) A proton in the field would experience a downwards force of magnitude EF eE .  The force of  
gravity on the proton will be negligible compared to the electric force.  
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(c) Electron: 
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73. For the droplet to remain stationary, the magnitude of the electric force on the droplet must be the 

same as the weight of the droplet.  The mass of the droplet is found from its volume times the density 
of water.  Let n be the number of excess electrons on the water droplet. 
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74. There are four forces to calculate.  Call the rightward direction the positive direction.  The value of k  

is 9 2 28.988 10 N m Cu �  and the value of e is 191.602 10 C�u . 
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75. Set the Coulomb electrical force equal to the Newtonian gravitational force on one of the bodies (the  
Moon). 

  � �� �� �
� �

2
Moon Earth

E G 2 2
orbit orbit

11 2 2 22 24
13Moon Earth

9 2 2

      

6.67 10 N m kg 7.35 10 kg 5.98 10 kg
5.71 10 C

8.988 10 N m C

M MQ
F F k G

r r

GM M
Q

k

�

 o  o

u u u
   u

u �

<
 

 
76. The electric force must be a radial force in order for the electron to move in a circular orbit. 

  

� � � �
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2 2
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2192
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orbit 22 31 6
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F F k

r r

Q
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 o  o

u
  u �  u
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77. Because of the inverse square nature of the electric field,  

any location where the field is zero must be closer to the 
weaker charge � �2Q .  Also, in between the two charges, 
the fields due to the two charges are parallel to each other and cannot cancel.  Thus the only places 
where the field can be zero are closer to the weaker charge, but not between them.  In the diagram, 
this means that l must be positive. 

� �
� �2 22 1

2 122
0      

Q Q
E k k Q d Q

d
 � �  o �  o

�
l

l l
l  

� �
6

22

5 6
11 2

1.6m from ,5.0 10 C
2.0m

3.6m from 2.5 10 C 5.0 10 C

QQ
d

QQ Q

�

� �

u
   

� u � u
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78. We consider that the sock is only acted on by two forces – the force of gravity, acting downward, 

and the electrostatic force, acting upwards.  If charge Q is on the sweater, then it will create an 

electric field of 
0 0

,
2 2

Q A
E

V
H H

   where A is the surface area of one side of the sweater.  The same 

magnitude of charge will be on the sock, and so the attractive force between the sweater and sock is 
2

0

.
2E

Q
F QE

AH
    This must be equal to the weight of the sweater.  We estimate the sweater area as 

0.10 m2, which is roughly a square foot. 

� � � � � � � �

2

0

12 2 2 2 2 7
0

  
2

2 2 8.85 10 C N m 0.10m 0.040kg 9.80m s 8 10 C

E

Q
F QE mg

A

Q Amg

H

H � �

   o

  u  u<

 

 
79. The sphere will oscillate sinusoidally about the equilibrium point, with an amplitude of 5.0 cm.  The  

angular frequency of the sphere is given by 126 N m 0.650kg 13.92rad sk mZ    .  The 
distance of the sphere from the table is given by � �> @0.150 0.0500cos 13.92 mr t � .  Use this distance 

1Q
2Q

 d l
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and the charge to give the electric field value at the tabletop.  That electric field will point upwards at 
all times, towards the negative sphere. 

  

� � � �
� �> @ � �> @

� �> @

9 2 2 6 4

2 22 2

7

2

8.988 10 N m C 3.00 10 C 2.70 10
N C

0.150 0.0500cos 13.92 m 0.150 0.0500cos 13.92

1.08 10
   N C,  upwards

3.00 cos 13.9

Q
E k

r t t

t

�u � u u
   

� �

u
 

�

 

 
80. The wires form two sides of an isosceles triangle, and so the two charges are  

separated by a distance � �2 78cm sin 26 68.4 cm q  l  and are directly horizontal 
from each other.  Thus the electric force on each charge is horizontal.  From the free-
body diagram for one of the spheres, write the net force in both the horizontal and 
vertical directions and solve for the electric force.  Then write the electric force by 
Coulomb’s law, and equate the two expressions for the electric force to find the 
charge. 
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81. The electric field at the surface of the pea is given by Eq. 21-4a.  Solve that equation for the  

charge. 

  
� �� �26 32

9
2 9 2 2

3 10 N C 3.75 10 m
    5 10 C

8.988 10 N m C
Q Er

E k Q
r k

�

�
u u

 o    u
u �

 

 This corresponds to about 3 billion electrons. 
 
82. There will be a rightward force on 1Q  due to 2Q , given by Coulomb’s law.  There will be a leftward  

force on 1Q  due to the electric field created by the parallel plates.  Let right be the positive direction. 

  1 2
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 �¦  

� � � �� �
� �

� �� �
6 6

9 2 2 6 4
2

6.7 10 C 1.8 10 C
       8.988 10 N m C 6.7 10 C 7.3 10 N C

0.34m

       0.45 N, right

� �

�
u u

 u � � u u

 

 

 
 
 
 

mgG

EF
G

TF
G

T



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

30 

83. The weight of the sphere is the density times the volume.  The electric force is given by Eq. 21-1, 
with both spheres having the same charge, and the separation distance equal to their diameter. 

  
� � � �
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� �

2 2
34

32 2
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84. From the symmetry, we see that the resultant field will be in the y 

direction.  So we take the vertical component of each field. 
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 Use the binomial expansion, assuming .r l�  
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 Notice that the field points toward the negative charges. 
 
85. This is a constant acceleration situation, similar to projectile motion in a uniform gravitational field.  

Let the width of the plates be l, the vertical gap between the plates be h, and the initial velocity be 
0.v   Notice that the vertical motion has a maximum displacement of h/2.  Let upwards be the positive 

vertical direction.  We calculate the vertical acceleration produced by the electric field and the time t 
for the electron to cross the region of the field.  We then use constant acceleration equations to solve 
for the angle. 
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86. (a) The electric field from the long wire is derived in Example 21-11. 

   
0

1
,

2
E

r
O

SH
 radially away from the wire 

(b) The force on the electron will point radially in, producing a centripetal acceleration. 
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 Note that this speed is independent of r. 
 
87. We treat each of the plates as if it were infinite, and 

then use Eq. 21-7.  The fields due to the first and 
third plates point towards their respective plates, 
and the fields due to the second plate point away 
from it.  See the diagram.  The directions of the 
fields are given by the arrows, so we calculate the 
magnitude of the fields from Eq. 21-7.  Let the 
positive direction be to the right. 
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88. Since the electric field exerts a force on the charge in the  

same direction as the electric field, the charge is  
positive.  Use the free-body diagram to write the 
equilibrium equations for both the horizontal and vertical 
directions, and use those equations to find the magnitude 
of the charge. 
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89. A negative charge must be placed at the center of the square.  Let  

8.0 CQ P  be the charge at each corner, let q�  be the magnitude of 
negative charge in the center, and let 9.2cmd   be the side length of 
the square.  By the symmetry of the problem, if we make the net force 
on one of the corner charges be zero, the net force on each other 
corner charge will also be zero. 
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The net force in each direction should be zero. 
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So the charge to be placed is 67.7 10 Cq ��  � u . 
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This is an  unstable equilibrium  .  If the center charge were slightly displaced, say towards the right, 
then it would be closer to the right charges than the left, and would be attracted more to the right.  
Likewise the positive charges on the right side of the square would be closer to it and would be 
attracted more to it, moving from their corner positions.  The system would not have a tendency to 
return to the symmetric shape, but rather would have a tendency to move away from it if disturbed. 

 
90. (a) The force of sphere B on sphere A is given by Coulomb’s law. 

2

AB 2
, away from B

kQ
F

R
  

 (b) The result of touching sphere B to uncharged sphere C is that the charge on B is shared between  
the two spheres, and so the charge on B is reduced to 2Q .  Again use Coulomb’s law.  

2

AB 2 2

2
, away from B

2
QQ kQ

F k
R R

   

 (c) The result of touching sphere A to sphere C is that the charge on the two spheres is shared, and  
so the charge on A is reduced to 3 4Q .  Again use Coulomb’s law. 
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91. (a) The weight of the mass is only about 2 N.  Since the tension in the string is more  

than that, there must be a downward electric force on the positive charge, which 
means that the electric field must be pointed  down .  Use the free-body diagram to 
write an expression for the magnitude of the electric field. 
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 (b) Use Eq. 21-7. 
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92. (a) The force will be attractive.  Each successive charge is another distance d farther than the  

previous charge.  The magnitude of the charge on the electron is e. 
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 (b) Now the closest Q is a distance of 3d from the electron. 
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93. (a) Take ,dE
dx

 set it equal to 0, and solve for the location of the maximum. 
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(b) Yes, the maximum of the graph  
does coincide with the analytic 
maximum.  The spreadsheet used 
for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab 
“Problem 21.93b.” 

(c) The field due to the ring is  

� �ring 3/ 22 2

1
.

4
Qx

E
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(d) The field due to the point charge is  

ring 2

1
.

4
Q

E
xSH�

   Both are plotted 

on the graph.  The graph shows that 
the two fields converge at large 
distances from the origin.  The 
spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab 
“Problem 21.93cd.” 

(e) According to the spreadsheet, ring point0.9E E at about 37 cm.  An analytic calculation gives the 
same result.  
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94. (a) Let 1 8.00 C,q P 2 2.00 C,q P  and  
0.0500m.d    The field directions due to the 

charges are shown in the diagram.  We take care 
with the signs of the x coordinate used to 
calculate the magnitude of the field. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab “Problem 21.94a.” 

(b) Now for points on the y axis.  See the diagram for this case. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab “Problem 21.94b.” 
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CHAPTER 22:  Gauss’s Law 
 
Responses to Questions 
 
1.  No. If the net electric flux through a surface is zero, then the net charge contained in the surface is 

zero.  However, there may be charges both inside and outside the surface that affect the electric field 
at the surface. The electric field could point outward from the surface at some points and inward at 
others. Yes. If the electric field is zero for all points on the surface, then the net flux through the 
surface must be zero and no net charge is contained within the surface. 

 
2.   No. The electric field in the expression for Gauss’s law refers to the total electric field, not just the 

electric field due to any enclosed charge. Notice, though, that if the electric field is due to a charge 
outside the Gaussian surface, then the net flux through the surface due to this charge will be zero. 

  
3.  The electric flux will be the same. The flux is equal to the net charge enclosed by the surface divided 

by İ0. If the same charge is enclosed, then the flux is the same, regardless of the shape of the surface. 
 
4.  The net flux will be zero. An electric dipole consists of two charges that are equal in magnitude but 

opposite in sign, so the net charge of an electric dipole is zero. If the closed surface encloses a zero 
net charge, than the net flux through it will be zero. 

 
5.  Yes. If the electric field is zero for all points on the surface, then the integral of dE A

GG
< over the 

surface will be zero, the flux through the surface will be zero, and no net charge will be contained in 
the surface. No. If a surface encloses no net charge, then the net electric flux through the surface will 
be zero, but the electric field is not necessarily zero for all points on the surface. The integral of 

dE A
GG

< over the surface must be zero, but the electric field itself is not required to be zero. There may 
be charges outside the surface that will affect the values of the electric field at the surface. 

 
6. The electric flux through a surface is the scalar (dot) product of the electric field vector and the area 

vector of the surface. Thus, in magnitude, E cosEA T)  . By analogy, the gravitational flux 
through a surface would be the product of the gravitational field (or force per unit mass) and the 
area, or g cosgA T)  . Any mass, such as a planet, would be a “sink” for gravitational field. Since 
there is not “anti-gravity” there would be no sources. 

 
7.  No. Gauss’s law is most useful in cases of high symmetry, where a surface can be defined over 

which the electric field has a constant value and a constant relationship to the direction of the 
outward normal to the surface. Such a surface cannot be defined for an electric dipole. 

 
8. When the ball is inflated and charge is distributed uniformly over its surface, the field inside is zero. 

When the ball is collapsed, there is no symmetry to the charge distribution, and the calculation of the 
electric field strength and direction inside the ball is difficult (and will most likely give a non-zero 
result). 

 
9.  For an infinitely long wire, the electric field is radially outward from the wire, resulting from 

contributions from all parts of the wire. This allows us to set up a Gaussian surface that is 
cylindrical, with the cylinder axis parallel to the wire. This surface will have zero flux through the 
top and bottom of the cylinder, since the net electric field and the outward surface normal are 
perpendicular at all points over the top and bottom. In the case of a short wire, the electric field is not 
radially outward from the wire near the ends; it curves and points directly outward along the axis of 
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the wire at both ends. We cannot define a useful Gaussian surface for this case, and the electric field 
must be computed directly. 

 
10. In Example 22-6, there is no flux through the flat ends of the cylindrical Gaussian surface because 

the field is directed radially outward from the wire. If instead the wire extended only a short distance 
past the ends of the cylinder, there would be a component of the field through the ends of the 
cylinder. The result of the example would be altered because the value of the field at a given point 
would now depend not only on the radial distance from the wire but also on the distance from the 
ends. 

 
11.  The electric flux through the sphere remains the same, since the same charge is enclosed. The 

electric field at the surface of the sphere is changed, because different parts of the sphere are now at 
different distances from the charge. The electric field will not have the same magnitude for all parts 
of the sphere, and the direction of the electric field will not be parallel to the outward normal for all 
points on the surface of the sphere. The electric field will be stronger on the side closer to the charge 
and weaker on the side further from the charge. 

 
12. (a) A charge of (Q – q) will be on the outer surface of the conductor. The total charge Q is placed  

on the conductor but since +q will reside on the inner surface, the leftover, (Q – q), will reside 
on the outer surface.   

 (b) A charge of +q will reside on the inner surface of the conductor since that amount is attracted  
by the charge –q in the cavity. (Note that E must be zero inside the conductor.) 

 
13.  Yes. The charge q will induce a charge –q on the inside surface of the thin metal shell, leaving the 

outside surface with a charge +q. The charge Q outside the sphere will feel the same electric force as 
it would if the metal shell were not present. 

 
14.  The total flux through the balloon’s surface will not change because the enclosed charge does not 

change. The flux per unit surface area will decrease, since the surface area increases while the total 
flux does not change. 

 
 
Solutions to Problems 
 
1. The electric flux of a uniform field is given by Eq. 22-1b. 

(a) � � � �2 2
E cos 580 N C 0.13m 31N m Ccos0EA T S)     E A

GG
< <  

(b) � � � �2 2
E cos 580N C 0.13m cos45 22 N m CEA T S)    q  E A

GG
< <  

(c) � � � �2
E cos 580 N C 0.13m cos90 0EA T S)    q  E A

GG
<  

 
2. Use Eq. 22-1b for the electric flux of a uniform field.  Note that the surface area vector points 

radially outward, and the electric field vector points radially inward.  Thus the angle between the two 
is 180 .q  

� � � � � �E

2

22 6
E

16

cos 150 N C 4 150 N C

7.7 10 N m C

4 cos180 6.38 10 m

    

EA RT S S)     �

� u

q u

 

E A
GG
<

<
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3. (a) Since the field is uniform, no lines originate or terminate inside the cube, and so the net flux is  

net 0 .)   
 (b) There are two opposite faces with field lines perpendicular to the faces.  The other four faces  

have field lines parallel to those faces.  For the faces parallel to the field lines, no field lines 
enter or exit the faces.  Thus parallel 0 .)   
 

Of the two faces that are perpendicular to the field lines, one will have field lines entering the 
cube, and so the angle between the field lines and the face area vector is 180 .q   The other will 
have field lines exiting the cube, and so the angle between the field lines and the face area 

vector is 0 .q   Thus we have 2
entering 0 0cos180E A E A E)   q  � l

GG
<  and 

2
leaving 0 0cos0 .E A E A E)   q  l

GG
<  

 
4. (a) From the diagram in the textbook, we see that the flux outward through the hemispherical  

surface is the same as the flux inward through the circular surface base of the hemisphere.  On 
that surface all of the flux is perpendicular to the surface.  Or, we say that on the circular base, 

.E A
GG
&   Thus 2

E .r ES)   E A
GG
<  

(b)  E
G

 is perpendicular to the axis, then every field line would both enter through the hemispherical  
surface and leave through the hemispherical surface, and so E 0 .)   

 
5. Use Gauss’s law to determine the enclosed charge.      

� � � �2 12 2 2 8encl
E encl E    1840N m C 8.85 10 C N m 1.63 10 Co

o

Q
Q H

H
� �)  o  )  � u �  u  

 
6. The net flux through each closed surface is determined by the net charge inside.  Refer to the picture 

in the textbook. 

  
� � � �

� �
1 0 0 2 0

3 0 0 4 5 0

3 2   ;  2 3 0   ;  

2 3   ;  0   ;  2

Q Q Q Q Q Q

Q Q Q Q

H H H

H H H

)  � �  � )  � � �  

)  � �  � )  )  �
 

 
7. (a) Use Gauss’s law to determine the electric flux. 

   
6

5 2encl
E 12 2 2

1.0 10 C
1.1 10 N m C

8.85 10 C N mo

Q

H

�

�

� u
)    � u �

u �
 

 (b) Since there is no charge enclosed by surface A2, E 0)  . 
 
8. The net flux is only dependent on the charge enclosed by the surface.  Since both surfaces enclose 

the same amount of charge, the flux through both surfaces is the same.  Thus the ratio is 1:1 .  
 
9. The only contributions to the flux are from the faces perpendicular to the electric field.  Over each of 

these two surfaces, the magnitude of the field is constant, so the flux is just E A
GG
<  on each of these 

two surfaces.   

  � � � � 2 2 encl
E right leftright left

0

 
Q

E E
H

)  �  �  oE A E A
G GG G
< < l l  
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  � � � � � � � �22 12 2 2 7
encl right left 0 410 N C 560 N C 25m 8.85 10 C N m 8.3 10 CQ E E H � � �  � u �  � ul  

 
10. Because of the symmetry of the problem one sixth of the total flux will pass through each face. 

encl encl1 1
face total6 6

0 06
Q Q

H H
)  )    

Notice that the side length of the cube did not enter into the calculation. 
 
11. The charge density can be found from Eq. 22-4, Gauss’s law.  The charge is the charge density times 

the length of the rod. 

  
� � � �5 2 12 2 2

5encl 0

0 0

7.3 10 N m C 8.85 10 C N m
    4.3 10 C m

0.15m
Q O H

O
H H

�

�
u � u �)

)    o    u
l

l
 

 
12.  
 
 
 
 
 
 
 
 
 
13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the  

charge. 

  
� � � �22 22

11
2 9 2 2

6.25 10 N C 3.50 10 m
    8.52 10 C

8.988 10 N m C
Q Er

E k Q
r k

�

�
u u

 o    u
u �

 

This corresponds to about 85 10u  electrons.  Since the field points toward the ball, the charge must 

be negative.  Thus 118.52 10 CQ � � u . 
 
14. The charge on the spherical conductor is uniformly distributed over the surface area of the sphere, so  

24
.Q

R
V

S
   The field at the surface of the sphere is evaluated at r = R. 

  � �
2

2 2
0 0 0

1 1 4
4 4

Q R
E r R

R R

S V V
SH SH H

     

 

15. The electric field due to a long thin wire  is given in Example 22-6 as 
0

1
.

2
E

R

O
SH

  

 (a) � � � �
� �

6
9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 2.6 10 N C

2 4 5.0m
E

R R

O O
SH SH

�� u
   u �  � u  

  The negative sign indicates the electric field is pointed towards the wire. 
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 (b) � � � �
� �

6
9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 8.6 10 N C

2 4 1.5m
E

R R

O O
SH SH

�� u
   u �  � u  

  The negative sign indicates the electric field is pointed towards the wire. 
 
16. Because the globe is a conductor, the net charge of -1.50 mC will 

be arranged symmetrically around the sphere. 
 
 
 
 
 
 
 
 
 
17. Due to the spherical symmetry of the problem, the electric field can be evaluated using Gauss’s law 

and the charge enclosed by a spherical Gaussian surface of radius r. 

  � �2
2

0 0

encl encl1
4     

4
Q Q

d E r E
r

S
H SH

  o  ³ E A
GG

<v  

 Since the charge densities are constant, the charge enclosed is found by multiplying the appropriate 
charge density times the volume of charge enclosed by the Gaussian sphere.  Let 1 6.0cmr   and 

2 12.0cm.r   
 (a) Negative charge is enclosed for 1.r r�  
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(b) In the region  1 2 ,r r r� � all of the negative charge and part of the positive charge is  
enclosed. 
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 (c) In the region 2 ,r r�  all of the charge is enclosed. 
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 (d) See the adjacent plot.  The field is  
continuous at the edges of the layers. 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename “PSE4_ISM_CH22.XLS,” 
on tab “Problem 22.17d.” 

 
 
 
 
 
 
 
18. See Example 22-3 for a detailed discussion related to this problem. 

(a) Inside a solid metal sphere the electric field is  0 . 
 (b) Inside a solid metal sphere the electric field is  0 . 
 (c) Outside a solid metal sphere the electric field is the same as if all the charge were concentrated  

at the center as a point charge. 

   � � � �
� �

6
9 2 2

22
0

5.50 10 C1
8.988 10 N m C 5140N C

4 3.10m
Q

E
rSH

�u
  u �   

  The field would point towards the center of the sphere. 
 (d) Same reasoning as in part (c). 

   � � � �
� �

6
9 2 2

22
0

5.50 10 C
8.988 10 N m C 772 N C

8.00m
1

4
Q

E
rSH

�u
  u �   

  The field would point towards the center of the sphere. 
 (e) The answers would be  no different  for a thin metal shell. 
 (f) The solid sphere of charge is dealt with in Example 22-4.  We see from that Example that the  

field inside the sphere is given by 3
0 0

1
.

4
Q

E r
rSH

   Outside the sphere the field is no different.   

So we have these results for the solid sphere. 

   � � � �
� �

� �
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  u �   

   � � � �
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6
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  All point towards the center of the sphere. 
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19. For points inside the nonconducting 
spheres, the electric field will be 
determined by the charge inside the 
spherical surface of radius r. 

334
3

encl 34
3 0 0

r r
Q Q Q

r r

S
S

  
§ · § ·
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© ¹ © ¹

 

The electric field for 0r rd  can be 
calculated from Gauss’s law. 
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The electric field outside the sphere is calculated from Gauss’s law with encl .Q Q  

� � encl
0 2 2

0 04 4
Q Q

E r r
r rSH SH

t    

 The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.19.” 

 
20. (a) When close to the sheet, we approximate it as an infinite sheet, and use the result of Example  

22-7.  We assume the charge is over both surfaces of the aluminum. 
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 (b) When far from the sheet, we approximate it as a point charge. 
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21. (a) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 

   

� �

� �
� �

2

0

6
9 2 2 7

22 2
0

4   

1 5.50 10 C
8.988 10 N m C 5.49 10 N C, radially outward

4 3.00 10 m

Q
d E r

Q
E

r

S
H

SH

�

�

  o

u
  u �  u

u

³ E A
GG

<v
 

(b) A radius of 6.00 cm is inside the conducting material, and so the field must be 0.  Note that  
there must be an induced charge of 65.50 10 C�� u  on the surface at  r = 4.50 cm, and then an 
induced charge of 65.50 10 C�u  on the outer surface of the sphere. 

(c) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 
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22. (a) Inside the shell, the field is that of the point charge, 
2

0

1
4

.Q
E

rSH
  

 (b) There is no field inside the conducting material: 0 .E   

(c) Outside the shell, the field is that of the point charge, 
2

0

1
4

.Q
E

rSH
  

 (d) The shell does not affect the field due to Q alone, except in the shell material, where the field is  
0.  The charge Q does affect the shell – it polarizes it.  There will be an induced charge of –Q  
uniformly distributed over the inside surface of the shell, and an induced charge of +Q  
uniformly distributed over the outside surface of the shell. 

 
23. (a) There can be no field inside the conductor, and so there must be an induced charge of  

8.00 CP�  on the surface of the spherical cavity. 
(b) Any charge on the conducting material must reside on its boundaries.  If the net charge of the  

cube is 6.10 C,P�  and there is a charge of 8.00 CP� on its inner surface, there must be a charge 

of 1.90 CP� on the outer surface.  
 
24. Since the charges are of opposite sign, and since the charges are free to move since they are on 

conductors, the charges will attract each other and move to the inside or facing edges of the plates.  
There will be no charge on the outside edges of the plates.  And there cannot be charge in the plates 
themselves, since they are conductors.  All of the charge must reside on surfaces.  Due to the 
symmetry of the problem, all field lines must be perpendicular to the plates, as discussed in Example 
22-7. 
(a) To find the field between the plates, we choose a gaussian cylinder, 

perpendicular to the plates, with area A for the ends of the cylinder.  We 
place one end inside the left plate (where the field must be zero), and the 
other end between the plates.  No flux passes through the curved surface 
of the cylinder. 
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The field lines between the plates leave the inside surface of the left plate, and terminate on the 
inside surface of the right plate.  A similar derivation could have been done with the right end of 
the cylinder inside of the right plate, and the left end of the cylinder in the space between the 
plates. 

 (b) If we now put the cylinder from above so that the right end is  
inside the conducting material, and the left end is to the left of 
the left plate, the only possible location for flux is through the 
left end of the cylinder.  Note that there is NO charge enclosed 
by the Gaussian cylinder. 
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 outside outside
0 0

0 0
    E A E

H H
 o   

 (c) If the two plates were nonconductors, the results would not change.  The charge would be  
distributed over the two plates in a different fashion, and the field inside of the plates would not 
be zero, but the charge in the empty regions of space would be the same as when the plates are 
conductors. 

 
25.  Example 22-7 gives the electric field from a positively charged 

plate as 0/ 2E V H  with the field pointing away from the plate.  
The fields from the two plates will add, as shown in the figure.   
(a) Between the plates the fields are equal in magnitude, but 

point in opposite directions. 

between
0 0

0
2 2

E
V V
H H

 �   

(b) Outside the two plates the fields are equal in magnitude and  
point in the same direction. 

outside
0 0 02 2

E
V V V
H H H

 �   

(c) When the plates are conducting the charge lies on the surface of the plates.  For nonconducting  
plates the same charge will be spread across the plate.  This will not affect the electric field 
between or outside the two plates.  It will, however, allow for a non-zero field inside each plate. 

 
26. Because 3.0 cm << 1.0 m, we can consider the plates to be infinite in size, and ignore any edge 

effects.  We use the result from Problem 24(a). 

  � � � � � �2 12 2 2 9
0

0 0

   160 N C 1.0 m 8.85 10 C N m 1.4 10 C
Q A

E Q EA
V

H
H H

� �  o   u �  u   

 
27. (a) In the region 10 ,r r� �  a gaussian surface would enclose no charge.  Thus, due to the spherical  

symmetry, we have the following. 

� �2 encl

0

4 0    0
Q

d E r ES
H

   o  ³ E A
GG

<v  

(b) In the region 21 ,r r r� � only the charge on the inner shell will be enclosed. 

  � �
2 2

2 encl 1 1 1 1
2

0 0 0

4
4     

Q r r
d E r E
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H H H
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(c) In the region 2 ,r r�  the charge on both shells will be enclosed. 

  � �
2 2 2 2

2 encl 1 1 2 2 1 1 2 2
2

0 0 0

4 4
4     

Q r r r r
d E r E

r

V S V S V V
S

H H H
� �

   o  ³ E A
GG
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(d) To make 0E   for 2 ,r r�  we must have 2 2
1 1 2 2 0 .r rV V�    This implies that the shells are of  

opposite charge. 
(e) To make 0E   for 21 ,r r r� � we must have 1 0 .V    Or, if a charge 2

1 14Q rSV �  were placed  

at the center of the shells, that would also make 0.E   
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28. If the radius is to increase from 0r  to 02r  linearly during an elapsed time of T, then the rate of 

increase must be 0 .r T   The radius as a function of time is then 0
0 0 1 .

r t
r r t r

T T
 �  �§ ·

¨ ¸
© ¹

  Since the 

balloon is spherical, the field outside the balloon will have the same form as the field due to a point 
charge. 
(a) Here is the field just outside the balloon surface. 

  22
20 0

0

1 1
4 4

1

Q Q
E

r t
r

T

SH SH
  

�§ ·
¨ ¸
© ¹

 

(b) Since the balloon radius is always smaller than 03.2 ,r  the total charge enclosed in a gaussian  
surface at 03.2r r  does not change in time. 

  
� �22

0 0 0

1 1
4 4 3.2

Q Q
E

r rSH SH
   

 
29. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 

� �2 encl encl
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4

Q Q
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r
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 (a) For the region 10 ,r r� � the enclosed charge is 0. 
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0
4
Q

E
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(b) For the region 01 ,r r r� � the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 3 34 4
3 30 1

Q

r r
U

S S
 

�
 

� �3 3
0 1

3
.

4
Q

r rS
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 (c) For the region 0,r r!  the enclosed charge is the total charge, Q. 

   2
04

Q
E

rSH
  

 
30. By the superposition principle for electric fields (Section 21-6), we find the field for this problem by 

adding the field due to the point charge at the center to the field found in Problem 29.  At any 

location 0,r ! the field due to the point charge is 2
04

.q
E

rSH
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 (a) 2 2
0 0

0
4 4q Q

q q
E E

r r
E

SH SH
 �  �   

 (b) 
� �
� �

� �
� �

3 3 3 3
1 1

2 2 3 3 2 3 3
0 0 0 1 0 0 1

1
4 4 4q Q

r r r rq Q
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 (c) 2 2 2
0 0 04 4 4q Q

q Q q Q
E E E

r r rSH SH SH
�

 �  �   

 
31. (a) Create a gaussian surface that just encloses the inner surface of the spherical shell.  Since the  

electric field inside a conductor must be zero, Gauss’s law requires that the enclosed charge be 
zero.  The enclosed charge is the sum of the charge at the center and charge on the inner surface 
of the conductor. 

  enc inner 0Q q Q �   

  Therefore inner .Q q �  
(b) The total charge on the conductor is the sum of the charges on the inner and outer surfaces. 

outer inner outer inner    Q Q Q Q Q Q Q q � o  �  �  

(c) A gaussian surface of radius 1r r�  only encloses the center charge, q.  The electric field will  
therefore be the field of the single charge. 

  1 2
0

( )
4

q
E r r

rSH
�   

(d) A gaussian surface of radius 1 0r r r� �  is inside the conductor so 0 .E   
(e) A gaussian surface of radius 0r r!  encloses the total charge q Q� .  The electric field will then  

be the field from the sum of the two charges. 

  0 2
0

( )
4
q Q

E r r
rSH

�
!   

 
32. (a) For points inside the shell, the field will be due to the point charge only. 

   � �0 2
04

q
E r r

rSH
�   

 (b) For points outside the shell, the field will be that of a point charge, equal to the total charge. 
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q Q
E r r

rSH
�

!   

 (c) If ,q Q  we have � �0 2
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Q
E r r

rSH
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2
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 (d) If ,q Q �  we have � �0 2
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Q
E r r

rSH
�

�   and � �0 0 .E r r!   
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33. We follow the development of Example 22-6.  Because of the 
symmetry, we expect the field to be directed radially outward (no 
fringing effects near the ends of the cylinder) and to depend only on 
the perpendicular distance, R, from the symmetry axis of the shell.  
Because of the cylindrical symmetry, the field will be the same at all 
points on a gaussian surface that is a cylinder whose axis coincides 
with the axis of the shell.  The gaussian surface is of radius r and 
length l.  E

G
is perpendicular to this surface at all points.  In order to apply Gauss’s law, we need a 

closed surface, so we include the flat ends of the cylinder.  Since E
G

is parallel to the flat ends, there 
is no flux through the ends.  There is only flux through the curved wall of the gaussian cylinder. 

  � � encl encl encl

0 0 0

2
2

    Q A A
d E R E

R

V V
S

H H SH
    o³ E A l

l

GG
<v  

 (a) For 0,R R!  the enclosed surface area of the shell is encl 02 .A RS l  

   encl 0 0

0 0 0

2
, radially outward

2 2
A R R

E
R R R

V V S V
SH SH H

   
l

l l
 

 (b) For 0,R R�  the enclosed surface area of the shell is encl 0,A   and so 0 .E   
(c) The field for 0R R! due to the shell is the same as the field due to the long line of charge, if we 

substitute 02 .RO S V  

 
34. The geometry of this problem is similar to Problem 33, and so 

we use the same development, following Example 22-6.  See 
the solution of Problem 33 for details. 
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 (a) For 0,R R!  the enclosed volume of the shell is  
2

encl 0 .V RS l  

   
2

E encl E 0

0 0

, radially outward
2 2

V R
E

R R

U U
SH H

  
l

 

 (b) For 0,R R�  the enclosed volume of the shell is 2
encl .V RS l  

   E encl E

0 0

, radially outward
2 2

V R
E

R

U U
SH H

  
l

 

 
35. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 
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 (a) For 10 ,R R� � no charge is enclosed, and so encl
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 (b) For 21 ,R R R� � charge Q�  is enclosed, and so 
0

, radially outward .
2

Q
E

RSH
 

l
 

 (c) For 2 ,R R! both charges of Q�  and Q�  are enclosed, and so encl

0

0
2

.Q
E

RSH
  

l
  

 (d) The force on an electron between the cylinders points in the direction opposite to the electric  
field, and so the force is inward.  The electric force produces the centripetal acceleration for the 
electron to move in the circular orbit. 

2
21

centrip 2
0 0

    
2 4

eQ v eQ
F eE m K mv

R RSH SH
   o   

l l
 

  Note that this is independent of the actual value of the radius, as long as 21 .R R R� �  
 
36. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 
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(a) At a distance of 3.0cm,R  no charge is enclosed, and so encl

0

0
2

.Q
E

RSH
  

l
 

(b) At a distance of 7.0cm,R  the charge on the inner cylinder is enclosed. 
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6
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 The negative sign indicates that the field points radially inward. 
(c) At a distance of 12.0cm,R  the charge on both cylinders is enclosed. 
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 The field points radially outward. 
 
37. (a) The final speed can be calculated from the work-energy theorem, where the work is the integral  

of the force on the electron between the two shells. 
   2 21 1

02 2W F dr mv mv  �³
G G<  

Setting the force equal to the electric field times the charge on the electron, and inserting the 
electric field from Problem 36 gives the work done on the electron. 
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  Solve for the velocity from the work-energy theorem. 
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 (b) The electric force on the proton provides its centripetal acceleration.   

    
2

02c

qQmv
F qE

R RSH
   

l
  

   The velocity can be solved for from the centripetal acceleration. 
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Note that as long as the proton is between the two cylinders, the velocity is independent of the 
radius. 

 
38. The geometry of this problem is similar to Problem 33, and 

so we use the same development, following Example 22-6.  
See the solution of Problem 33 for details. 
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 (a) For 10 ,R R� � the enclosed charge is the volume of  
charge enclosed, times the charge density. 
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 (b) For 1 2 ,R R R� �  the enclosed charge is all of the charge on the inner cylinder. 

   
2 2

encl E 1 E 1

0 0 02 2 2
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 (c) For 2 3,R R R� �  the enclosed charge is all of the charge on the inner cylinder, and the part of  
the charge on the shell that is enclosed by the gaussian cylinder. 
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 (d) For 3,R R!  the enclosed charge is all of the charge on both the inner cylinder and the shell. 
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 (e) See the graph.  The spreadsheet used for  
this problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.38e.” 
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39. Due to the spherical symmetry of the geometry, we have the following to find the electric field at any  
radius r.  The field will point either radially out or radially in. 
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 (a) For 00 ,r r� �  the enclosed charge is due to the part of the charged sphere that has a radius  
smaller than r. 
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 (b) For 0 1,r r r� �  the enclosed charge is due to the entire charged sphere of radius 0.r  
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 (c) For 1 2 ,r r r� �  r is in the interior of the conducting spherical shell, and so 0 .E    This implies  

that encl 0,Q   and so there must be an induced charge of magnitude 34
E 03 rU S�  on the inner 

surface of the conducting shell, at 1.r  
 (d) For 2 ,r r!  the enclosed charge is the total charge of both the sphere and the shell. 
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40. The conducting outer tube is uncharged, and the electric field is 0 everywhere within the conducting 

material.  Because there will be no electric field inside the conducting material of the outer cylinder 
tube, the charge on the inner nonconducting cylinder will induce an oppositely signed, equal 
magnitude charge on the inner surface of the conducting tube.  This charge will NOT be uniformly 
distributed, because the inner cylinder is not in the center of the tube.  Since the conducting tube has 
no net charge, there will be an induced charge on the OUTER surface of the conducting tube, equal 
in magnitude to the charge on the inner cylinder, and of the same sign.  This charge will be 
uniformly distributed.  Since there is no electric field in the conducting material of the tube, there is 
no way for the charges in the region interior to the tube to influence the charge distribution on the 
outer surface.  Thus the field outside the tube is due to a cylindrically symmetric distribution of 
charge.  Application of Gauss’s law as in Example 22-6, for a Gaussian cylinder with a radius larger 

than the conducting tube, and a length l leads to � � encl

0

2 .
Q

E RS
H

 l   The enclosed charge is the 

amount of charge on the inner cylinder. 
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2 encl E 1
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41. We treat the source charge as a disk of positive charge of radius concentric with a disk of negative 

charge of radius 0.R   In order for the net charge of the inner space to be 0, the charge per unit area of 
the source disks must both have the same magnitude but opposite sign.  The field due to the annulus 
is then the sum of the fields due to both the positive and negative rings. 
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(a) At a distance of 00.25R  from the center of the ring, we can approximate both of the disks as  
infinite planes, each producing a uniform field.  Since those two uniform fields will be of the 
same magnitude and opposite sign, the net field is 0. 

(b) At a distance of 075R  from the center of the ring, it appears to be approximately a point charge, 

and so the field will approximate that of a point charge, 
� �2

0 0

1
4 75

Q
E

RSH
  

 
42. The conducting sphere is uncharged, and the electric field is 0 everywhere within its interior, except 

for in the cavities.  When charge 1Q  is placed in the first cavity, a charge 1Q�  will be drawn from the 
conducting material to the inner surface of the cavity, and the electric field will remain 0 in the 
conductor.  That charge 1Q�  will NOT be distributed symmetrically on the cavity surface.  Since the 
conductor is neutral, a compensating charge 1Q will appear on the outer surface of the conductor 
(charge can only be on the surfaces of conductors in electrostatics).  Likewise, when charge 2Q  is 
placed in the second cavity, a charge 2Q�  will be drawn from the conducting material, and a 
compensating charge 2Q  will appear on the outer surface.  Since there is no electric field in the 
conducting material, there is no way for the charges in the cavities to influence the charge 
distribution on the outer surface.  So the distribution of charge on the outer surface is uniform, just as 
it would be if there were no inner charges, and instead a charge 1 2Q Q�  were simply placed on the 
conductor.  Thus the field outside the conductor is due to a spherically symmetric distribution of 

1 2Q Q� .  Application of Gauss’s law leads to 1 2
2

0

1
4

.Q Q
E

rSH
�

   If 1 2 0,Q Q� !  the field will point 

radially outward.  If  1 2 0,Q Q� �  the field will point radially inward. 
 
43. (a) Choose a cylindrical gaussian surface with the flat ends parallel to and equidistant from the  

slab.   By symmetry the electric field must point perpendicularly away from the slab, resulting 
in no flux passing through the curved part of the gaussian cylinder.  By symmetry the flux 
through each end of the cylinder must be equal with the electric field constant across the 
surface.     2E dA EA�  ³

GG
v  

The charge enclosed by the surface is the charge density of the slab multiplied by the volume of 
the slab enclosed by the surface.   

   � �enc Eq AdU  
  Gauss’s law can then be solved for the electric field. 

0 0

2     
2

E EAd d
E dA EA E

U U
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�   o  ³
GG

v  

Note that this electric field is independent of the distance from the slab. 
(b) When the coordinate system of this problem is changed to axes parallel � �ẑ  and perpendicular  

� �r̂  to the slab, it can easily be seen that the particle will hit the slab if the initial perpendicular 
velocity is sufficient for the particle to reach the slab before the acceleration decreases its 
velocity to zero.  In the new coordinate system the axes are rotated by 45q.      

 0 0
0 0 0ˆ ˆˆ ˆcos 45 sin 45

2 2
y y

r y y �  �q qr z r zG  
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   0 0
0 0 0ˆ ˆˆ ˆsin 45 cos 45

2 2
v v

v v v � q � q  � �r z r zG  

ˆ/a qE m rG  
The perpendicular components are then inserted into Eq. 2-12c, with the final velocity equal to 
zero.  
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Solving for the velocity gives the minimum speed that the particle can have to reach the slab. 
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44. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 
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 (a) For the region 10 ,r r� � the enclosed charge is 0. 
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(b) For the region 01 ,r r r� � the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 1
0 .

r

r
U U   We must 

integrate to find the total charge.  We follow the procedure given in Example 22-5.  We divide 
the sphere up into concentric thin shells of thickness dr, as shown in Fig. 22-14.  We then 
integrate to find the charge. 
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 (c) For the region 0,r r!  the enclosed charge is the total charge, found by integration in a similar  
fashion to part (b). 
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 (d) See the attached graph.  We  
have chosen 1

1 02 .r r   Let 

� � � �2 2
0 1 0 1

0 0 2
0 0

.
2

r r r
E E r r

r

U

H

�
    

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.44d.” 

 
 
 
45. (a) The force felt by one plate will be the charge on that plate multiplied by the electric field caused  

by the other plate.  The field due to one plate is found in Example 22-7.  Let the positive plate 
be on the left, and the negative plate on the right.  We find the force on the negative plate due to 
the positive plate. 
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(b) Since the field due to either plate is constant, the force on the other plate is constant, and then  
the work is just the force times the distance.  Since the plates are oppositely charged, they will 
attract, and so a force equal to and opposite the force above will be required to separate them.  
The force will be in the same direction as the displacement of the plates. 

  � � � � � �312.71N cos0 5.0 10 m 0.064 JW � '  q u  F x
G G<  

 
46. Because the slab is very large, and we are considering only distances from the slab much less than its 

height or breadth, the symmetry of the slab results in the field being perpendicular to the slab, with a 
constant magnitude for a constant distance from the center.  We assume that E 0U !  and so the 
electric field points away from the center of the slab. 
(a) To determine the field inside the slab, choose a cylindrical  

gaussian surface, of length 2x d�  and cross-sectional area A.  
Place it so that it is centered in the slab.  There will be no flux 
through the curved wall of the cylinder.  The electric field is 
parallel to the surface area vector on both ends, and is the 
same magnitude on both ends.  Apply Gauss’s law to find the 
electric field at a distance 1

2x d�  from the center of the slab.  
See the first diagram. 
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(b) Use a similar arrangement to  
determine the field outside the slab.  
Now let 2 .x d!   See the second 
diagram. 
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   Notice that electric field is continuous at the boundary of the slab. 
 
47. (a) In Problem 46, it is shown that the field outside a flat slab of nonconducting material with a  

uniform charge density is given by 
02
.d

E
U
H

   If the charge density is positive, the field points 

away from the slab, and if the charge density is negative, the field points towards the slab.  So 
for this problem’s configuration, the field outside of both half-slabs is the vector sum of the 
fields from each half-slab.  Since those fields are equal in magnitude and opposite in direction, 
the field outside the slab is 0. 

(b) To find the field in the positively charged half-slab, we use a  
cylindrical gaussian surface of cross sectional area A.  Place it so that 
its left end is in the positively charged half-slab, a distance x > 0 from 
the center of the slab.  Its right end is external to the slab.  Due to the 
symmetry of the configuration, there will be no flux through the 
curved wall of the cylinder.  The electric field is parallel to the surface 
area vector on the left end, and is 0 on the right end.  We assume that 
the electric field is pointing to the left.  Apply Gauss’s law to find the 
electric field a distance 0 x d� �  from the center of the slab.  See the diagram. 
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  Since the field is pointing to the left, we can express this as � �0
0

0

ˆ .x

d x
E

U
H!

�
 � i  

 (c) To find the field in the negatively charged half-slab, we use a cylindrical gaussian surface of  
cross sectional area A.  Place it so that its right end is in the negatively 
charged half-slab, a distance x < 0 from the center of the slab.  Its left 
end is external to the slab.  Due to the symmetry of the configuration, 
there will be no flux through the curved wall of the cylinder.  The 
electric field is parallel to the surface area vector on the left end, and 
is 0 on the right end.  We assume that the electric field is pointing to 
the right.  Apply Gauss’s law to find the electric field at a distance 

0d x� � �  from the center of the slab.  See the diagram. 
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   � � � �0 0
0

0 0

    x

d x A d x
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  Since the field is pointing to the left, we can express this as � �0
0

0

ˆ .x

d x
E

U
H�

�
 � i  

Notice that the field is continuous at all boundaries.  At the left edge � � ,x d � 0 outside .xE E�   At 
the center � �0 ,x  0 >0.xE E�   And at the right edge � � ,x d 0 outside .xE E!   

  
48. We follow the development of Example 22-6.  Because of the 

symmetry, we expect the field to be directed radially outward 
(no fringing effects near the ends of the cylinder) and to depend 
only on the perpendicular distance, R, from the symmetry axis 
of the cylinder.  Because of the cylindrical symmetry, the field 
will be the same at all points on a gaussian surface that is a 
cylinder whose axis coincides with the axis of the cylinder.  
The gaussian surface is of radius r and length l.  E

G
is perpendicular to this surface at all points.  In 

order to apply Gauss’s law, we need a closed surface, so we include the flat ends of the cylinder.  
Since E

G
is parallel to the flat ends, there is no flux through the ends.  There is only flux through the 

curved wall of the gaussian cylinder. 
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 To find the field inside the cylinder, we must find the charge enclosed in the gaussian cylinder.  We 
divide the gaussian cylinder up into coaxial thin cylindrical shells of length l and thickness dR.  That 
shell has volume 2 .dV R dRS l   The total charge in the gaussian cylinder is found by integration. 
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49. The symmetry of the charge distribution allows the electric field inside the 

sphere to be calculated using Gauss’s law with a concentric gaussian 
sphere of radius 0.r rd   The enclosed charge will be found by integrating 
the charge density over the enclosed volume. 
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The enclosed charge can be written in terms of the total charge by setting 
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0r r   and solving for the charge density in terms of the total charge. 
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 The electric field is then found from Gauss’s law    
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 The electric field points radially outward since the charge distribution is positive. 
 
50. By Gauss’s law, the total flux through the cylinder is 0.Q H   We find 

the flux through the ends of the cylinder, and then subtract that from 
the total flux to find the flux through the curved sides.  The electric 
field is that of a point charge.  On the ends of the cylinder, that field 
will vary in both magnitude and direction.  Thus we must do a 
detailed integration to find the flux through the ends of the cylinder.  
Divide the ends into a series of concentric circular rings, of radius R 
and thickness dR.  Each ring will have an area of 2 .RdRS   The angle 
between E

G
and dA

G
is ,T where 0tan .R RT   See the diagram of the 

left half of the cylinder. 
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The flux integral has three variables: r, R, and .T   We express r and T  in terms of R in order to 
integrate.  The anti-derivative is found in Appendix B-4. 
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51. The gravitational field a distance r from a point mass M is given by Eq. 6-8, 2
ˆ,

GM

r
 �g rG  where r̂  

is a unit vector pointing radially outward from mass M.  Compare this to the electric field of a point 

charge, 
2

0

1 ˆ.
4

Q

rSH
 E r

G
  To change the electric field to the gravitational field, we would make these 

changes: 0  ;  4 .Q GMH So o �E g
G G   Make these substitutions in Gauss’s law. 
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52. (a) We use Gauss’s law for a spherically symmetric charge distribution, and assume that all the  
charge is on the surface of the Earth.  Note that the field is pointing radially inward, and so the 
dot product introduces a negative sign. 
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(b) Find the surface density of electrons.  Let n be the total number of electrons. 
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53. The electric field is strictly in the y direction.  So, referencing the diagram, there is no  

flux through the top, bottom, front, or back faces of the cube.  Only the “left” and 
“right” faces will have flux through them.  And since the flux is only dependent  
on the y coordinate, the flux through each of those two faces is particularly  
simple.  Calculate the flux and use Gauss’s law to find the enclosed charge. 
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54. (a) Find the value of b by integrating the charge density over the entire sphere.  Follow the  

development given in Example 22-5. 
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 (b) To find the electric field inside the sphere, we apply Gauss’s law to an imaginary sphere of  
radius r, calculating the charge enclosed by that sphere.  The spherical symmetry allows us to 
evaluate the flux integral simply. 
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 (c) As discussed in Example 22-4, the field outside a spherically symmetric distribution of charge  
is the same as that for a point charge of the same magnitude located at the center of the sphere. 
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55. The flux through a gaussian surface depends only on the charge enclosed by the surface.  For both of  
these spheres the two point charges are enclosed within the sphere.  Therefore the flux is the same 
for both spheres. 
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56. (a) The flux through any closed surface containing the total charge must be the same, so the flux  

through the larger sphere is the same as the flux through the smaller sphere, 2235 N m /C .� <  

(b) Use Gauss’s law to determine the enclosed charge. 
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57. (a) There is no charge enclosed within the sphere, and so no flux lines can  

originate or terminate inside the sphere.  All field lines enter and leave 
the sphere.  Thus the net flux is 0. 

 (b) The maximum electric field will be at the point on the sphere closest  
to Q, which is the top of the sphere.  The minimum electric field will be 
at the point on the sphere farthest from Q, which is the bottom of the 
sphere. 
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(c) E
G

 is not perpendicular at all points.  It is only perpendicular at the two points already  
discussed: the point on the sphere closest to the point charge, and the point on the sphere 
farthest from the point charge. 

 (d) The electric field is not perpendicular or constant over the surface of the sphere.  Therefore  
Gauss’s law is not useful for obtaining E at the surface of the sphere because a gaussian surface 
cannot be chosen that simplifies the flux integral. 

 
58. The force on a sheet is the charge on the sheet times the average 

electric field due to the other sheets:  But the fields due to the 
“other” sheets is uniform, so the field is the same over the entire 
sheet.  The force per unit area is then the charge per unit area, times 
the field due to the other sheets. 

on on other on other
sheet sheet sheets sheet sheets

other on other
on on sheets sheet sheets
sheet sheet

  F q E q E

F q
E E

A A
V

  o

  § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
 
 

E
G

E
G E

G

1
02 r

0r

Q

� �V , �

� �IIIV �

� �IIV �
IIIE
G

IIE
G

IE
G

IIE
G



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

60 

 The uniform fields from each of the three sheets are indicated on the diagram.  Take the positive 
direction as upwards.  We take the direction from the diagram, and so use the absolute value of each 
charge density.  The electric field magnitude due to each sheet is given by 02 .E V H  
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59. (a) The net charge inside a sphere of radius 0a will be made of two parts – the positive point charge  

at the center of the sphere, and some fraction of the total negative charge, since the negative 
charge is distributed over all space, as described by the charge density.  To evaluate the portion 
of the negative charge inside the sphere, we must determine the coefficient A.  We do that by 
integrating the charge density over all space, in the manner of Example 22-5.  Use an integral 
from Appendix B-5. 
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Now we find the negative charge inside the sphere of radius 0 ,a  using an integral from 
Appendix B-4.  We are indicating the elementary charge by � � ,e  so as to not confuse it with the 
base of the natural logarithms. 
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(b) The field at a distance 0r a  is that of a point charge of magnitude netQ at the origin, because of  
the spherical symmetry and Gauss’s law. 
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60. The field due to the plane is plane
0

,
2

E
V
H

 as discussed in Example 22-7.  Because the slab is very 

large, and we assume that we are considering only distances from the slab much less than its height 
or breadth, the symmetry of the slab results in its field being perpendicular to the slab, with a 
constant magnitude for a constant distance from its center.  We also assume that E 0U !  and so the 
electric field of the slab points away from the center of the slab. 

 (a) To determine the field to the left of the plane, we  
choose a cylindrical gaussian surface, of  
length x d! and cross-sectional area A.  Place it so 
that the plane is centered inside the cylinder.    See 
the diagram.  There will be no flux through the 
curved wall of the cylinder.  From the symmetry, 
the electric field is parallel to the surface area 
vector on both ends.   We already know that the 
field due to the plane is the same on both ends, and by the symmetry of the problem, the field 
due to the slab must also be the same on both ends.  Thus the total field is the same magnitude 
on both ends. 
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(b) As argued above, the field is symmetric on the outside of the charged matter. 

E
right
of plane 02

d
E

V U
H
�

  

(c) To determine the field inside the slab, we choose a cylindrical  
gaussian surface of cross-sectional area A with one face to the  
left of the plane, and the other face inside the slab, a distance x  
from the plane.  Due to symmetry, the field again is parallel 
to the surface area vector on both ends, has a constant  
value on each end, and no flux pierces the curved walls. 
 Apply Gauss’s law. 
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Notice that the field is continuous from “inside” to “outside” at the right edge of the slab, but 
not at the left edge of the slab.  That discontinuity is due to the surface charge density. 
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61. Consider this sphere as a combination of two spheres.  Sphere 1 is a solid sphere of radius 0r  and  
charge density EU centered at A and sphere 2 is a second sphere of radius 0 / 2r  and density EU�  
centered at C. 
(a) The electric field at A will have zero contribution from sphere 1 due to its symmetry about point  

A.   The electric field is then calculated by creating a gaussian surface centered at point C with 
radius 0 / 2.r  

� � � � � �34 1
2 3 2E 0enc E 01

02
0 0 0

    4     
6

rq r
d E r E

U S U
S

H H H
�

�  o �  o  �³ E A
GG

v  

Since the electric field points into the gaussian surface (negative) the electric field at point A 
points to the right. 

(b) At point B the electric field will be the sum of the electric fields from each sphere.  The electric  
field from sphere 1 is calculated using a gaussian surface of radius 0r  centered at A. 
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At point B the field from sphere 1 points toward the left.  The electric field from sphere 2 is 
calculated using a gaussian surface centered at C of radius 03 / 2.r  
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At point B, the electric field from sphere 2 points toward the right.  The net electric field is the 
sum of these two fields.  The net field points to the left. 
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62. We assume the charge is uniformly distributed, and so the field of the pea is that of a point charge. 

   
� �

� � � � � �

2
0

22 6 12 2 2 9
0

1
  

4

4 3 10 N C 4 8.85 10 C N m 0.00375m 5 10 C

Q
E r R

R

Q E R

SH

SH S � �

  o

  u u  u<

 

 
63. (a) In an electrostatic situation, there is no electric field inside a  

conductor.  Thus 0E   inside the conductor. 
(b) The positive sheet produces an electric field, external to  

itself, directed away from the plate with a magnitude as 

given in Example 22-7, of 1
1

0

.
2

E
V
H

   The negative sheet 

produces an electric field, external to itself, directed towards 

the plate with a magnitude of 2
2

0

.
2

E
V
H

   Between the left 

and middle sheets, those two fields are parallel and so add to each other. 
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(c) The same field is between the middle and right sheets.  See the diagram. 

  5
middle
right

5.65 10 N C , to the rightE  u  

(d) To find the charge density on the surface of the left side of the middle sheet, choose a gaussian  
cylinder with ends of area A.  Let one end be inside the conducting sheet, where there is no 
electric field, and the other end be in the area between the left and middle sheets.  Apply 
Gauss’s law in the manner of Example 22-16.  Note that there is no flux through the curved 
sides of the cylinder, and there is no flux through the right end since it is in conducting material.  
Also note that the field through the left end is in the opposite direction as the area vector of the 
left end. 
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(e) Because the middle conducting sheet has no net charge, the charge density on the right side 
must be the opposite of the charge density on the left side. 

  6 2
right left 5.00 10 C mV V � �  u  

Alternatively, we could have applied Gauss’s law on the right side in the same manner that we 
did on the left side.  The same answer would result. 

 
64. Because the electric field has only x and y components, there will be no flux 

through the top or bottom surfaces.  For the other faces, we choose a 
horizontal strip of height dz and width a for a differential element and 
integrate to find the flux.  The total flux is used to determine the enclosed 
charge. 
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65. (a) Because the shell is a conductor, there is no electric field in the conducting material, and all  
charge must reside on its surfaces.  All of the field lines that originate from the point charge at 
the center must terminate on the inner surface of the shell.  Therefore the inner surface must 
have an equal but opposite charge to the point charge at the center.  Since the conductor has the 
same magnitude of charge as the point charge at the center, all of the charge on the conductor is 
on the inner surface of the shell, in a spherically symmetric distribution. 

 (b) By Gauss’s law and the spherical symmetry of the problem, the electric field can be calculated  

by 2
0
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4

Q
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rSH
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  And since there is no electric field in the shell, we could express the second answer as  
0.10 m:  0 .r E!   

 
66. (a) At a strip such as is marked in the textbook diagram, dA

G
is perpendicular to the surface, and  E

G
  

is inclined at an angle  T  relative to dA
G
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(b) Choose a closed gaussian surface consisting of the hemisphere and the circle of radius R at the  
base of the hemisphere.  There is no charge inside that closed gaussian surface, and so the total 
flux through the two surfaces (hemisphere and base) must be zero.  The field lines are all 
perpendicular to the circle, and all of the same magnitude, and so that flux is very easy to 
calculate. 
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67. The flux is the sum of six integrals, each of the form .d³³E A

GG
<   Because 

the electric field has only x and y components, there will be no flux 
through the top or bottom surfaces.  For the other faces, we choose a 
vertical strip of height a and width dy (for the front and back faces) or dx 
(for the left and right faces).  See the diagram for an illustration of a strip 
on the front face.  The total flux is then calculated, and used to determine 
the enclosed charge. 
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 This integral does not have an analytic anti-derivative, and so must be integrated numerically.  We 

approximate the integral by a sum: 
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into n elements, and so 0a
y

n

�
'   and .iy i y '   We initially evaluate the sum for n = 10.  Then we 

evaluate it for n = 20.  If the two sums differ by no more than 2%, we take that as the value of the 
integral.  If they differ by more than 2%, we choose a larger n, compute the sum, and compare that to 
the result for n = 20.  We continue until a difference of 2% or less is reached.  This integral, for n = 
100 and a = 1.0 m, is 0.1335 m.  So we have this intermediate result. 
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 Now do the integral over the back face. 
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We again get an integral that cannot be evaluated analytically.  A similar process to that used for the 

front face is applied again, and so we make this approximation: 
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 The numeric integration gives a value of 0.7405 m. 
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 Now consider the right side. 
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 Notice that the same integral needs to be evaluated as for the front side.  All that has changed is the 
variable name.  Thus we have the following. 
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Finally, do the left side, following the same process.  The same integral arises as for the back face. 
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Sum to find the total flux, and multiply by 0H to find the enclosed charge. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.67.” 
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CHAPTER 23:  Electric Potential 
 
Responses to Questions 
 
1.  Not necessarily. If two points are at the same potential, then no net work is done in moving a charge 

from one point to the other, but work (both positive and negative) could be done at different parts of 
the path.  No. It is possible that positive work was done over one part of the path, and negative work 
done over another part of the path, so that these two contributions to the net work sum to zero. In this 
case, a non-zero force would have to be exerted over both parts of the path.  

 
2.  The negative charge will move toward a region of higher potential and the positive charge will move 

toward a region of lower potential. In both cases, the potential energy of the charge will decrease. 
 
3. (a) The electric potential is the electric potential energy per unit charge. The electric potential is a  

scalar. The electric field is the electric force per unit charge, and is a vector. 
(b) Electric potential is the electric potential energy per unit charge. 

 
4.  Assuming the electron starts from rest in both cases, the final speed will be twice as great. If the 

electron is accelerated through a potential difference that is four times as great, then its increase in 
kinetic energy will also be greater by a factor of four. Kinetic energy is proportional to the square of 
the speed, so the final speed will be greater by a factor of two. 

 
5.  Yes. If the charge on the particle is negative and it moves from a region of low electric potential to a 

region of high electric potential, its electric potential energy will decrease. 
 
6.  No. Electric potential is the potential energy per unit charge at a point in space and electric field is 

the electric force per unit charge at a point in space. If one of these quantities is zero, the other is not 
necessarily zero. For example, the point exactly between two charges with equal magnitudes and 
opposite signs will have a zero electric potential because the contributions from the two charges will 
be equal in magnitude and opposite in sign. (Net electric potential is a scalar sum.) This point will 
not have a zero electric field, however, because the electric field contributions will be in the same 
direction (towards the negative and away from the positive) and so will add. (Net electric field is a 
vector sum.) As another example, consider the point exactly between two equal positive point 
charges. The electric potential will be positive since it is the sum of two positive numbers, but the 
electric field will be zero since the field contributions from the two charges will be equal in 
magnitude but opposite in direction.  

 
7. (a) V at other points would be lower by 10 V. E would be unaffected, since E is the negative  

gradient of V, and a change in V by a constant value will not change the value of the gradient. 
(b) If V represents an absolute potential, then yes, the fact that the Earth carries a net charge would  

affect the value of V at the surface. If V represents a potential difference, then no, the net charge 
on the Earth would not affect the choice of V. 

 
8.  No. An equipotential line is a line connecting points of equal electric potential. If two equipotential 

lines crossed, it would indicate that their intersection point has two different values of electric 
potential simultaneously, which is impossible. As an analogy, imagine contour lines on a 
topographic map. They also never cross because one point on the surface of the Earth cannot have 
two different values for elevation above sea level. 
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9.  The equipotential lines (in black) are perpendicular to the electric field lines (in red). 
 
 
 
 
 
 
 
 
 
10.  The electric field is zero in a region of space where the electric potential is constant. The electric 

field is the gradient of the potential; if the potential is constant, the gradient is zero.  
 
11. The Earth’s gravitational equipotential lines are roughly circular, so the orbit of the satellite would 

have to be roughly circular. 
 
12.  The potential at point P would be unchanged. Each bit of positive charge will contribute an amount 

to the potential based on its charge and its distance from point P. Moving charges to different 
locations on the ring does not change their distance from P, and hence does not change their 
contributions to the potential at P. 

 

The value of the electric field will change. The electric field is the vector sum of all the contributions 
to the field from the individual charges. When the charge Q is distributed uniformly about the ring, 
the y-components of the field contributions cancel, leaving a net field in the x-direction. When the 
charge is not distributed uniformly, the y-components will not cancel, and the net field will have 
both x- and y-components, and will be larger than for the case of the uniform charge distribution. 
There is no discrepancy here, because electric potential is a scalar and electric field is a vector. 

 
13. The charge density and the electric field strength will be greatest at the pointed ends of the football 

because the surface there has a smaller radius of curvature than the middle.  
 
14.  No. You cannot calculate electric potential knowing only electric field at a point and you cannot 

calculate electric field knowing only electric potential at a point. As an example, consider the 
uniform field between two charged, conducting plates. If the potential difference between the plates 
is known, then the distance between the plates must also be known in order to calculate the field. If 
the field between the plates is known, then the distance to a point of interest between the plates must 
also be known in order to calculate the potential there. In general, to find V, you must know E and be 
able to integrate it. To find E, you must know V and be able to take its derivative. Thus you need E 
or V in the region around the point, not just at the point, in order to be able to find the other variable. 

 
15. (a) Once the two spheres are placed in contact with each other, they effectively become one larger  

conductor. They will have the same potential because the potential everywhere on a conducting 
surface is constant. 

(b) Because the spheres are identical in size, an amount of charge Q/2 will flow from the initially  
charged sphere to the initially neutral sphere so that they will have equal charges.  

(c) Even if the spheres do not have the same radius, they will still be at the same potential once they  
are brought into contact because they still create one larger conductor. However, the amount of 
charge that flows will not be exactly equal to half the total charge. The larger sphere will end up 
with the larger charge. 
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16. If the electric field points due north, the change in the potential will be (a) greatest in the direction 
opposite the field, south; (b) least in the direction of the field, north; and (c) zero in a direction 
perpendicular to the field, east and west. 

 
17. Yes. In regions of space where the equipotential lines are closely spaced, the electric field is stronger 

than in regions of space where the equipotential lines are farther apart. 
 
18.  If the electric field in a region of space is uniform, then you can infer that the electric potential is 

increasing or decreasing uniformly in that region. For example, if the electric field is 10 V/m in a 
region of space then you can infer that the potential difference between two points 1 meter apart 
(measured parallel to the direction of the field) is 10 V. If the electric potential in a region of space is 
uniform, then you can infer that the electric field there is zero.  

 
19. The electric potential energy of two unlike charges is negative. The electric potential energy of two 

like charges is positive. In the case of unlike charges, work must be done to separate the charges. In 
the case of like charges, work must be done to move the charges together. 

 
 
Solutions to Problems 
 
1. Energy is conserved, so the change in potential energy is the opposite of the change in kinetic 

energy.  The change in potential energy is related to the change in potential. 

  � � � �
� �

231 52
initial final

19

  

9.11 10 kg 5.0 10 m s
0.71V

2 2 1.60 10 C

U q V K

K K K mv
V

q q q

�

�

'  '  �' o

u u�' �
'      �

� u

 

 The final potential should be lower than the initial potential in order to stop the electron.    
 
2. The work done by the electric field can be found from Eq. 23-2b. 

  � �> @19 17ba
ba ba ba    1.60 10 C 55V 185V 3.84 10 J

W
V W qV

q
� � � o  �  � u � �  u  

 
3. The kinetic energy gained by the electron is the work done by the electric force.  Use Eq. 23-2b to 

calculate the potential difference. 

  � �
16

ba
ba 19

5.25 10 J
3280V

1.60 10 C
W

V
q

�

�

u
 �  �  

� u
 

The electron moves from low potential to high potential, so  plate B  is at the higher potential. 
 
4. By the work energy theorem, the total work done, by the external force and the electric field 

together, is the change in kinetic energy.  The work done by the electric field is given by Eq. 23-2b. 

  
� �

� �

external electric final initial external b a final

4 4
external final

b a 6

KE KE     KE   

KE 7.00 10 J 2.10 10 J
53.8V

9.10 10 C

W W W q V V

W
V V

q

� �

�

�  � o � �  o

� u � u
�    �

� u

 

 Since the potential difference is negative, we see that a bV V! . 
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5. As an estimate, the length of the bolt would be the voltage difference of the bolt divided by the 
breakdown electric field of air. 

8

6

1 10
33m 30m

3 10 V m
Vu

 |
u

 

 
6. The distance between the plates is found from Eq. 23-4b, using the magnitude of the electric field. 

2ba ba 45V
    3.5 10 m

1300V m
V V

E d
d E

� o    u  

�
7. The maximum charge will produce an electric field that causes breakdown in the air.  We use the 

same approach as in Examples 23-4 and 23-5. 

  

� � � �

surface 0 breakdown surface
0 0

22 6 6
0 0 breakdown 9 2 2

1
 and   

4

1
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8.99 10 N m C

Q
V r E V

r

Q r E

SH

SH �

  o

  u  u
u

§ ·
¨ ¸
© ¹<

 

 
8. We assume that the electric field is uniform, and so use Eq. 23-4b, using the magnitude of the 

electric field. 

  4ba
3

110V
2.8 10 V m

4.0 10 m
V

E
d �

   u
u

 

 
9. To find the limiting value, we assume that the E-field at the radius of the sphere is the minimum 

value that will produce breakdown in air.  We use the same approach as in Examples 23-4 and 23-5. 

  � � � �

surface
surface 0 breakdown 0 6

breakdown

surface 0 surface 0 9 2 2
0 0

8

35,000V
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    4 35,000V 0.0117 m
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4.6 10 C                                   

V
V r E r

E

Q
V Q V r
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SH
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u
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u

 u

§ ·
¨ ¸
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10. If we assume the electric field is uniform, then we can use Eq. 23-4b to estimate the magnitude of the 

electric field.   From Problem 22-24 we have an expression for the electric field due to a pair of 
oppositely charged planes.  We approximate the area of a shoe as 30 cm x 8 cm. 

  
� � � � � �

0 0

12 2 2 2 3
60

3

  

8.85 10 C / Nm 0.024m 5.0 10 V
1.1 10 C

1.0 10 m

V Q
E
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AV
Q

d

V
H H

H
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�

   o

u u
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11. Since the field is uniform, we may apply Eq. 23-4b.  Note that the electric field always points from 

high potential to low potential. 
 (a) BA 0 .V     The distance between the two points is exactly perpendicular to the field lines. 

 (b) � � � �CB C B 4.20 N C 7.00m 29.4 VV V V �  �  �  

 (c) CA C A C B B A CB BA 29.4 V 0 29.4 VV V V V V V V V V �  � � �  �  � �  �  



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

70 

12. From Example 22-7, the electric field produced by a large plate is uniform with magnitude 
0

.
2

E
V
H

   

The field points away from the plate, assuming that the charge is positive.  Apply Eq. 23-41. 

  � � � � � � � � � � � �0 0
0 0 00 0

ˆ ˆ0     
2 2 2

x x x x
V x V V x V d dx V x V

V V V
H H H

�  �  �  �  � o  �
§ ·
¨ ¸
© ¹

³ ³E i i
GG

< <l  

 

13. (a) The electric field at the surface of the Earth is the same as that of a point charge, 
2

0 0

.
4

Q
E

rSH
  

The electric potential at the surface, relative to ( ) 0V f   is given by Eq. 23-5.  Writing this in 
terms of the electric field and radius of the earth gives the electric potential. 

� � � �6
0

0 0

150 V m 6.38 10 m  = 0.96 GV
4

Q
V Er

rSH
   � u �  

(b) Part (a) demonstrated that the potential at the surface of the earth is 0.96 GV lower than the 
potential at infinity.  Therefore if the potential at the surface of the Earth is taken to be zero, the 
potential at infinity must be ( ) 0.96 GV .V f    If the charge of the ionosphere is included in 
the calculation, the electric field outside the ionosphere is basically zero.  The electric field 
between the earth and the ionosphere would remain the same.  The electric potential, which 
would be the integral of the electric field from infinity to the surface of the earth, would reduce 
to the integral of the electric field from the ionosphere to the earth.  This would result in a 
negative potential, but of a smaller magnitude. 

 
14. (a) The potential at the surface of a charged sphere is derived in Example 23-4. 

   
� � � �

� �

0 0 0 0
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12 2 2
8 20 0 0 0 0

2 2
0 0 0

8 2

    4   
4
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V Q rV
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 (b) The potential away from the surface of a charged sphere is also derived in Example 23-4. 

   � � � �
� �

0 0 0 0 0 0 0

0 0

0.16 m 680 V4
   4.352 m 4.4 m

4 4 25V
Q rV rV rV

V r
r r r V

SH
SH SH

   o    |  

 
15. (a) After the connection, the two spheres are at the same potential.  If they were at different  

potentials, then there would be a flow of charge in the wire until the potentials were equalized. 
(b) We assume the spheres are so far apart that the charge on one sphere does not influence the 

charge on the other sphere.  Another way to express this would be to say that the potential due 
to either of the spheres is zero at the location of the other sphere.  The charge splits between the 
spheres so that their potentials (due to the charge on them only) are equal.  The initial charge on 
sphere 1 is Q, and the final charge on sphere 1 is Q1. 

� �
1 1 1 1 1

1 2 1 2 1
0 1 0 2 0 1 0 2 1 2

  ;    ;          
4 4 4 4

Q Q Q Q Q Q r
V V V V Q Q

r r r r r rSH SH SH SH
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Charge transferred 
� � � �

1 2
1

1 2 1 2

r r
Q Q Q Q Q

r r r r
�  �  

� �
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16. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R
O

SH
   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

  � � � �
b b

a a

a
b a b a

0 0 0 b

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R
O O O

SH SH SH
�  �  �  � �  ³ ³E

GG
< l  

 
17. (a) The width of the end of a finger is about 1 cm, and so consider the fingertip to be a part of a  

sphere of diameter 1 cm.  We assume that the electric field at the radius of the sphere is the 
minimum value that will produce breakdown in air.  We use the same approach as in Examples 
23-4 and 23-5. 

   � � � �6
surface 0 breakdown 0.005m 3 10 V m 15,000VV r E  u   

  Since this is just an estimate, we might expect anywhere from 10,000 V to 20,000 V. 

 (b) 
2

0
surface

0 0 0 0

1 1 4
 

4 4
Q r
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  � � � �12 2 2
5 20

surface
0
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15,000V 2.7 10 C m
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V

r
H

V
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Since this is an estimate, we might say the charge density is on the order of 230 C m .P  
 
18. We assume the field is uniform, and so Eq. 23-4b applies. 

7
9

0.10 V
1 10 V m

10 10 m
V

E
d �

   u
u

 

 
19. (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  

point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest will give the potential at that radius. 

   � � � �0 02 2
0 0 0 0

  ;  
4 4 4 4

rrQ Q Q Q
E r r V r r dr

r r r rSH SH SH SHf f

t  t  �   ³  

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 

   � �
34

2 3
03 34

30 0 0 0

4     
4

Q r Qr
r E E r r

r r
S

S
H S SH

 o �   

Integrating the electric field from the surface to 0r r�  gives the electric potential inside the 
sphere. 

        � � � �
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 (c) To plot, we first calculate � �0 0
0 04

Q
V V r r

rSH
    and � �0 0 2

0 04
.Q

E E r r
rSH

     Then we plot  

0V V  and 0E E as functions of 0 .r r  
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For 0 :r r�  
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For 0 :r r!  � � � �
22
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2
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4 4
  ;  

4 4

Q Q
r rr r
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� �       

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.19c.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20. We assume the total charge is still Q, and let 2

E .krU    We evaluate the constant k by calculating 
the total charge, in the manner of Example 22-5. 

  � �
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2 2 54
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5
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r Q
Q dV kr r dr k r k

r
U S S

S
   o  ³ ³  

 (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  
point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest gives the potential at that radius. 

   � � � �0 02 2
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  ;  
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(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 
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   � �
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0 0 04 4
Q Qr

E r r
r rSH SH
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Integrating the electric field from the surface to 0r r�  gives the electric potential inside the 
sphere. 
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(c) To plot, we first calculate � �0 0
0 04

Q
V V r r

rSH
    and � �0 0 2
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     Then we plot  

0V V  and 0E E as functions of 0 .r r  
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For 0 :r r!  � � � �
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The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.20c.” 
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21. We first need to find the electric field.  Since the charge distribution is spherically symmetric, 
Gauss’s law tells us the electric field everywhere. 

  � �2
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 If 0,r r� calculate the charge enclosed in the manner of Example 22-5. 
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The total charge in the sphere is the above expression evaluated at 0.r r  
3 5 3
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Outside the sphere, we may treat it as a point charge, and so the potential at the surface of the sphere 
is given by Eq. 23-5, evaluated at the surface of the sphere. 
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The potential inside is found from Eq. 23-4a.  We need the field inside the sphere to use Eq. 23-4a.  
The field is radial, so we integrate along a radial line so that .d Edr E
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22. Because of the spherical symmetry of the problem, the electric field in each region is the same as that 

of a point charge equal to the net enclosed charge. 

(a) For 
3
2encl

2 2 2 2
0 0 0

1 1 3
:   

4 4 8
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!     

 For 21 :   0 ,r r r E�  � because the electric field is 0 inside of conducting material. 
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1
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 (b) For 2r r! , the potential is that of a point charge at the center of the sphere. 
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(c) For 21r r r�� , the potential is constant and equal to its value on the outer shell, because there is 
no electric field inside the conducting material. 
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(d) For 10 r r� � , we use Eq. 23-4a.  The field is radial, so we integrate along a radial line so that 
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 (e) To plot, we first calculate � �0 2
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    and � �0 2 2

0 2

3
8

.Q
E E r r

rSH
     Then we plot  

0V V  and 0E E as functions of 2 .r r  
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The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.22e.” 
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23. The field is found in Problem 22-33.  The field inside the cylinder is 0, and the field outside the 

cylinder is 0

0

.R
R

V
H

 

(a) Use Eq. 23-4a to find the potential.  Integrate along a radial line, so that .d EdR E
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< l  
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(b) The electric field inside the cylinder is 0, so the potential inside is constant and equal to the  
potential on the surface, 0 .V  

(c) No, we are not able to assume that 0V   at .R  f   0V z  because there would be charge at 
infinity for an infinite cylinder.  And from the formula derived in (a), if ,R  f .RV  �f  

 
24. Use Eq. 23-5 to find the charge. 
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25. (a) The electric potential is given by Eq. 23-5. 
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(b) The potential energy of the electron is the charge of the electron times the electric potential due 
to the proton. 

� � � �19 181.60 10 C 28.77 V 4.6 10 JU QV � �  � u  � u   

 
26. (a) Because of the inverse square nature of the electric  

field, any location where the field is zero must be 
closer to the weaker charge � �2q .  Also, in between the 
two charges, the fields due to the two charges are parallel to each other (both to the left) and 
cannot cancel.  Thus the only places where the field can be zero are closer to the weaker charge, 

  dx

1 0q !2 0q �
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but not between them.  In the diagram, this is the point to the left of 2.q   Take rightward as the 
positive direction.  

� �
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6
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(b) The potential due to the positive charge is positive  
everywhere, and the potential due to the negative 
charge is negative everywhere.  Since the negative 
charge is smaller in magnitude than the positive charge, 
any point where the potential is zero must be closer to the negative charge.  So consider 
locations between the charges (position 1x ) and to the left of the negative charge (position 2x ) 
as shown in the diagram. 
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So the two locations where the potential is zero are 1.9 cm from the negative charge towards the 
positive charge, and 7.1 cm from the negative charge away from the positive charge. 

 
27. The work required is the difference in the potential energy of the charges, calculated with the test 

charge at the two different locations.  The potential energy of a pair of charges is given in Eq. 23-10 

as 
0

1
4

qQ
U

rSH
 .  So to find the work, calculate the difference in potential energy with the test 

charge at the two locations.  Let Q represent the 25 CP  charge, let q represent the 0.18 CP  test 
charge, D represent the 6.0 cm distance, and let d represent the 1.0 cm distance. Since the potential 
energy of the two 25 CP charges doesn’t change, we don’t include it in the calculation. 
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An external force needs to do positive work to move the charge. 

  d
1x2x

1 0q !2 0q �
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28. (a) The potential due to a point charge is given by Eq. 23-5. 
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 (b) The magnitude of the electric field due to a point  
charge is given by Eq. 21-4a.  The direction of the 
electric field due to a negative charge is towards the 
charge, so the field at point a will point downward, and 
the field at point b will point to the right.  See the 
vector diagram. 
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29. We assume that all of the energy the proton gains in being accelerated by the 

voltage is changed to potential energy just as the proton’s outer edge reaches the 
outer radius of the silicon nucleus.   
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30. By energy conservation, all of the initial potential energy of the charges will change to kinetic energy 

when the charges are very far away from each other.  By momentum conservation, since the initial 
momentum is zero and the charges have identical masses, the charges will have equal speeds in 
opposite directions from each other as they move.  Thus each charge will have the same kinetic 
energy. 
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31. By energy conservation, all of the initial potential energy will change to kinetic energy of the 
electron when the electron is far away.  The other charge is fixed, and so has no kinetic energy.  
When the electron is far away, there is no potential energy. 
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32. Use Eq. 23-2b and Eq. 23-5. 
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33. (a) For every element dq as labeled in Figure  

23-14 on the top half of the ring, there 
will be a diametrically opposite element 
of charge –dq.  The potential due to those 
two infinitesimal elements will cancel 
each other, and so the potential due to the 
entire ring is 0. 

 (b) We follow Example 21-9 from the  
textbook.  But because the upper and 
lower halves of the ring are oppositely 
charged, the parallel components of the 
fields from diametrically opposite infinitesimal segments of the ring will cancel each other, and 
the perpendicular components add, in the negative y direction.  We know then that 0 .xE   
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Note that for ,x R�  this reduces to 
3

0

ˆ,
4

Q R
xSH
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which has the typical distance dependence 

for the field of a dipole, along the axis of the dipole. 
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34. The potential at the corner is the sum of the potentials due to each of the charges, using Eq. 23-5. 
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35. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR is � �2 .dq dA RdRV V S    Use Eq. 23-6b to find the potential of a continuous 
charge distribution. 
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36. All of the charge is the same distance from the center of the semicircle – the radius of the semicircle.  

Use Eq 23-6b to calculate the potential. 
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37. The electric potential energy is the product of the point charge and the electric potential at the 

location of the charge.   Since all points on the ring are equidistant from any point on the axis, the 
electric potential integral is simple. 

2 2 2 2 2 2
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Energy conservation is used to obtain a relationship between the potential and kinetic energies at the 
center of the loop and at a point 2.0 m along the axis from the center. 
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This is equation is solved to obtain the velocity at x = 2.0 m. 
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38. Use Eq. 23-6b to find the potential of a continuous charge 
distribution.  Choose a differential element of length dxc  at position 

xc  along the rod.  The charge on the element is ,
2
Q

dq dxc 
l

and the 

element is a distance 2 2r x yc �  from a point on the y axis.  Use 
an indefinite integral from Appendix B-4, page A-7. 
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39. Use Eq. 23-6b to find the potential of a continuous charge 

distribution.  Choose a differential element of length dxc  at 
position xc  along the rod.  The charge on the element is 

,
2
Q

dq dxc 
l

and the element is a distance x xc�  from a point 

outside the rod on the x axis.   
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40. For both parts of the problem, use Eq. 23-6b to find the potential of a continuous charge distribution.  

Choose a differential element of length dxc  at position xc  along the rod.  The charge on the element 
is .dq dx ax dxO c c c   

(a) The element is a distance 2 2r x yc �  from a point on the y 
axis. 
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The integral is equal to 0 because the region of integration is 
“even” with respect to the origin, while the integrand is “odd.”  
Alternatively, the antiderivative can be found, and the integral 
can be shown to be 0.  This is to be expected since the potential 
from points symmetric about the origin would cancel on the y axis. 

 
 (b) The element is a distance x xc�  from a point outside  

the rod on the x axis. 
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  A substitution of z x xc � can be used to do the integration. 
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41. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR will now be � � � �2 2 .dq dA aR RdRV S    Use Eq. 23-6b to find the potential of 

a continuous charge distribution. 
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 A substitution of 2 2 2x R u�  can be used to do the integration. 

  

� �

� � � �

� � � �^ `

� � � �

0 0
0

0

2 2 2 2 2 2

2 23
3 21

3 02 2
0 0 00 0

3/ 2 1/ 22 2 2 2 21
3

0
0

3 / 2 1/ 22 2 2 2 2 31 2
0 03 3

0

12 2 2 2
0 0

0

     ; 2 2

2 2 2

   
2

   
2

   2
6

R R R
R R

R
R

R R

R

x R u R u x RdR udu

u x udua R dR a a
V u ux

ux R
a

x R x x R

a
x R x x R x

a
R x x R

H H H

H

H

H

 
 

 
 

 

 

�  o  �  

�
   �

�

 � � �

 � � � �

 � �

ª º¬ ¼

ª º
¬ ¼

ª º
¬ ¼

³ ³

/ 2 32 , 0x x� !ª º
¬ ¼

 

 
42. 
 
 
 
 
 
 
 
 
43. The electric field from a large plate is uniform with magnitude 02 ,E V H  with the field pointing 

away from the plate on both sides.   Equation 23-4(a) can be integrated between two arbitrary points 
to calculate the potential difference between those points. 
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Setting the change in voltage equal to 100 V and solving for 0 1x x�  gives the distance between field 
lines. 
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44. The potential at the surface of the sphere is 0
0 0

1
.

4
Q

V
rSH

   The potential outside the sphere is  

0
0

0

1
,

4
Q r

V V
r rSH

   and decreases as you move away from the surface.  The difference in potential 

between a given location and the surface is to be a multiple of 100 V. 
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Note that to within the appropriate number of significant figures, this location is at the 
surface of the sphere.  That can be interpreted that we don’t know the voltage well enough 
to be working with a 100-V difference. 
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45. The potential due to the dipole is given by Eq. 23-7. 
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46. (a) We assume that 1pG  and 2pG  are equal in magnitude, and that each makes a 52q  angle with p

G
.   

The magnitude of 1pG  is also given by 1p qd , where q  is the net charge on the hydrogen 
atom, and d is the distance between the H and the O. 
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  This is about 0.32 times the charge on an electron. 
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(b) Since we are considering the potential far from the 
dipoles, we will take the potential of each dipole to be 
given by Eq. 23-7.  See the diagram for the angles 

involved.  From part (a), 1 2 .
2cos52
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47. 
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48. The potential gradient is the negative of the electric field.  Outside of a spherically symmetric charge 

distribution, the field is that of a point charge at the center of the distribution. 
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49. The electric field between the plates is obtained from the negative derivative of the potential. 

> @(8.0 V/m)   5.0 V 8.0 V/m
dV d

E x
dx dx

 �  � �  �  

The charge density on the plates (assumed to be conductors) is then calculated from the electric field 
between two large plates, 0/ .E V H  

� � � �12 2 2 11 2
0 8.0 V/m 8.85 10 C /Nm 7.1 10 C/mEV H � �  u  u  

The plate at the origin has the charge 11 27.1 10 C/m�� u  and the other plate, at a positive x, has charge 
11 27.1 10 C/m�� u  so that the electric field points in the negative direction. 

 
50. We use Eq. 23-9 to find the components of the electric field. 
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51. We use Eq. 23-9 to find the components of the electric field. 
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52. We use the potential to find the electric field, the electric field to find the force, and the force to find 

the acceleration. 
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53. (a) The potential along the y axis was derived in Problem 38. 
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  From the symmetry of the problem, this field will point along the y axis. 
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  Note that for ,y l�  this reduces to the field of a point charge at the origin. 
(b) The potential along the x axis was derived in Problem 39. 
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  From the symmetry of the problem, this field will point along the x axis. 
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  Note that for ,x l�  this reduces to the field of a point charge at the origin. 
 
54. Let the side length of the equilateral triangle be L.  Imagine bringing the 

electrons in from infinity one at a time.  It takes no work to bring the first 
electron to its final location, because there are no other charges present.  
Thus  1 0W  .  The work done in bringing in the second electron to its 
final location is equal to the charge on the electron times the potential 
(due to the first electron) at the final location of the second electron.  
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location is equal to the charge on the electron times the potential (due to the first two electrons).  

Thus � �
2

3
0 0 0

1 1 1 2
4 4 4

e e e
W e

SH SH SH
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© ¹l l l

.  The total work done is the sum 1 2 3W W W� � . 
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55. The gain of kinetic energy comes from a loss of potential energy due to conservation of energy, and  

the magnitude of the potential difference is the energy per unit charge.  The helium nucleus has a 
charge of 2e.   
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 The negative sign indicates that the helium nucleus had to go from a higher potential to a lower 
potential. 

 
56. The kinetic energy of the particle is given in each case.  Use the kinetic energy to find the speed. 
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57. The potential energy of the two-charge configuration (assuming they are both point charges) is given 

by Eq. 23-10. 
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Thus 1.3 eV of potential energy was lost. 
 
58. The kinetic energy of the alpha particle is given.  Use the kinetic energy to find the speed. 
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59. Following the same method as presented in Section 23-8, we get the following results. 
 (a) 1 charge:  No work is required to move a single charge into a position, so 1 0.U   

 2 charges: This represents the interaction between 1Q  and 2.Q  
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 4 charges: This now adds the interaction between 1 4& ,Q Q  2 4& ,Q Q  and 3 4& .Q Q  
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(b) 5 charges: This now adds the interaction between 1 5& ,Q Q  2 5& ,Q Q  3 5& ,Q Q and 4 5& .Q Q  
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60. (a) The potential energy of the four-charge configuration was derived in Problem 59.  Number the  

charges clockwise, starting in the upper right hand corner of the square. 
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(b) The potential energy of the fifth charge is due to the interaction between the fifth charge and 
each of the other four charges.  Each of those interaction terms is of the same magnitude since 
the fifth charge is the same distance from each of the other four charges. 

   � �
2

5th
charge 0

4 2
4

Q
U

bSH
  

(c) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of 
the other charges.  Since the charges are all of the same sign, by moving closer, the center 
charge would be repelled back towards its original position.  Thus it is in a place of stable 
equilibrium. 

 (d) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of  
the other charges.  Since the corner charges are of the opposite sign as the center charge, the 
center charge would be attracted towards those closer charges, making the center charge move 
even farther from the center.  So it is in a place of unstable equilibrium. 

 
61. (a) The electron was accelerated through a potential difference of 1.33 kV (moving from low  

potential to high potential) in gaining 1.33 keV of kinetic energy.  The proton is accelerated 
through the opposite potential difference as the electron, and has the exact opposite charge.  
Thus the proton gains the same kinetic energy,  1.33 keV . 

 (b) Both the proton and the electron have the same KE.  Use that to find the ratio of the speeds. 
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  The lighter electron is moving about 43 times faster than the heavier proton. 
 
62. We find the energy by bringing in a small amount of charge at a time, similar to the method given  

in Section 23-8.  Consider the sphere partially charged, with charge q < Q.  The potential at the 

surface of the sphere is 
0 0

1
,

4
q

V
rSH

  and the work to add a charge dq to that sphere will increase the 

potential energy by .dU Vdq   Integrate over the entire charge to find the total potential energy. 
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63. The two fragments can be treated as point charges for purposes of calculating their potential energy.  

Use Eq. 23-10 to calculate the potential energy.  Using energy conservation, the potential energy is 
all converted to kinetic energy as the two fragments separate to a large distance. 
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This is about 25% greater than the observed kinetic energy of 200 MeV. 
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64. We find the energy by bringing in a small amount of spherically symmetric charge at a time, similar 
to the method given in Section 23-8.  Consider that the sphere has been partially constructed, and so 
has a charge q < Q, contained in a radius 0.r r�   Since the sphere is made of uniformly charged 

material, the charge density of the sphere must be E 34
3 0

.
Q

r
U

S
   Thus the partially constructed sphere 

also satisfies E 4
3

3 ,q
r

U
S

  and so 
3

3 3 34 4
3 3 0 0

   .
q Q Qr

q
r r rS S

 o    The potential at the surface of that 

sphere can now found. 
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We now add another infinitesimally thin shell to the partially constructed sphere.  The charge of that 
shell is 2

E 4 .dq r drU S   The work to add charge dq to the sphere will increase the potential energy 
by .dU Vdq   Integrate over the entire sphere to find the total potential energy. 
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65. The ideal gas model, from Eq. 18-4, says that 2 31

rms2 2 .K mv kT   
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66. If there were no deflecting field, the electrons would hit the 

center of the screen.  If an electric field of a certain direction 
moves the electrons towards one extreme of the screen, then the 
opposite field will move the electrons to the opposite extreme 
of the screen.  So we solve for the field to move the electrons to 
one extreme of the screen.  Consider three parts to the 

electron’s motion, and see the diagram, which is a top view.  
First, during the horizontal acceleration phase, energy will be 
conserved and so the horizontal speed of the electron xv  can 
be found from the accelerating potential V .  Secondly, during the deflection phase, a vertical force 
will be applied by the uniform electric field which gives the electron a leftward velocity, yv .  We 
assume that there is very little leftward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the left edge of the screen. 
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  Deflection: 
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 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 
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 This is about 4% of the total 15 cm vertical deflection, and so for an estimation, our approximation is 

acceptable.  And so the field must vary from 5 51.9 10 V m  to 1.9 10 V m� u � u  

 
67. Consider three parts to the electron’s motion.  First, during the 

horizontal acceleration phase, energy will be conserved and so 
the horizontal speed of the electron xv  can be found from the 
accelerating potential, V .  Secondly, during the deflection 
phase, a vertical force will be applied by the uniform 

electric field which gives the electron an upward velocity, yv .  
We assume that there is very little upward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the top of the screen. 

  Acceleration:  
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  Deflection: 
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  Screen: 
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 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 
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 This is about 7% of the total 11 cm vertical deflection, and so for an estimation, our approximation is 
acceptable. 

 
68. The potential of the earth will increase because the “neutral” Earth will now be charged by the 

removing of the electrons.  The excess charge will be the elementary charge times the number of 
electrons removed.  We approximate this change in potential by using a spherical Earth with all the 
excess charge at the surface. 
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69. The potential at the surface of a charged sphere is that of a point charge of the same magnitude, 

located at the center of the sphere. 
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70.
  
 
 
 
 
 
 
 
 
  
  
 
71. Let 1d  represent the distance from the left charge to point b, and let 2d  represent the distance from 

the right charge to point b.  Let Q represent the positive charges, and let q represent the negative 
charge that moves.  The change in potential energy is given by Eq. 23-2b. 
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4 0.1844 m 0.2778m 0.12 m 0.24 m

1 1 1 1 1
             

4 0.1844 m 0.2778m 0.12 m 0.24 m

          

d d

Q Q Q Q
U U q V V q

Qq

SH

SH

 �   �  

�  �  � � �

 � � �

ª º§ · § ·
«¨ ¸ ¨ ¸»
© ¹ © ¹¬ ¼

ª º§ · § ·
«¨ ¸ ¨ ¸»
© ¹ © ¹¬ ¼

� � � �� � � �9 2 2 6 6 1   8.99 10 N m C 1.5 10 C 33 10 C 3.477 m 1.547 J 1.5J� � � u � u u �  |<

 

 
72. (a) All eight charges are the same distance from the center of the cube.  Use Eq. 23-5 for the  

potential of a point charge. 

   center
0 0 0

1 16 1 1
8 9.24

4 4 43 3
2

Q Q Q
V

SH SH SH
  |

l l
l

    

(b) For the seven charges that produce the potential at a corner, three are a distance l  away from  
that corner, three are a distance 2l  away from that corner, and one is a distance 3l away 
from that corner.  

  corner
0 0 0 0 0

1 1 1 3 1 1 1
3 3 3 5.70

4 4 4 4 42 3 2 3
Q Q Q Q Q

V
SH SH SH SH SH

 � �  � � |§ ·
¨ ¸
© ¹l l ll l

 

(c) The total potential energy of the system is half the energy found by multiplying each charge  
times the potential at a corner.  The factor of half comes from the fact that if you took each 
charge times the potential at a corner, you would be counting each pair of charges twice. 

  � �
2 2

1
corner2

0 0

3 1 1 1
8 4 3 22.8

4 42 3
Q Q

U QV
SH SH

  � � |§ ·
¨ ¸
© ¹ l l

 

 
 
 
 

+ + 



Chapter 23  Electric Potential 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

93 

73. The electric force on the electron must be the same magnitude as the weight of the electron.  The 
magnitude of the electric force is the charge on the electron times the magnitude of the electric field.  
The electric field is the potential difference per meter:  E V d . 

  � � � � � �
E E

31 2
12

19

  ;        

9.11 10 kg 9.80 m s 0.035m
2.0 10 V

1.60 10 C

F mg F q E eV d eV d mg

mgd
V

e

�

�

�

   o  o

u
   u

u

 

 Since it takes such a tiny voltage to balance gravity, the thousands of volts in a television set are 
more than enough (by many orders of magnitude) to move electrons upward against the force of 
gravity. 

 
74. From Problem 59, the potential energy of a configuration of four  

charges is 1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1
4

.Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r rSH
 � � � � �

§ ·
¨ ¸
© ¹

 

Let a side of the square be l, and number the charges clockwise starting 
with the upper left corner. 

  1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1
4

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r rSH
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§ ·
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0
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9 2 2

0

2 3 2 2 3 2 2 3 21
   

4 2 2

3.1 10 C1 1
   8 8.99 10 N m C 8 7.9J

4 0.080m2 2

Q Q Q Q Q Q Q Q Q Q Q Q

Q

SH

SH

�

� � �
 � � � � �

u
 �  u �  �

§ ·
¨ ¸
© ¹

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l l l ll l

l
<

 

 
75. The kinetic energy of the electrons (provided by the UV light) is converted completely to potential 

energy at the plate since they are stopped.  Use energy conservation to find the emitted speed, taking 
the 0 of PE to be at the surface of the barium. 

  � �� �

21
initial final 2

19
6

31

KE PE       

2 1.60 10 C 3.02 V2
1.03 10 m s

9.11 10 kg

mv qV

qV
v

m

�

�

 o  o

� u �
   u

u

 

 
76. To find the angle, the horizontal and vertical components of the velocity are needed.  The horizontal 

component can be found using conservation of energy for the initial acceleration of the electron.  
That component is not changed as the electron passes through the plates.  The vertical component 
can be found using the vertical acceleration due to the potential difference of the plates, and the time 
the electron spends between the plates. 

  Horizontal: 

   21
inital final 2PE KE              x

x

x
qV mv t

v
'

 o    

  Vertical: 

   
� �0

E     y y y y
y y

x

v v qE t qE x
F qE ma m v

t m mv

� '
   o    

 
 

+ 

Q 2Q

-3Q2Q 
–

l+ +

l

l l
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  Combined: 

   

� �

� �2

1

250 V
0.065m

0.013m
tan 0.1136

2 2 2 5500 V

tan 0.1136 6.5

y

y y y yx

x x x

qE x
v qE x qE x E xmv
v v mv qV V

T

T �

'
' ' '

       

  q

§ ·
¨ ¸
© ¹  

 
77. Use Eq. 23-5 to find the potential due to each charge.  Since the triangle is 

equilateral, the 30-60-90 triangle relationship says that the distance from a 
corner to the midpoint of the opposite side is 3 2l . 

  

� � � � � �

� � � � � �

A
0 0 0 0

0

B
0 0 0 0 0

31 1 1 1 2 1
4

4 2 4 2 4 43 2 3

3
2

6

31 1 1 1 6 3
4 2 4 2 4 4 23 2 3

Q Q Q Q
V

Q

Q Q Q Q Q
V

SH SH SH SH

SH

SH SH SH SH SH

� �
 � �  � �

 �

� �
 � �  �  �

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

l l ll

l

l l ll l

 

  
� � � � � �

C
0 0 0 0 0

31 1 1 1 2 1 3
2 1

4 2 4 2 4 4 63 2 3
Q Q Q Q Q

V
SH SH SH SH SH

� �
 � �  � �  � �

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹l l l ll
 

 
78. Since the E-field points downward, the surface of the Earth is a lower potential than points above the 

surface.  Call the surface of the Earth 0 volts.  Then a height of 2.00 m has a potential of 300 V.   We 
also call the surface of the Earth the 0 location for gravitational PE.  Write conservation of energy 
relating the charged spheres at 2.00 m (where their speed is 0) and at ground level (where their 
electrical and gravitational potential energies are 0). 

  

� � � � � � � �
� �

21
initial final 2

4
2

        2

4.5 10 C 300 V
2 9.80 m s 2.00 m 6.3241m s

0.340 kg

qV
E E mgh qV mv v gh

m

v
�

�

 o �  o  �

u
 �  

§ ·
¨ ¸
© ¹

ª º
« »
« »¬ ¼

 

  
� � � � � � � �

� �

4
2

4.5 10 C 300 V
2 9.80 m s 2.00 m 6.1972 m s

0.340 kg

6.3241m s 6.1972 m s 0.13m s

v

v v

�

�

� �

� u
 �  

�  �  

ª º
« »
« »¬ ¼  

 
79. (a) The energy is related to the charge and the potential difference by Eq. 23-3. 

   
6

64.8 10 J
    1.2 10 V

4.0C
U

U q V V
q
' u

'  ' o '    u  

 (b) The energy (as heat energy) is used to raise the temperature of the water and boil it.  Assume  
that room temperature is 20oC. 

   f   Q mc T mL ' � o  

A

B

C

Q� Q�

3Q�
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� �

6

5f

4.8 10 J
1.8kg

J J
4186 80C 22.6 10

kg C kg

Q
m

c T L
u

   
' �

q � u
q

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹<

 

 
80. Use Eq. 23-7 for the dipole potential, and use Eq. 23-9 to determine the electric field. 

  

� �
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1/ 22 2
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0 0 0
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V

r x y x y

x y x x y xV p p x y
E
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y x

T
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SH SH
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w
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w �
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« » « »¬ ¼ ¬ ¼

ª º
« »
¬ ¼

ª º
¬ ¼ � �5 / 2 32

0

3cos sin
4

p
ry

T T
SH

ª º ª º« » « »¬ ¼« »¬ ¼

 

 Notice the 
3

1
r

dependence in both components, which is indicative of a dipole field. 

 
81. (a) Since the reference level is given as V = 0 at ,r  f  the potential outside the shell is that of a  

point charge with the same total charge. 

   
� � � �3 3 3 34 4

E 2 1 2 13 3 E
2

0 0 0

1 1
, 

4 4 3

r r r rQ
V r r

r r r

U S S U
SH SH H

� �
   !   

  Note that the potential at the surface of the shell is 
2

3
2E 1

2
0 2

.
3r

r
V r

r
U
H

 �
§ ·
¨ ¸
© ¹

 

(b) To find the potential in the region 1 2 ,r r r� �  we need the electric field in that region.  Since the 
charge distribution is spherically symmetric, Gauss’s law may be used to find the electric field. 

  � � � � � �3 3 3 34 4
3 3E 1 12 encl encl E

2 2 2
0 0 0 0

1 1
4     

4 4 3

r r r rQ Q
d E r E

r r r

U S S U
S

H SH SH H

� �
  o    ³ E A

GG
<v  

The potential in that region is found from Eq. 23-4a.  The electric field is radial, so we integrate 
along a radial line so that .d Edr E

GG
< l  

   

� �
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3 3 3 3
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(c) Inside the cavity there is no electric field, so the potential is constant and has the value that it 
has on the cavity boundary. 

 � �
1

3
2 2 2 2E 1 E1 1 1

2 1 2 1 12 6 3
0 1 0

,  
2r

r
V r r r r r r

r
U U
H H

 � �  � �
§ ·
¨ ¸
© ¹

 

The potential is continuous at both boundaries. 
 
82. We follow the development of Example 23-9, with Figure 23-15.  The charge density of the ring is 

� �2 22 1
020 0

4
.

3
Q Q

RR R
V

SS S
  

�

§ ·
¨ ¸
© ¹

  The charge on a thin ring of radius R and thickness dR is 

dq dAV   � �2
0

4
2 .

3
Q

RdR
R

S
S

  Use Eq. 23-6b to find the potential of a continuous charge 

distribution. 
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0 0 0 0 0 0
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0 042

0 0

4
2

1 1 2 23
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r R Rx R x R

Q
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83. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R
O

SH
   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

  � � � �
a a

b b

b
a b a b

0 0 0 a

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R
O O O

SH SH SH
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GG
< l  

 
84. (a) We may treat the sphere as a point charge located at the center of the field.  Then the electric  

field at the surface is surface 2
0 0

1
,

4
Q

E
rSH

  and the potential at the surface is surface
0 0

1
.

4
Q

V
rSH

  

  � � � �6 5
surface surface 0 breakdown 0

0 0

1
3 10 V m 0.20 m 6 10 V

4
Q

V E r E r
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    u  u  

(b) � �
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surface 0 0 surface 9 2 2
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u
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85. (a) The voltage at 0.20 mx   is obtained by inserting the given data directly into the voltage  
  equation. 
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 (b) The electric field is the negative derivative of the potential. 

   � �
� � � �2 32 2 2 2

ˆ4ˆ 
d B Bx
dx x R x R

x  �  
� �

ª º
« »
« »¬ ¼

i
E i
G

 

  Since the voltage only depends on x the electric field points in the positive x direction. 
(c) Inserting the given values in the equation of part (b) gives the electric field at 0.20 mx   

� � � �

� � � �

4
5

32 2

ˆ4 150 V m 0.20 m ˆ(0.20 m) 2.3 10 V m
0.20 m 0.20 m

  u
�ª º¬ ¼

i
E i
G <

 

 
86. Use energy conservation, equating the energy of charge 1q�  at its initial position to its final position 

at infinity.  Take the speed at infinity to be 0, and take the potential of the point charges to be 0 at 
infinity. 

� � � �
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2 21 1
initial final initial initial final final 0 1 initial final 1 final2 2
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87. (a) From the diagram, the potential at x is the potential of two  

point charges. 
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 (b) The approximate potential is given by Eq. 23-7, with 0,T   2 ,p qd  and .r x   

 approx 2
0

1 2
4

qd
V

xSH
  

To make the difference at 
small distances more 
apparent, we have plotted 
from 2.0 cm to 8.0 cm. 
The spreadsheet used for 
this problem can be found 
on the Media Manager, with 
filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.87.” 
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88. The electric field can be determined from the potential by using Eq. 23-8, differentiating with respect 
to x. 

� � � � � � � � � �1/ 2 1/ 22 2 2 21
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The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.88.” 
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89. (a) If the field is caused by a point  
charge, the potential will have a graph 
that has the appearance of 1/r 
behavior, which means that the 
potential change per unit of distance 
will decrease as potential is measured 
farther from the charge.  If the field is 
caused by a sheet of charge, the 
potential will have a linear decrease 
with distance.  The graph indicates 
that the field is caused by a point 
charge.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH23.XLS,” on tab “Problem 23.89a.” 

(b) Assuming the field is caused by a point charge, we assume the charge is at x d , and then the 

potential is given by 
0

1
.

4
Q

V
x dSH

 
�

  This can be rearranged to  the following. 
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If we plot x vs. 
1
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, the slope is 

0

,
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 which can be used to 

determine the charge.  
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab “Problem 23.89b.” 

  

(c) From the above equation, the y intercept of the graph is the location of the charge, d.  So the  
charge is located at 0.0373m 3.7cm from the first measured position .x d  � |  
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CHAPTER 24:  Capacitance, Dielectrics, Electric Energy Storage 
 
Responses to Questions 
 
1.  Yes. If the conductors have different shapes, then even if they have the same charge, they will have 

different charge densities and therefore different electric fields near the surface. There can be a 
potential difference between them. The definition of capacitance C = Q/V cannot be used here 
because it is defined for the case where the charges on the two conductors of the capacitor are equal 
and opposite. 

 
2.  Underestimate. If the separation between the plates is not very small compared to the plate size, then 

fringing cannot be ignored and the electric field (for a given charge) will actually be smaller. The 
capacitance is inversely proportional to potential and, for parallel plates, also inversely proportional 
to the field, so the capacitance will actually be larger than that given by the formula. 

  
3.  Ignoring fringing field effects, the capacitance would decrease by a factor of 2, since the area of 

overlap decreases by a factor of 2. (Fringing effects might actually be noticeable in this 
configuration.) 

 
4.  When a capacitor is first connected to a battery, charge flows to one plate. Because the plates are 

separated by an insulating material, charge cannot cross the gap. An equal amount of charge is 
therefore repelled from the opposite plate, leaving it with a charge that is equal and opposite to the 
charge on the first plate. The two conductors of a capacitor will have equal and opposite charges 
even if they have different sizes or shapes.  

 
5.  Charge a parallel-plate capacitor using a battery with a known voltage V. Let the capacitor discharge 

through a resistor with a known resistance R and measure the time constant. This will allow 
calculation of the capacitance C. Then use C = İ0A/d and solve for İ0. 

 
6.  Parallel. The equivalent capacitance of the three capacitors in parallel will be greater than that of the 

same three capacitors in series, and therefore they will store more energy when connected to a given 
potential difference if they are in parallel. 

 
7. If a large copper sheet of thickness l is inserted between the plates of a parallel-plate capacitor, the 

charge on the capacitor will appear on the large flat surfaces of the copper sheet, with the negative 
side of the copper facing the positive side of the capacitor. This arrangement can be considered to be 
two capacitors in series, each with a thickness of � �1

2 .d � l  The new net capacitance will be 

� �0 ,C A dHc  � l  so the capacitance of the capacitor will be reduced. 
 
8.  A force is required to increase the separation of the plates of an isolated capacitor because you are 

pulling a positive plate away from a negative plate. The work done in increasing the separation goes 
into increasing the electric potential energy stored between the plates. The capacitance decreases, 
and the potential between the plates increases since the charge has to remain the same. 

 
9. (a) The energy stored quadruples since the potential difference across the plates doubles and the  

capacitance doesn’t change: 21
2U CV . 

 (b) The energy stored quadruples since the charge doubles and the capacitance doesn’t change:  
2

1
2

Q
U

C
 . 
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(c) If the separation between the plates doubles, the capacitance is halved. The potential  
difference across the plates doesn’t change if the capacitor remains connected to the battery, so 
the energy stored is also halved: 21

2U CV . 
 
10. (c) If the voltage across a capacitor is doubled, the amount of energy it can store is quadrupled:  
  21

2U CV . 
 
11.  The dielectric will be pulled into the capacitor by the electrostatic attractive forces between the 

charges on the capacitor plates and the polarized charges on the dielectric’s surface. (Note that the 
addition of the dielectric decreases the energy of the system.) 

 
12. If the battery remains connected to the capacitor, the energy stored in the electric field of the 

capacitor will increase as the dielectric is inserted. Since the energy of the system increases, work 
must be done and the dielectric will have to be pushed into the area between the plates.  If it is  
released, it will be ejected. 

  

13. (a) If the capacitor is isolated, Q remains constant, and 
2

1
2

Q
U

C
  becomes 

2
1
2'

Q
U

KC
  and the  

stored energy decreases. 
(b)  If the capacitor remains connected to a battery so V does not change, 21

2U CV becomes  
21

2'U KCV , and the stored energy increases. 
 
14. For dielectrics consisting of polar molecules, one would expect the dielectric constant to decrease 

with temperature. As the thermal energy increases, the molecular vibrations will increase in 
amplitude, and the polar molecules will be less likely to line up with the electric field. 

 
15.  When the dielectric is removed, the capacitance decreases. The potential difference across the plates 

remains the same because the capacitor is still connected to the battery. If the potential difference 
remains the same and the capacitance decreases, the charge on the plates and the energy stored in the 
capacitor must also decrease. (Charges return to the battery.) The electric field between the plates 
will stay the same because the potential difference across the plates and the distance between the 
plates remain constant.  

 
16. For a given configuration of conductors and dielectrics, C is the proportionality constant between the 

voltage between the plates and the charge on the plates.  
 
17.  The dielectric constant is the ratio of the capacitance of a capacitor with the dielectric between the 

plates to the capacitance without the dielectric. If a conductor were inserted between the plates of a 
capacitor such that it filled the gap and touched both plates, the capacitance would drop to zero since 
charge would flow from one plate to the other. So, the dielectric constant of a good conductor would 
be zero.  

 
 
Solutions to Problems 
 
1. The capacitance is found from Eq. 24-1. 

  
3

62.8 10 C
    3.0 10 F 3.0 F

930 V
Q

Q CV C
V

P
�

�u
 o    u   

Jeroen
Marked ingesteld door Jeroen

Jeroen
Marked ingesteld door Jeroen
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2. We assume the capacitor is fully charged, according to Eq. 24-1. 

  � � � �6 412.6 10 F 12.0 V 1.51 10 CQ CV � �  u  u  

 
3. The capacitance is found from Eq. 24-1. 

  
12

1275 10 C
    3.1 10 F 3.1pF

24.0 V
Q

Q CV C
V

�
�u

 o    u   

 
4. Let 1Q  and 1V  be the initial charge and voltage on the capacitor, and let 2Q  and 2V  be the final 

charge and voltage on the capacitor.  Use Eq. 24-1 to relate the charges and voltages to the 
capacitance. 

  
� �1 1 2 2 2 1 2 1 2 1

6
72 1

2 1

            

26 10 C
5.2 10 F 0.52 F

50 V

Q CV Q CV Q Q CV CV C V V

Q Q
C

V V
P

�
�

  �  �  � o

� u
   u  

�

 

 
5. After the first capacitor is disconnected from the battery, the total charge must remain constant.  The 

voltage across each capacitor must be the same when they are connected together, since each 
capacitor plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the final potential difference to find the value of the 
second capacitor. 

  � � � �

� �

Total 1 1 1 1 final 2 2 final
initial final final

Total 1 2 1 2 final 1 1 1 2 final
final final initial

1
initial 6 5

2 1
final

          

     

125V
1 7.7 10 F 1 5.6 10 F 56 F

15V

Q C V Q C V Q C V

Q Q Q C C V C V C C V

V
C C

V
P� �

   

 �  � o  � o

 �  u �  u  
§ · § ·¨ ¸ ¨ ¸¨ ¸ © ¹© ¹

 

 
6. The total charge will be conserved, and the final potential difference across the capacitors will be the 

same. 

  

1 2 0 1 1
0 1 2 1 2 1 0

1 2 2 1 2

1 2
2 0 1 0 0 2 0

1 2 1 2

1
0

1 01 2
1 2

1 1 1 2

  ;          
Q Q Q Q C

Q Q Q V V Q Q
C C C C C

C C
Q Q Q Q Q Q Q

C C C C

C
Q

Q QC C
V V V

C C C C

�
 �  o   o  

�

 �  �   
� �

�
     

�

§ ·
¨ ¸
© ¹

 

 
7. The work to move the charge between the capacitor plates is ,W qV  where V is the voltage 

difference between the plates, assuming that q Q�  so that the charge on the capacitor does not 
change appreciably.  The charge is then found from Eq. 24-1.  The assumption that q Q� is justified. 

  
� � � �15ȝF 15J

1.1C
0.20 mC

    Q CW
W qV q Q

C q
     § · o¨ ¸

© ¹
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8. (a) The total charge on the combination of capacitors is the sum of the charges on the two  
individual capacitors, since there is no battery connected to them to supply additional charge, 
and there is no neutralization of charge by combining positive and negative charges.  The 
voltage across each capacitor must be the same after they are connected, since each capacitor 
plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the fact of equal potentials to find the charge on each 
capacitor and the common potential difference. 

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1 2 2
initial i

final

               

  

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C V
V

    

 �  �  �  � o

�
 

� �� � � � � �
� �

� � � �

� � � �

6 6
nitial

6
1 2

1 2

6 3
1 1 final
final

6 3
2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      504.85V 505V

2.70 10 F 504.85V 1.36 10 C

4.00 10 F 504.85V 2.02 10 C

C C

V V

Q C V

Q C V

� �

�

� �

� �

u � u
 

� u

 |   

  u  u

  u  u

 

 (b) By connecting plates of opposite charge, the total charge will be the difference of the charges on  
the two individual capacitors.  Once the charges have equalized, the two capacitors will again 
be at the same potential. 

   

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1
initial

final

               

     

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C
V

    

 �  � o �  � o

�
 

� �� � � � � �
� �

� � � �

� � � �

6 62 2
initial

6
1 2

1 2

6 4
1 1 final
final

6 4
2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      122.01V 120 V

2.70 10 F 122.01V 3.3 10 C

4.00 10 F 122.01V 4.9 10 C

V

C C

V V

Q C V

Q C V

� �

�

� �

� �

u � u
 

� u

 |   

  u  u

  u  u

 

 
9. Use Eq. 24-1. 

  
� � � � 6

3

1200 F 6.0 V 1d
 ;  7.2 10 s 83d

1.0 10 C s 86,400s
Q C V

Q C V t
Q t Q t �

' '
'  '     u  

' ' ' ' u
§ ·
¨ ¸
© ¹

 

 
10. (a) The absolute value of the charge on each plate is given by Eq. 24-1.  The plate with electrons  

has a net negative charge. 
   � �      Q CV N e CV o �  � o  
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� � � �15

5 5
19

35 10 F 1.5V
3.281 10 3.3 10 electrons

1.60 10 C
CV

N
e

�

�

u
   u | u

u
 

 (b) Since the charge is directly proportional to the potential difference, a 1.0% decrease in potential  
difference corresponds to a 1.0% decrease in charge. 

   � � � �15

15

0.01   ;

0.01 35 10 F 1.5V0.01 0.01
1.75s 1.8s

0.30 10 C s

Q Q

Q Q CV
t

Q t Q t Q t

�

�

'  

u'
'      |

' ' ' ' ' ' u

 

 
11. Use Eq. 24-2. 

  
� � � �
� �

6 3
2 2

0 12 2 2
0

0.40 10 F 2.8 10 m
    126.6 m 130 m

8.85 10 C N m
A Cd

C A
d

H
H

� �

�

u u
 o    |

u <
 

 If the capacitor plates were square, they would be about 11.2 m on a side. 
 
12. The capacitance per unit length of a coaxial cable is derived in Example 24-2 

  
� �

� �
� �

12 2 2
110

outside inside

2 8.85 10 C N m2
3.5 10 F m

ln ln 5.0 mm 1.0 mm
C

R R

SSH
�

�
u

   u
l

<
 

 
13. Inserting the potential at the surface of a spherical conductor into Eq. 24.1 gives the capacitance of a 

conducting sphere.  Then inserting the radius of the Earth yields the Earth’s capacitance. 

� � � � � �12 6 4
0

0

4 4 8.85 10 F/m 6.38 10 m 7.10 10 F
4

Q Q
C r

V Q r
SH S

SH
� �    u u  u  

 
14. From the symmetry of the charge distribution, any electric field 

must be radial, away from the cylinder axis, and its magnitude 
must be independent of the location around the axis (for a given 
radial location).  We assume the cylinders have charge of 
magnitude Q in a length l.  Choose a Gaussian cylinder of 
length d and radius R, centered on the capacitor’s axis, with 
d l�  and the Gaussian cylinder far away from both ends of 
the capacitor.  On the ends of this cylinder, dAE A

GG
 and so 

there is no flux through the ends.  On the curved side of the 
cylinder, the field has a constant magnitude and dE A

GG
& .  Thus .d EdA E A

GG
<   Write Gauss’s law. 

� � encl
curved curved
walls walls 0

2
Q

d E A E RdS
H

   ³³ E A
GG

<w  

 For b ,R R�  � �encl 00    2 0    0.Q E Rd ES H o  o   

 For a ,R R!  encl 0Q
Q Qd d 

�
�  

l l
, and so � �encl 00    2 0    0.Q E Rd ES H o  o   

 
15. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

  
� � � � � � � �12 4 2 6

max max 0 max 0 max

8

8.85 10 F/m 6.8 10 m 3.0 10 V m

1.8 10 C

A
Q CV E d AE

d
H H � �

�

    u u u

 u

 

  
d  Ra 

Rb 

+  Q 
–  Q 

Gaussian cylinder 
of radius R 
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16. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 
use Eqs. 24-1 and 24-2. 

  
� � � � � � � �12 4 2 5

0 0

9

8.85 10 F/m 21.0 10 m 4.80 10 V m

8.92 10 C

A
Q CV Ed AE

d
H H � �

�

    u u u

 u

 

 
17. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

  � � � �
6

4
6 3

92 10 C
    5.8 10 V m

0.80 10 F 2.0 10 m
Q

Q CV CEd E
Cd

�

� �

u
  o    u

u u
 

 
18. (a) The uncharged plate will polarize so that negative  

charge will be drawn towards the positive capacitor  
plate, and positive charge will be drawn towards the 
negative capacitor plate.  The same charge will be 
on each face of the plate as on the original capacitor 
plates.  The same electric field will be in the gaps as 
before the plate was inserted.  Use that electric field 
to determine the potential difference between the 
two original plates, and the new capacitance.  Let x be the distance from one original plate to the 
nearest face of the sheet, and so d x� �l  is the distance from the other original plate to the 
other face of the sheet. 

   

� � � �

� � � �
� �

1 2
0 0 0 0

1 2 0
0 0 0

  ;    ;  

    

Q d xQ Qx
E V Ex V E d x

A A A

Q d x Q dQx Q A
V V V C

A A A C d

V
H H H H

H
H H H

� �
     � �  

� � �
'  �  �   o  

�

l
l

l l

l

  

(b) 
� �

� �0
final

initial 0 final 0
initial

0

1
  ;    ;  1.7

0.40 0.60

A
dA A C d d

C C
Ad d C d d d
d

H
H H

H

�
       

� � �

l

l l
 

 
19. (a) The distance between plates is obtained from Eq. 24-2. 

   0 0    
A A

C x
x C

H H
 o   

Inserting the maximum capacitance gives the minimum plate separation and the minimum 
capacitance gives the maximum plate separation. 

� � � �6 2

0
min 12

max

8.85pF/m 25 10 m
0.22 m

1000.0 10 F
A

x
C
H

P
�

�

u
   

u
 

� � � �6 2

o
max

min

8.85pF/m 25 10 m
0.22 mm 220 m

1.0 pF
A

x
C
H

P
�u

     

  So 0.22 m 220 m .xP Pd d  

 
 

d

x

d x� � lE
G

E
G
positive plate

negative plate
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(b) Differentiating the distance equation gives the approximate uncertainty in distance. 
0 0

2

dx d A A
x C C C

dC dC C C
H H

' | '  '  � 'ª º
« »¬ ¼

. 

The minus sign indicates that the capacitance increases as the plate separation decreases.  Since 
only the magnitude is desired, the minus sign can be dropped.  The uncertainty is finally written 
in terms of the plate separation using Eq. 24-2. 

2
0

2
00

A x C
x C

AA
x

H
HH
'

' | '  
§ ·
¨ ¸
© ¹

 

(c) The percent uncertainty in distance is obtained by dividing the uncertainty by the  
separation distance. 

� � � � � �
� � � �

min min
2

min o

0.22 m 0.1pF 100%
100% 100% 0.01%

8.85pF/m 25mm
x x C

x A
P

H
' '

u  u    

� � � � � �
� � � �

max max
2

max o

0.22 mm 0.1pF 100%
100% 100% 10%

8.85pF/m 25mm
x x C

x AH
' '

u  u    

 
20. The goal is to have an electric field of strength SE  at a radial distance of 5.0 bR from the center of the 

cylinder.  Knowing the electric field at a specific distance allows us to calculate the linear charge 
density on the inner cylinder.  From the linear charge density and the capacitance we can find the 
potential difference needed to create the field.  From the cylindrically symmetric geometry and 

Gauss’s law, the field in between the cylinders is given by 
0

1
.

2
E

R
O

SH
   The capacitance of a 

cylindrical capacitor is given in Example 24-2. 

� �
� �

� �

� �

� � � �> @ � �

� � � � � � � �

b S 0 b S
0 b

a b a b
0 b S

a b

4 6
b S a b 4

1
5.0     2 5.0

2 5.0

ln ln
    2 5.0

2 2 2
ln

0.100 m
       5.0 ln 5.0 1.0 10 m 2.7 10 N C ln 9300 V

1.0 10 m

Q
E R R E R E

R

R R R RQ Q Q
Q CV V R E

C
R R

R E R R

O
O SH

SH

SH
SH SH SH� � �

�

�

   o   

 o     

  u u  
u

§ ·ª º ¨ ¸¬ ¼ © ¹

l

l l
 

 
21. To reduce the net capacitance, another capacitor must be added in series. 

  1 eq

eq 1 2 2 eq 1 1 eq

1 1 1 1 1 1
      

C C

C C C C C C C C

�
 � o  �  o  

  
� � � �
� � � �

9 9
1 eq 9

2 9 9
1 eq

2.9 10 F 1.6 10 F
3.57 10 F 3600pF

2.9 10 F 1.6 10 F
C C

C
C C

� �

�

� �

u u
   u |

� u � u
 

 Yes, an existing connection needs to be broken in the process.  One of the connections of the original 
capacitor to the circuit must be disconnected in order to connect the additional capacitor in series. 

 
22. (a) Capacitors in parallel add according to Eq. 24-3. 

   � �6 5
eq 1 2 3 4 5 6 6 3.8 10 F 2.28 10 F 22.8 FC C C C C C C P� � � � � � �  u  u   
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 (b) Capacitors in series add according to Eq. 24-4. 

   

1 1 6
7

eq 6
1 2 3 4 5 6

1 1 1 1 1 1 6 3.8 10 F
6.3 10 F

3.8 10 F 6

     0.63 F

C
C C C C C C

P

� � �
�

�

u
 � � � � �    u

u

 

§ · § ·
¨ ¸¨ ¸ © ¹© ¹  

 
23. We want a small voltage drop across C1.  Since ,V Q C  if we put 

the smallest capacitor in series with the battery, there will be a large 
voltage drop across it.  Then put the two larger capacitors in parallel, 
so that their equivalent capacitance is large and therefore will have a 
small voltage drop across them.  So put C1 and C3 in parallel with 
each other, and then put that combination in series with C2.  See the 
diagram.  To calculate the voltage across C1, find the equivalent 
capacitance and the net charge.  That charge is used to find the 
voltage drop across C2, and then that voltage is subtracted from the battery voltage to find the 
voltage across the parallel combination. 

  

� �
� �

� �

� �

eq2 1 31 2 3 2
eq eq eq 0 2

eq 2 1 3 2 1 3 1 2 3 2 2

2 1 3
0

eq eq 0 21 2 3
1 0 2 0 0 0 0

2 2 2 1 2 3

1 1 1
     ;    ;    ;

1.5 F
12 V

6.5 F

2.8V

QC C CC C C Q
C Q C V V

C C C C C C C C C C C C

C C C
V

Q C V CC C C
V V V V V V V

C C C C C C
P
P

�� �
 �  o     

� � � �

�
� �

 �  �  �  �   
� �

 

 

 
24. The capacitors are in parallel, and so the potential is the same for each capacitor, and the total charge 

on the capacitors is the sum of the individual charges.  We use Eqs. 24-1 and 24-2. 

  

1 2 3
1 1 0 2 2 0 3 3 0

1 2 3

1 2 3 1 2 3
total 1 2 3 0 0 0 0 0 0

1 2 3 1 2 3

1 2 3
0 0 0

1 2 3total 1 2 3
net 0 0 0 1 2 3

1 2 3

 ;  ; 
A A A

Q CV V Q C V V Q C V V
d d d

A A A A A A
Q Q Q Q V V V V

d d d d d d

A A A
V

d d dQ A A A
C C C C

V V d d d

H H H

H H H H H H

H H H
H H H

      

 � �  � �  � �

� �

   � �  � �

§ ·
¨ ¸
© ¹

§ ·
¨ ¸ § ·© ¹

¨ ¸
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25. Capacitors in parallel add linearly, and so adding a capacitor in parallel will increase the net 

capacitance without removing the 5.0 FP  capacitor. 

5.0 F 16 F    11 F connected in parallelC CP P P�  o   

 
26. (a) The two capacitors are in  parallel .  Both capacitors have their high voltage plates at the same  

potential (the middle plate), and both capacitors have their low voltage plates at the same 
potential (the outer plates, which are connected). 

 (b) The capacitance of two capacitors in parallel is the sum of the individual capacitances. 

   0 0
1 2 0

1 2 1 2

1 2
0

1 2

1 1A A
C C C A

d d d d
d dA
d d

H H
H H �  �  �

§ ·§ · �
 ¨ ¸¨ ¸

© ¹ © ¹
 

3C

2C

1C

0V



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

108 

(c) Let 1 2 constant.d d �  l  Then 
� �

0 0

1 2 1 1

.
A A

C
d d d d
H H

  
�

l l

l
 We see that C of  as 1 0d o  or 

1d o l  (which is 2 0d o ).  Of course, a real capacitor would break down as the plates got too 

close to each other.  To find the minimum capacitance, set 
� �1

0
dC

d d
 and solve for 1.d  

 

� � � �
� �
� �

� � � �1
1 2

10 1
0 1 2222 2

1 1 1 1 1 1

1 2
min 0 0 0 01 1

2 21 2 1 2

0
min max

1 2

2
0    

4 4

4
 ; 

d

ddC d A
A d d

d d d d d d d d

d d
C A A A A

d d d d

A
C C

d d

H
H

H H H H

H

 

�
   o   

� �

�
    

�

  f
�

ª º
« »
¬ ¼

§ ·§ · § ·§ ·
¨ ¸¨ ¸¨ ¸ ¨ ¸© ¹© ¹ © ¹© ¹l

ll
l l

l l

l

l l l
 

 
27. The maximum capacitance is found by connecting the capacitors in parallel. 

  9 9 8 8
max 1 2 3 3.6 10 F 5.8 10 F 1.00 10 F 1.94 10 F in parallelC C C C � � � � � �  u � u � u  u  

 The minimum capacitance is found by connecting the capacitors in series. 

  
1 1

9
min 9 9 8

1 2 3

1 1 1 1 1 1
1.82 10 F in series

3.6 10 F 5.8 10 F 1.00 10 F
C

C C C

� �
�

� � �
 � �  � �  u

u u u

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

 

 
28. When the capacitors are connected in series, they each have the same charge as the net capacitance. 

 (a) � �
1 1

1 2 eq eq 6 6
1 2

1 1 1 1
9.0V

0.50 10 F 0.80 10 F
Q Q Q C V V

C C

� �

� �
    �  �

u u

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

 

6

6 6
1 2

1 26 6
1 2

    2.769 10 C

2.769 10 C 2.769 10 C
5.538V 5.5V      3.461V 3.5V

0.50 10 F 0.80 10 F
Q Q

V V
C C

�

� �

� �

 u

u u
   |    |

u u

 

 (b) 6 6
1 2 eq 2.769 10 C 2.8 10 CQ Q Q � �   u | u  

 
When the capacitors are connected in parallel, they each have the full potential difference. 

(c) � � � �6 6
1 2 1 1 19.0 V      9.0V      0.50 10 F 9.0V 4.5 10 CV V Q CV � �    u  u  

  � � � �6 6
2 2 2 0.80 10 F 9.0V 7.2 10 CQ C V � �  u  u  

 
29. (a) From the diagram, we see that C1 and C2 are in series.  That combination is in parallel with C3,  

and then that combination is in series with C4.  Use those combinations to find the equivalent 
capacitance.  We use subscripts to indicate which capacitors have been combined. 

   

31 1
12 123 12 32 2 2

12

3
1234 5

1234 123 4

1 1 1
      ;    ;

1 1 1 2 1 5
    

3 3

C C C C C C C C
C C C

C C
C C C C C C

 � o   �  �  

 �  �  o  
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(b) The charge on the equivalent capacitor 1234C is given by 3
1234 1234 5 .Q C V CV    This is the 

charge on both of the series components of 1234.C  

   
3 3 2

123 123 123 123 1235 2 5

3 3
4 4 4 45 5

    

    

Q CV C V CV V V

Q CV C V V V

   o  

  o  
 

The voltage across the equivalent capacitor  123C  is the voltage across both of its parallel 
components.  Note that the sum of the charges across the two parallel components of 123C is the 
same as the total charge on the two components, 3

5 .CV  

   
� � � �
� �

2 1 2 1
123 12 12 12 125 2 5 5

2 2 2
123 3 3 3 35 5 5

  ;  

  ;  

V V V Q C V C V CV

V V V Q C V C V CV

     

     
 

Finally, the charge on the equivalent capacitor 12C is the charge on both of the series 
components of 12.C  

   1 1 1 1
12 1 1 1 1 12 2 1 2 25 5 5 5      ;      Q CV Q CV V V Q CV Q CV V V   o     o   

  Here are all the results, gathered together. 

   
31 2

1 2 3 45 5 5

31 2
1 2 3 45 5 5

  ;    ;  

  ;    ;  

Q Q CV Q CV Q CV

V V V V V V V

    

    
 

 
30. C1 and C2 are in series, so they both have the same charge.  We then use that charge to find the 

voltage across each of C1 and C2.  Then their combined voltage is the voltage across C3.  The voltage 
across C3 is used to find the charge on C3.   

� � � �

1 2
1 2 1 2

1 2

3 1 2 3 3 3

12.4 C 12.4 C
12.4 C ; 0.775V  ;  0.775V

16.0 F 16.0 F

1.55V ; 16.0 F 1.55V 24.8 C

Q Q
Q Q V V

C C

V V V Q C V

P P
P

P P

P P

        

 �     

 

From the diagram, C4 must have the same charge as the sum of the charges on C1 and C3.  Then the 
voltage across the entire combination is the sum of the voltages across C4 and C3. 

 
4

4 1 3 4
4

ab 4 3

37.2 C
12.4 C 24.8 C 37.2 C  ;  1.31V

28.5 F

1.31V 1.55V 2.86V

Q
Q Q Q V

C

V V V

P
P P P

P
 �  �     

 �  �  

 

 Here is a summary of all results. 

1 2 3 4

1 2 3 4 ab

12.4 C ; 24.8 C ; 37.2 C

0.775V ; 1.55V ; 1.31V ; 2.86V

Q Q Q Q

V V V V V

P P P    

     
  

 
31. When the switch is down the initial charge on C2 is calculated from Eq. 24-1.  

2 2 0Q C V  
When the switch is moved up, charge will flow from C2 to C1 until the voltage 
across the two capacitors is equal.   

2 1 2
2 1

2 1 1

Q Q C
V Q Q

C C C
c c

c c  o   

The sum of the charges on the two capacitors is equal to the initial charge on C2.   

C2

C1

V0

S
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  2 2 1
2 2 1 1 1 1

1 1

C C C
Q Q Q Q Q Q

C C
�c c c c c �  �  

§ ·
¨ ¸
© ¹

 

 Inserting the initial charge in terms of the initial voltage gives the final charges. 
2

2 1 1 2 2 2
1 2 0 1 0 2 1 0

1 2 1 1 2

  ;  
C C C C C C

Q C V Q V Q Q V
C C C C C C
�c c c c o    

� �

§ ·
¨ ¸
© ¹

 

 
32. (a) From the diagram, we see that C1 and C2 are in parallel, and  

C3 and C4 are in parallel.  Those two combinations are then in 
series with each other.  Use those combinations to find the 
equivalent capacitance.  We use subscripts to indicate which 
capacitors have been combined. 

   

� � � �
� �

12 1 2 34 3 4

1234 12 34 1 2 3 4

1 2 3 4
1234

1 2 3 4

  ;    ;

1 1 1 1 1
 

C C C C C C

C C C C C C C

C C C C
C

C C C C

 �  �

 �  � o
� �

� �
 

� � �

 

(b) The charge on the equivalent capacitor 1234C is given by 1234 1234 .Q C V   This is the charge on 
both of the series components of 1234.C  Note that 12 34 .V V V �  

   

� � � �
� � � �

� �
� � � �
� � � �

� �

1 2 3 4

1 2 3 4 3 41234
12 1234 12 12 12

12 1 2 1 2 3 4

1 2 3 4

1 2 3 4 1 21234
34 1234 34 34 34

34 3 4 1 2 3 4

    

    

C C C C
C C C C C CC

Q C V C V V V V V
C C C C C C C

C C C C
C C C C C CC

Q C V C V V V V V
C C C C C C C

� �
� � � �

  o    
� � � �

� �
� � � �

  o    
� � � �

 

The voltage across the equivalent capacitor  12C  is the voltage across both of its parallel 
components, and the voltage across the equivalent 34C is the voltage across both its parallel 
components. 

� �
� �

� �
� �

� �
� �

3 4
12 1 2

1 2 3 4

1 3 4 2 3 4
1 1 1 2 2 2

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
CV Q V C V Q V

C C C C C C C C

�
   

� � �

� �
    

� � � � � �

 

� �
� �

� �
� �

� �
� �

1 2
34 3 2

1 2 3 4

3 1 2 4 1 2
3 3 3 4 4 4

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
C V Q V C V Q V

C C C C C C C C

�
   

� � �

� �
    

� � � � � �

 

 
 
 

b

C1 

C2a

C 3

C 4

a
C1234 

b

c

c ba 

C34 C12 
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33. (a) The voltage across C3 and C4 must be the same, since they are in parallel. 

   � �3 4 4
3 4 4 3

3 4 3

16 F
        23 C 46 C

8 F
Q Q C

V V Q Q
C C C

P
P P

P
 o  o     

The parallel combination of C3 and C4 is in series with the parallel combination of C1 and C2, 
and so 3 4 1 2.Q Q Q Q�  �   That total charge then divides between C1 and C2 in such a way that 

1 2.V V  

   
� � � �

1 4 1
1 2 3 4 1 2

1 4 4

1
1 2

4 1

69 C
69 C  ;        

8.0 F
69 C 69 C 23 C  ; 69 C 23 C 46 C

24.0 F

Q Q Q
Q Q Q Q V V

C C C

C
Q Q

C C

P
P

P
P P P P P P

P

�
�  �   o   o

    �  
�

 

  Notice the symmetry in the capacitances and the charges. 
 (b) Use Eq. 24-1. 

   

1
1 2 1

1

3
3 4 3

3

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

Q
V V V

C

Q
V V V

C

P
P

P
P

   |   

   |   
 

 (c) ba 1 3 2.875V 2.875V 5.75V 5.8VV V V �  �  |  

 

34. We have P 1 2C C C � and 
S 1 2

1 1 1
.

C C C
 �   Solve for 1C  and 2C in terms of PC  and S.C  

  

� �
� � � �

� �

� � � � � �

P 1 1 P

S 1 2 1 P 1 1 P 1 1 P 1

2P
1 P 1 P S

S 1 P 1

22
P P P S

1

2 P 1

1 1 1 1 1
  

1
    0  

35.0 F 35.0 F 4 35.0 F 5.5 F4
2 2

28.2 F, 6.8 F
35.0 F 28.2 F 6.8 F or 35.0 F 6.8 F 28.2 F

   

C C C C
C C C C C C C C C C C C

C
C C C C C

C C C C

C C C C
C

C C C

P P P P

P P

P P P P P P

� �
 �  �   o

� � �

 o � �  o
�

r �r �
  

 

 �  �  �  

 

 So the two values are 28.2 F and 6.8 F .P P    
 
35. Since there is no voltage between points a and b, we can imagine there 

being a connecting wire between points a and b.  Then capacitors C1 and 
C2 are in parallel, and so have the same voltage.  Also capacitors C3 and 
Cx are in parallel, and so have the same voltage.  

  1 2 3
1 2 3

1 2 3

      ;      x
x

x

Q Q Q Q
V V V V

C C C C
 o   o   

 Since no charge flows through the voltmeter, we could also remove it 
from the circuit and have no change in the circuit.  In that case, 
capacitors C1 and Cx are in series and so have the same charge.  
Likewise capacitors C2 and C3 are in series, and so have the same 
charge. 

V0

c

C1

C2 C3

Cx

b

a

V
d
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  1 2 3  ;  xQ Q Q Q   
 Solve this system of equations for Cx.  

  � �3 1 1
3 3 3

3 3 2 2

8.9 F
    4.8 F 2.4 F

18.0 F
x x

x
x

Q Q Q Q C
C C C C

C C Q Q C
P

P P
P

 o      
§ ·
¨ ¸
© ¹

 

 
36. The initial equivalent capacitance is the series combination of the two individual capacitances.  Each 

individual capacitor will have the same charge as the equivalent capacitance.  The sum of the two 
initial charges will be the sum of the two final charges, because charge is conserved.  The final 
potential of both capacitors will be equal. 

  

� � � � � �

eq 1 2

1 2 1 2
eq eq eq 0 0

1 2 1 2

1 2 eq 1
final final final

1 2 eq 1 2
final final final final 1 2 2

1
1 eq
final 1 2

1 1 1
  

3200pF 1800pF
  ;  12.0V 13,824 pC

5000pF

2
2   ;        

3200pF
2 2

5000

C C C

C C C C
C Q C V V

C C C C

Q Q Q Q
Q Q Q V V

C C C

C
Q Q

C C

 � o

     
� �

�
�   o   o

  
�

� �

� �

8

8
2 eq 1
final final

13,824 pC 17,695pC 1.8 10 C
pF

2 2 13,824 pC 17,695pC 9953pC 1.0 10 CQ Q Q

�

�

 | u

 �  �  | u

 

 
37. (a) The series capacitors add reciprocally, and then the parallel combination is found by adding  

linearly. 

   
1 1 1

3 2 3 2 32
eq 1 1 1 1

2 3 2 3 2 3 2 3 2 3

1 1 C C C C CC
C C C C C

C C C C C C C C C C

� � �
�

 � �  � �  �  �
�

§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 

 (b) For each capacitor, the charge is found by multiplying the capacitance times the voltage.  For  

1C , the full 35.0 V is across the capacitance, so � � � �6
1 1 24.0 10 F 35.0VQ CV �  u   

48.40 10 C .�u   The equivalent capacitance of the series combination of 2C  and 3C  has the full 
35.0 V across it, and the charge on the series combination is the same as the charge on each of 
the individual capacitors. 

� � � �
1

6 41
eq eq eq 2 33

1 1
     24.0 10 F 35.0V 2.80 10 C

2 3
C

C Q C V Q Q
C C

�

� � �    u  u   
§ ·
¨ ¸
© ¹

 

 
38. From the circuit diagram, we see that 1C  is in parallel with the voltage, and so 1 24V .V    

Capacitors 2C  and 3C  both have the same charge, so their voltages are inversely proportional to their 
capacitance, and their voltages must total to 24.0 V. 

  � �

2 3 2 2 3 3 2 3

2 3
2 2 2

3 2 3

3 2

      ;  

4.00 F
    24.0V 13.7V

7.00 F

24.0V 13.7V 10.3V

Q Q C V C V V V V

C C
V V V V V

C C C

V V V

P
P

 o  �  

�  o    
�

 �  �  
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39. For an infinitesimal area element of the capacitance a distance y up from the 
small end, the distance between the plates is tan .d x d y d yT T�  � | �   

Since the capacitor plates are square, they are of dimension ,A Au  and the 
area of the infinitesimal strip is .A dydA    The infinitesimal capacitance dC 
of the strip is calculated, and then the total capacitance is found by adding 
together all of the infinitesimal capacitances, in parallel with each other. 

  

� �

0 0 0

0
0

0 0

    

ln
AA

A dA A dy
C dC

d d y d y

A dy A
C dC d y

d y

H H H
T T

H
H T

T T

 o   
� �

   �
�³ ³

 

  � �0 0 0  ln ln ln ln 1
A A d A A A

d A d
d d

H H T H T
T

T T T
�

 � �   �
§ · § ·ª º ¨ ¸ ¨ ¸¬ ¼ © ¹ © ¹

 

 We use the approximation from page A-1 that � � 21
2ln 1 .x x x� | �   

  
2

0 0 01
2ln 1 1

2
A A A A A A A

C
d d d d d

H T H T T H T
T T

 �  �  �
ª º§ · § · § ·
« »¨ ¸ ¨ ¸ ¨ ¸
« »© ¹ © ¹ © ¹¬ ¼

 

 
40. No two capacitors are in series or in parallel in the diagram, and so we may not simplify by that 

method.  Instead use the hint as given in the problem.  We consider point a as the higher voltage.  
The equivalent capacitance must satisfy tot eq .Q C V  
(a) The potential between a and b can be written in three ways.  Alternate but equivalent 

expressions are shown in parentheses. 
   � �2 1 2 3 4 5 4 2 3 5 3 4 1  ;    ;      ;  V V V V V V V V V V V V V V V V �  � �  � �  �   

There are also three independent charge relationships.  Alternate but equivalent expressions are 
shown in parentheses.  Convert the charge expressions to voltage – capacitance expression. 

� �tot 2 5 tot 4 1 2 1 3 4 3 5

eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 3

           ;           ;    

  ;    ;  

Q Q Q Q Q Q Q Q Q Q Q Q

C V C V C V C V C V CV C V CV C V

 �  �  �  �

 �  �  �
 

  We have a set of six equations:   � � � � � �2 1 2 3 4 5 41   ;   2  ;   3V V V V V V V V V V �  � �  �  
      � � � � � �eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 34  ;   5  ;   6C V C V C V C V C V CV C V CV C V �  �  �  

  Solve for eqC as follows. 

   (i) From Eq. (1), 21 .V V V �   Rewrite equations (5) and (6).  V1 has been eliminated. 
     � � � �eq 4 4 1 1 2 2 2 1 1 2 3 35  ;   6C V C V CV CV C V CV CV C V � �  � �  

   (ii) From Eq. (3), 45 .V V V �   Rewrite equation (4).  V5 has been eliminated. 
     � �eq 2 2 5 5 4 4C V C V C V C V � �  

   (iii) From Eq. (2), 3 2 4.V V V V� �   Rewrite equation (6).  V3 has been eliminated. 

     
� �

� � � � � �
2 2 1 1 2 3 3 2 3 4

1 2 3 2 3 4 1 3

6   

 6

C V CV CV C V C V C V

C C C V C V C C V

 � � � � o

� � �  �
 

 
 

d y 

y
T

d 

Jeroen
Marked ingesteld door Jeroen
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Here is the current set of equations. 

     

� �
� �

� � � � � �

eq 2 2 5 5 4

eq 4 4 1 1 2

1 2 3 2 3 4 1 3

 4

 5

6

C V C V C V C V

C V C V CV CV

C C C V C V C C V

 � �

 � �

� � �  �

 

   (iv) From Eq. (4), � �4 2 2 5 eq
5

1
.V C V C V C V

C
 � �   Rewrite equations (5) and (6). 

     
� � � �

� � � � � � � �
5 eq 4 2 2 5 eq 5 1 5 1 2

5 1 2 3 2 3 2 2 5 eq 5 1 3

 5

 6

C C V C C V C V C V C CV C CV

C C C C V C C V C V C V C C C V

 � � � �

� � � � �  �

ª º¬ ¼
ª º¬ ¼

 

   (v) Group all terms by common voltage. 

     
� � � � � �

� � � �> @ � �
5 eq 4 eq 4 5 5 1 4 2 5 1 2

5 1 3 3 eq 3 5 5 1 2 3 3 2 2

 5

 6

C C C C C C C C V C C C C V

C C C C C C C V C C C C C C V

� � �  �

� � �  � � �ª º¬ ¼
 

   (vi) Divide the two equations to eliminate the voltages, and solve for the equivalent  
capacitance. 

     

� �
� �

� �
� �> @

5 eq 4 eq 4 5 5 1 4 2 5 1

5 1 2 3 3 25 1 3 3 eq 3 5

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

    
C C C C C C C C C C C C

C C C C C CC C C C C C C

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

� � � �
 o

� � �� � �

� � � � � � �
 

� � � � � � �

ª º¬ ¼  

(b) Evaluate with the given data.  Since all capacitances are in F,P and the expression involves 
capacitance cubed terms divided by capacitance squared terms, the result will be in F.P  

   

� � � �> @ � �
� � � � � �

� � � � � � � � � �^ ` � � � � � � � �

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

1 2 3 4 5 5 3 4 4 2 3 2 5 3 5

1 3 4 5 2 3 4 5 3 4 5

4.5 8.0 17.0 4.5 12.5 8.0 8.0 4.5 8.0 4.

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C
C C C C C C C C C C C

� � � � � � �
 

� � � � � � �

� � � � � � �
 

� � � � � � �

� � �
 

� � � � � �> @
� � � � � � � � � � � �

5 4.5 4.5
F

4.5 17.0 8.0 17.0 4.5 12.5

6.0 F

P

P

�

� �

 

 

 
41. The stored energy is given by Eq. 24-5. 

� � � �22 9 31 1
2 2 2.8 10 F 2200V 6.8 10 JU CV � �  u  u  

 
42. The energy density is given by Eq. 24-6. 

  � � � �22 12 2 2 7 31 1
02 2 8.85 10 C N m 150V m 1.0 10 J mu EH � �  u  u<  

 
43. The energy stored is obtained from Eq. 24-5, with the capacitance of Eq. 24-2. 

� � � �
� � � �

242 2
3

212 2 2
0

4.2 10 C 0.0013m
2.0 10 J

2 2 2 8.85 10 C N m 0.080 m
Q Q d

U
C AH

�

�

u
    u

u <
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44. (a) The charge is constant, and the tripling of separation reduces the capacitance by a factor of 3. 

   

2

0
122

2
1 2

0

1

2
3

32

Q A
CCU d

AQU C
dC

H

H
     

(b) The work done is the change in energy stored in the capacitor. 

   
2 2 2

2 1 1 1 1
1 0

0

3 2 2
2
Q Q Q d

U U U U U
AC A
d

HH
�  �      

 
45. The equivalent capacitance is formed by C1 in parallel with the series combination of C2 and C3.  

Then use Eq. 24-5 to find the energy stored. 

  

� � � �

2
2 3 3

net 1 2
2 3

22 2 6 33 31
net2 4 4

2

22.6 10 F 10.0V 1.70 10 J

C C C
C C C C

C C C

U C V CV � �

 �  �  
�

   u  u

 

 
46. (a) Use Eqs. 24-3 and 24-5. 

   � � � � � �22 2 6 4 41 1 1
parallel eq 1 22 2 2 0.65 10 F 28V 2.548 10 J 2.5 10 JU C V C C V � � �  �  u  u | u  

 (b) Use Eqs. 24-4 and 24-5. 

   

� � � � � �
6 6

22 21 21 1 1
series eq2 2 2 6

1 2

5 5

0.45 10 F 0.20 10 F
28V

0.65 10 F

5.428 10 J 5.4 10 J

C C
U C V V

C C

� �

�

� �

u u
   

� u

 u | u

§ ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹ © ¹  

 (c) The charge can be found from Eq. 24-5. 

   

� �

� �

4
51

parallel2

5
6

series

2 2.548 10 J2
        1.8 10 C

28V

2 5.428 10 J
3.9 10 C

28V

U
U QV Q Q

V

Q

�

�

�

�

u
 o  o   u

u
  u

 

 

47. The capacitance of a cylindrical capacitor is given in Example 24-2 as 
� �

0

a b

2
.

ln
C

R R
SH

 
l

 

 (a) If the charge is constant, the energy can be calculated by 
2

1
2 .

Q
U

C
  

   � �

� �

� �
� �

2
01

2
a b a b2 12

2
01 2 a b1

2
a b1

2
ln ln 3

1
2 ln

ln 3

Q
R R R RU CC

QU C R R
R RC

SH

SH
    !

l

l
 

  The energy comes from the work required to separate the capacitor components. 
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 (b) If the voltage is constant, the energy can be calculated by 21
2 .U CV  

   � �

� �

� �
� �

0
21

a b a b22 2 2
21

021 1 1 a b

a b

2
ln 3 ln

1
2 ln 3

ln

R R R RU C V C
U CV C R R

R R

SH

SH
    �

l

l
 

Since the voltage remained constant, and the capacitance decreased, the amount of charge on 
the capacitor components decreased.  Charge flowed back into the battery that was maintaining 
the constant voltage. 

 
48. (a) Before the capacitors are connected, the only stored energy is in the initially-charged capacitor.   

Use Eq. 24-5. 

   � � � �22 6 4 41 1
1 1 02 2 2.20 10 F 12.0V 1.584 10 J 1.58 10 JU CV � � �  u  u | u   

 (b) The total charge available is the charge on the initial capacitor.  The capacitance changes to the  
equivalent capacitance of the two capacitors in parallel. 

   
� � � �

� �

2 262 2 2
1 01 1 1

1 1 0 eq 1 2 2 2 2 2 6
eq 1 2

5 5

2.20 10 F 12.0V
  ;    ;  

5.70 10 F

6.114 10 J 6.11 10 J                                                    

Q C V
Q Q CV C C C U

C C C

�

�

� �

u
   �    

� u

 u | u

 

 (c) 5 4 5
2 1 6.114 10 J 1.584 10 J 9.73 10 JU U U � � �'  �  u � u  � u  

 
49. (a)  With the plate inserted,  the capacitance is that of two series capacitors of plate separations 

1d x  and 2 .d d x � �l    
1

0

0 0
i

x d x A
C

A A d
H

H H

�
� �

 �  
�

ª º
« »
¬ ¼

l

l
 

With the plate removed the capacitance is obtained directly from Eq. 24-2. 
0

f

A
C

d
H

  

Since the voltage remains constant the energy of the capacitor will be given by Eq. 24-5 written 
in terms of voltage and capacitance.  The work will be the change in energy as the plate is 
removed. 

� �

� �

21
2

2
20 0 01

2 2

f i f iW U U C C V

A A A V
V

d d d d
H H H

 �  �

 �  �
� �

§ ·
¨ ¸
© ¹

l

l l

 

The net work done is negative.  Although the person pulling the plate out must do work, charge 
is returned to the battery, resulting in a net negative work done. 

 
(b)  Since the charge now remains constant, the energy of the capacitor will be given by Eq. 24-5 

written in terms of capacitance and charge. 
2 2 2

0 0 0

1 1
2 2 2f i

Q Q d d Q
W

C C A A AH H H
�

 �  �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

l l
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  The original charge is 0
0 0

A
Q CV V

d
H

  
� l

 and so 
� �

2

0
20

0 0
2

0

.
2 2

A
V

AVdW
A d

H
H

H
�  

�

§ ·
¨ ¸
© ¹

l
ll

l
 

 

50. (a) The charge remains constant, so we express the stored energy as 
2 2

1 1
2 2

0

,
Q Q x

U
C AH

   where x  

is the separation of the plates.  The work required to increase the separation by dx  is 
,dW Fdx  where F is the force on one plate exerted by the other plate.  That work results in an 

increase in potential energy, .dU  

 
2 2

1
2

0 0

1
    

2
Q dx Q

dW Fdx dU F
A AH H

   o   

(b) We cannot use 
2

0 0 0

Q Q
F QE Q Q

A A
V
H H H

    because the electric field is due to both plates, 

and charge cannot put a force on itself by the field it creates.  By the symmetry of the geometry, 
the electric field at one plate, due to just the other plate, is 1

2 .E   See Example 24-10. 
 
51. (a) The electric field outside the spherical conductor is that of an equivalent point charge at the  

center of the sphere, so 
2

0

1
, .

4
Q

E r R
rSH

 !   Consider a differential volume of radius dr, and 

volume 24 ,dV r drS  as used in Example 22-5.  The energy in that volume is .dU udV   
Integrate over the region outside the conductor. 

 

2 2 2
2 21 1

0 02 2 2 2
0 0 0

2

0

1 1 1
4

4 8 8

8

RR R

Q Q Q
U dU udV E dV r dr dr

r r r

Q
R

H H S
SH SH SH

SH

ff f

      �

 

§ ·
¨ ¸
© ¹

³ ³ ³ ³ ³
 

 (b) Use Eq. 24-5 with the capacitance of an isolated sphere, from the text immediately after  
Example 24-3. 

   
2 2 2

1 1
2 2

0 04 8
Q Q Q

U
C R RSH SH

    

(c) When there is a charge q < Q on the sphere, the potential of the sphere is 
0

1
.

4
q

V
RSH

   The 

work required to add a charge dq to the sphere is then 
0

1
.

4
q

dW Vdq dq
RSH

    That work 

increase the potential energy by the same amount, so 
0

1
.

4
q

dU dW Vdq dq
RSH

     Build up 

the entire charge from 0 to Q, calculating the energy as the charge increases. 

   
2

0 0 00 0

1 1
4 4 8

Q Qq Q
U dU dW Vdq dq qdq

R R RSH SH SH
      ³ ³ ³ ³ ³   
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52. In both configurations, the voltage across the combination of capacitors is the same.  So use 
1
2 .U CV �  

  

� �
� �

� � � �
� �

� �

2 21 21 1 1 1
P P 1 2 S S2 2 2 2

1 2

22 21 21 1
P S 1 2 1 2 1 22 2

1 2

2 2
2 2 2 2 2
1 1 2 2 1 2

1

2

  ;  

5     5     5   

3 9 4 3 5
3 0        

2 2

3 5 3 5
, 2.62,0.382

2 2

C C
U C V C C V U C V V

C C

C C
U U C C V V C C C C

C C

C C C
C C C C C C

C
C

� �  �   
�

 o �  o �  o
�

r � r
� �  o   o

� �
  

 

 
53. First find the ratio of energy requirements for a logical operation in the past to the current energy 

requirements for a logical operation. 

  
� �
� �

221 2
2past past past past

21
2present present presentpresent

20 5.0
220

1 1.5

N CVE C V

E N CV C V
    

§ ·§ · § ·§ ·
¨ ¸¨ ¸ ¨ ¸¨ ¸

© ¹© ¹© ¹© ¹
 

 So past operations would have required 220 times more energy.  Since 5 batteries in the past were 
required to hold the same energy as a present battery, it would have taken 1100 times as many 
batteries in the past.  And if it takes 2 batteries for a modern PDA, it would take 2200 batteries to 
power the PDA in the past.  It would not fit in a pocket or purse.  The volume of a present-day 
battery is � � � �22 30.5cm 4 cm 3cm .V rS S   l   The volume of 2200 of them would be 36600cm , 
which would require a cube about 20 cm in side length. 

 
54. Use Eq. 24-8 to calculate the capacitance with a dielectric. 

  � � � � � �
� �

22
12 2 2 11

0 3

4.2 10 m
2.2 8.85 10 C N m 1.9 10 F

1.8 10 m
A

C K
d

H
�

� �

�

u
  u �  u

u
 

 
55. The change in energy of the capacitor is obtained from Eq. 24-5 in terms of the constant voltage and 

the capacitance. 
� �2 2 21 1 1

f i 0 0 02 2 2 1U U U C V KC V K C V'  �  �  � �  
The work done by the battery in maintaining a constant voltage is equal to the voltage multiplied by 
the change in charge, with the charge given by Eq. 24-1. 

� � � � � � 2
battery f i 0 0 01W V Q Q V C V KC V K C V �  �  � �  

The work done in pulling the dielectric out of the capacitor is equal to the difference between the 
change in energy of the capacitor and the energy done by the battery. 

� � � �

� � � � � � � �

2 21
battery 0 02

22 9 41
02

1 1

1 3.4 1 8.8 10 F 100 V 1.1 10 J

W U W K C V K C V

K C V � �

 ' �  � � � �

 �  � u  u
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56. We assume the charge and dimensions are the same as in Problem 43.  Use Eq. 24-5 with charge and 
capacitance. 

  
� � � �

� � � � � �

262 2 2
1 1 1 1
2 2 2 2 12 2 2 4 2

0 0

420 10 C 0.0013m
289.2 J 290J

7 8.85 10 C N m 64 10 m
Q Q Q d

U
C KC K AH

�

� �

u
     |

u � u
 

 
57. From Problem 10, we have 1535 10 F.C � u   Use Eq. 24-8 to calculate the area. 

  

� � � �
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215 9 6
13 2

0 12 2 2
0

2 2

35 10 F 2.0 10 m 10 m
    3.164 10 m

25 8.85 10 C N m 1m

0.3164 m 0.32 m                           

A Cd
C K A

d K
P

H
H

P P

� �

�

�

u u
 o    u

u �

 |

§ ·
¨ ¸
© ¹  

 Half of the area of the cell is used for capacitance, so 21.5cm  is available for capacitance.  Each 
capacitor is one “bit.” 

  
26

2 7
2 2

10 m 1bit 1byte
1.5cm 5.86 10 bytes 59 Mbytes

10 cm 0.32 m 8bits
P

P
 u |

§ · § ·§ ·
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© ¹© ¹ © ¹

 

 
58. The initial charge on the capacitor is initial initialQ C V .  When the mica is inserted, the capacitance 

changes to final initialC KC , and the voltage is unchanged since the capacitor is connected to the same 
battery.  The final charge on the capacitor is final finalQ C V . 

  
� � � �� � � �9

final initial final initial initial

7

1 7 1 3.5 10 F 32 V

     6.7 10 C

Q Q Q C V C V K C V �

�

'  �  �  �  � u

 u
 

 
59. The potential difference is the same on each half of the capacitor, 

so it can be treated as two capacitors in parallel.  Each parallel 
capacitor has half of the total area of the original capacitor. 

  � �
1 1
2 2 1

1 2 1 0 2 0 1 2 02

A A A
C C C K K K K

d d d
H H H �  �  �  

 
60. The intermediate potential at the boundary of the two dielectrics can 

be treated as the “low” potential plate of one half and the “high” 
potential plate of the other half, so we treat it as two capacitors in 
series.  Each series capacitor has half of the inter-plate distance of 
the original capacitor. 

  
1 1

1 2 0 1 22 2

1 2 1 0 2 0 0 1 2 1 2

1 1 1 2
    

2
d d d K K A K K

C
C C C K A K A A K K d K K

H
H H H

�
 �  �  o  

�
 

 
 
61. The capacitor can be treated as two series capacitors with the same 

areas, but different plate separations and dielectrics.  Substituting 
Eq. 24-8 into Eq. 24-4 gives the effective capacitance. 

11

1 2 0 1 2

1 2 1 0 2 0 1 2 2 1

1 1 d d A K K
C

C C K A K A d K d K
H

H H

��

 �  �  
�

§ ·§ ·
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d K1 K2

d K1

K2

d1 K1

K2d2
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62. (a) Since the capacitors each have the same charge and the same voltage in the initial situation,  

each has the same capacitance of 0

0

.
Q

C
V

   When the dielectric is inserted, the total charge of 

02Q  will not change, but the charge will no longer be divided equally between the two 

capacitors.  Some charge will move from the capacitor without the dielectric � �1C  to the 

capacitor with the dielectric � �2C .  Since the capacitors are in parallel, their voltages will be the 
same. 

   

� �

1 2 1 0 1
1 2

1 2

1 0 0 0 2 0

2
          

2 2
0.48   ;  1.52

1 4.2

Q Q Q Q Q
V V

C C C KC

Q Q Q Q Q Q
K

�
 o  o  o

    
�

 

 (b) 1 0 2 0
1 2 0

1 0 0 2 0 0

0.48 1.52
0.48

3.2
Q Q Q Q

V V V
C Q V C Q V

       

 
63. (a) We treat this system as two capacitors, one with a dielectric,  

and one without a dielectric.  Both capacitors have their high 
voltage plates in contact and their low voltage plates in 
contact, so they are in parallel.  Use Eq. 24-2 and 24-8 for the 
capacitance.  Note that x is measured from the right edge of 
the capacitor, and is positive to the left in the diagram. 

   � � � �
2

1 2 0 0 0 1 1
x x x

C C C K K
d d d

H H H
�

 �  �  � �ª º
« »¬ ¼

l l l l

l
  

 (b) Both “capacitors” have the same potential difference, so use 21
2 .U CV  

   � � � �
2

2 21
1 2 0 0 02 1 1

2
x

U C C V K V
d

H �  � �ª º
« »¬ ¼

l

l
 

 (c) We must be careful here.  When the voltage across a capacitor is constant and a dielectric is  
inserted, charge flows from the battery to the capacitor.  So the battery will lose energy and the 
capacitor gain energy as the dielectric is inserted.  As in Example 24-10, we assume that work is 
done by an external agent � �ncW  in such a way that the dielectric has no kinetic energy.  Then 

the work-energy principle (Chapter 8) can be expressed as ncW U '  or nc .dW dU   This is 
analogous to moving an object vertically at constant speed.  To increase (decrease) the 
gravitational potential energy, positive (negative) work must be done by an outside, non-
gravitational source. 

 

In this problem, the potential energy of the voltage source and the potential energy of the 
capacitor both change as x changes.  Also note that the change in charge stored on the capacitor 
is the opposite of the change in charge stored in the voltage supply. 

 

� � � �

� � � �
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nc cap battery nc 0 battery 02

battery cap2 2 2 2 21 1 1 1
nc 0 0 0 0 0 0 02 2 2 2

2 2
2 0 01

0 02

      

1
1

2

dW dU dU dU F dx d CV d Q V

dQ dQdC dC dC dC dC
F V V V V V V V

dx dx dx dx dx dx dx
K V

V K
d d

H
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Note that this force is in the opposite direction of dx, and so is to the right.  Since this force is 
being applied to keep the dielectric from accelerating, there must be a force of equal magnitude 
to the left pulling on the dielectric.  This force is due to the attraction of the charged plates and 
the induced charge on the dielectric.  The magnitude and direction of this attractive force are 

� �
2

0 0 1 ,  left .
2

V
K

d
H

�
l

  

 
64. (a) We consider the cylinder as two cylindrical capacitors in parallel.  The two “negative plates” are  

the (connected) halves of the inner cylinder (half of which is in contact with liquid, and half of 
which is in contact with vapor).  The two “positive plates” are the (connected) halves of the 
outer cylinder (half of which is in contact with liquid, and half of which is in contact with 
vapor).  Schematically, it is like Figure 24-30 in Problem 59.  The capacitance of a cylindrical 
capacitor is given in Example 24-2. 
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 (b) For the full tank, 1,
h
 

l
 and for the empty tank, 0.

h
 

l
 

  Full:  
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liq V V

a b a b

22
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C K K K
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65. Consider the dielectric as having a layer of equal and opposite charges at each side of the dielectric.  

Then the geometry is like three capacitors in series.  One air gap is taken to be 1,d  and then the other 
air gap is 1 .d d� � l  
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66. By leaving the battery connected, the voltage will not change when the dielectric is inserted, but the 
amount of charge will change.  That will also change the electric field. 

 (a) Use Eq. 24-2 to find the capacitance. 

   � �
2 2

12 2 2 10 10
0 0 3

2.50 10 m
8.85 10 C N m 1.106 10 F 1.11 10 F

2.00 10 m
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u
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u
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 (b) Use Eq. 24-1 to find the initial charge on each plate. 

   � � � �10 8 8
0 0 1.106 10 F 150 V 1.659 10 C 1.66 10 CQ C V � � �  u  u | u  

 

  In Example 24-12, the charge was constant, so it was simple to calculate the induced charge and then 
the electric fields from those charges.  But now the voltage is constant, and so we calculate the fields 
first, and then calculate the charges.  So we are solving the problem parts in a different order. 

  

(d) We follow the same process as in part (f) of Example 24-12. 
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 (e) 
5
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   u | u   

  

 (h) 0
0 0

  
Q

E
A

V
H H

  o  

  
� �� � � �5 2 12 2 2 8

0

8

1.167 10 V m 0.0250 m 8.85 10 C N m 2.582 10 C

2.58 10 C

Q EAH � �

�

  u u �  u

| u
  

(c) � �8 8
ind

1 1
1 2.582 10 C 1 1.84 10 C

3.50
Q Q

K
� � �  u �  u§ · § ·

¨ ¸ ¨ ¸
© ¹ © ¹

 

(f) Because the battery voltage does not change, the potential difference between the plates is  
unchanged when the dielectric is inserted, and so is 150 V .V   

 (g) 
8

102.582 10 C
1.72 10 pF

150 V
Q

C
V

�
�u

   u  

  Notice that the capacitance is the same as in Example 24-12.  Since the capacitance is a constant  
(function of geometry and material, not charge and voltage), it should be the same value. 

 
67. The capacitance will be given by /C Q V .  When a charge Q is placed on one plate and a 

charge   –Q is placed on the other plate, an electric field will be set up between the two plates.  
The electric field in the air-filled region is just the electric field between two charged plates, 

0
0 0

Q
E

A
V
H H

  .  The electric field in the dielectric is equal to the electric field in the air,  



Chapter 24  Capacitance, Dielectrics, Electric Energy Storage 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

123 

 divided by the dielectric constant: 0

0
D

E Q
E

K KAH
  . 

The voltage drop between the two plates is obtained by integrating the electric field between the 
two plates. One plate is set at the origin with the dielectric touching this plate.  The dielectric 
ends at x  l .  The rest of the distance to x d  is then air filled. 

� �
0 0 00 0

d dQdx Qdx Q
V d d

KA A A KH H H
 � �  �  � �§ ·

¨ ¸
© ¹³ ³ ³E x

l

l

l
l

G G  

The capacitance is the ratio of the voltage to the charge. 

� �
0

0

Q Q A
C

QV dd
KA K

H

H

   
� �� �§ ·

¨ ¸
© ¹

ll
ll

  

 
68. Find the energy in each region from the energy density and the volume.  The energy density in the 

“gap” is given by 21
gap 0 gap2 ,u EH and the energy density in the dielectric is given by 21

D D2 Du EH  
2 2

gap gap1 1
0 02 2 ,

E E
K

K K
H H  
§ ·
¨ ¸
© ¹

 where Eq. 24-10 is used. 

  
� �

� � � �
� �

� � � � � �

2
gap1

2 0
D D D D

2
2 gaptotal gap D gap gap D D 1 1

2 20 gap 0

Vol
Vol Vol

1.00 mm
0.222

1.00 mm 3.50 1.00 mm

E
AU U u K

EU U U u u
E A d A

K

K
d Kd

K

H

H H
   

� �
� �

    
� � �� �

l

l l

l

l

l l l
l

 

 
69. There are two uniform electric fields – one in the air, and one in the gap.  They are related by Eq. 24-

10.  In each region, the potential difference is the field times the distance in the direction of the field 
over which the field exists. 

� � � � � � � �

air
air air glass glass air air glass

glass

glass
air

air glass glass

3 3

4

  

5.80
90.0 V

3.00 10 m 5.80 2.00 10 m

2.69 10 V m

     

E
V E d E d E d d

K

K
E V

d K d

� �

 �  � o

 
�

 
u � u

 u

 

 
4

3air
glass

glass

2.69 10 V m
4.64 10 V m

5.80
E

E
K

u
   u  

The charge on the plates can be calculated from the field at the plate, using Eq. 22-5.  Use Eq. 24-
11b to calculate the charge on the dielectric. 

Jeroen
Marked ingesteld door Jeroen
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� � � � � �

� �

plate plate
air

0 0

4 12 2 2 2 7
plate air 0

7 7
ind

  

2.69 10 V m 8.85 10 C N m 1.45m 3.45 10 C

1 1
1 3.45 10 C 1 2.86 10 C

5.80

Q
E

A

Q E A

Q Q
K

V

H H

H � �

� �

  o

  u u �  u

 �  u �  u§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 
70. (a) The capacitance of a single isolated conducting sphere is given after example 24-3. 

   � �
0

12
12 2 2 10

4   

F 1m 10 pF
4 8.85 10 C N m 1.11 10 1.11pF cm

m 100cm 1F

C r

C
r

SH

S � �

 o

 u �  u  
§ ·§ ·§ ·

¨ ¸ ¨ ¸¨ ¸© ¹© ¹ © ¹

  

  And so � � � � � �1.11pF cm     pF cm .C r C r o |   

 (b) We assume that the human body is a sphere of radius 100 cm.  Thus the rule � � � �pF cmC r|   

says that the capacitance of the human body is about 100 pF .  

 (c) A 0.5-cm spark would require a potential difference of about 15,000 V.  Use Eq. 24-1. 
   � � � �100 pF 15,000 V 1.5 CQ CV P    
 
71. Use Eq. 24-5 to find the capacitance. 

  � �
� �

2 51
2 22

2 1200J2
    4.3 10 F

7500 V
U

U CV C
V

� o    u  

 
72. (a) We approximate the configuration as a parallel-plate capacitor, and so use Eq. 24-2 to calculate  

the capacitance. 

   
� � � � � �> @22

12 2 2 12
0 0

12

4.5in 0.0254 m in
8.85 10 C N m 7.265 10 F

0.050 m

7 10 F

A r
C

d d
SS

H H � �

�

   u �  u

| u

 

 (b) Use Eq. 24-1. 

   � � � �12 11 117.265 10 F 9 V 6.539 10 C 7 10 CQ CV � � �  u  u | u  

 (c) The electric field is uniform, and is the voltage divided by the plate separation. 

   
9 V

180 V m 200 V m
0.050 m

V
E

d
   |  

 (d) The work done by the battery to charge the plates is equal to the energy stored by the capacitor.   
Use Eq. 24-5. 

   � � � �22 12 10 101 1
2 2 7.265 10 F 9 V 2.942 10 J 3 10 JU CV � � �  u  u | u  

 (e) The electric field will stay the same, because the voltage will stay the same (since the capacitor  
is still connected to the battery) and the plate separation will stay the same.  The capacitance 
changes, and so the charge changes (by Eq. 24-1), and so the work done by the battery changes 
(by Eq. 24-5). 
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73. Since the capacitor is disconnected from the battery, the charge on it cannot change.  The 
capacitance of the capacitor is increased by a factor of K, the dielectric constant. 

  � �initial initial
initial initial final final final initial initial

final initial

1
    34.0 V 15V

2.2
C C

Q C V C V V V V
C KC

  o      

 
74. The energy is given by Eq. 24-5.  Calculate the energy difference for the two different amounts of 

charge, and then solve for the difference. 

  

� � � � > @

� � � �
� � � �

22 2
2 21 1 1

2 2 2

6
3 31 1

2 23

1
    2   

2 2
17.0 10 F 18.5J

13.0 10 C 17.7 10 C 17.7 mC
13.0 10 C

Q QQ Q Q
U U Q Q Q Q Q

C C C C C

C U
Q Q

Q

�

� �

�

� ' '
 o '  �  � ' �  � ' o

u'
 � '  � u  u  

' u

ª º¬ ¼
 

 
75. The energy in the capacitor, given by Eq. 24-5, is the heat energy absorbed by the water, given by 

Eq. 19-2. 

  � � � �

21
heat 2      

J
2 3.5kg 4186 95 C 22 C

2 kg C 844 V 840 V
3.0 F

U Q CV mc T

mc T
V

C

 o  ' o

q � q
' q

   |

§ ·
¨ ¸
© ¹<

 

 
76. (a) The capacitance per unit length of a cylindrical capacitor with no dielectric is derived in  

Example 24-2, as 
� �

0

outside inside

2
ln

.C
R R

SH
 

l
  The addition of a dielectric increases the capacitance 

by a factor of K. 

   
� �

0

outside inside

2
ln

C K
R R
SH

 
l

 

 (b) 
� �

� �
� �

12 2 2
100

outside inside

2 8.85 10 C N m 2.62
1.1 10 F m

ln ln 9.0 mm 2.5mm
C K

R R

SSH
�

�
u �

   u
l

 

 
77. The potential can be found from the field and the plate separation.  Then the capacitance is found 

from Eq. 24-1, and the area from Eq. 24-8. 

  
� �

� � � �
� � � �
� � � �

6
9 9

4 3

9 3
2

0 12 2 2
0

  ;    

0.675 10 C
3.758 10 F 3.76 10 F

9.21 10 V m 1.95 10 m

3.758 10 F 1.95 10 m
    0.221m

3.75 8.85 10 C N m

V
E Q CV CEd

d

Q
C

Ed

A Cd
C K A

d K
H

H

�

� �

�

� �

�

   o

u
   u | u

u u

u u
 o    

u �

  

 
78. (a) If N electrons flow onto the plate, the charge on the top plate is ,Ne�  and the positive charge  

associated with the capacitor is .Q Ne   Since ,Q CV  we have     ,Ne CV V Ne C o   

showing that V is proportional to N. 
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 (b) Given 1mVV'  and we want 1,N'   solve for the capacitance.  

   
� �19 16 16

3

      

1
1.60 10 C 1.60 10 F 2 10 F

1 10 V

Ne e N
V V

C C
N

C e
V

� � �

�

'
 o '  o

'
  u  u | u

' u

  

(c) Use Eq. 24-8. 

   � � � �
� � � �

2

0 0

16 9 6
7

12 2 2
0

  

1.60 10 F 100 10 m 10 m
7.76 10 m 0.8 m

8.85 10 C N m 3 1m

A
C K K

d d

Cd
K

H H

P
P

H

� �

�

�

  o

u u
   u  

u �
§ ·
¨ ¸
© ¹

l

l

 

 
79. The relative change in energy can be obtained by inserting Eq. 24-8 into Eq. 24-5. 

� �

2
0

0
2

00
1
20

12
2

2

Q A
U CC d

KAQU C K
dC

H

H
     

The dielectric is attracted to the capacitor.  As such, the dielectric will gain kinetic energy as it enters 
the capacitor.  An external force is necessary to stop the dielectric.  The negative work done by this 
force results in the decrease in energy within the capacitor. 

 

Since the charge remains constant, and the magnitude of the electric field depends on the charge, and 
not the separation distance, the electric field will not be affected by the change in distance between 
the plates.  The electric field between the plates will be reduced by the dielectric constant, as given in 
Eq. 24-10. 

0

0 0

/ 1E E K
E E K

   

 
80. (a) Use Eq. 24-2. 

   
� � � �

� �

12 2 2 6 2
7 70

8.85 10 C N m 120 10 m
7.08 10 F 7.1 10 F

1500 m
A

C
d
H

�

� �
u � u

   u | u  

 (b) Use Eq. 24-1. 
   � �� �7 77.08 10 F 3.5 10 V 24.78C 25CQ CV �  u u  |  

 (c) Use Eq. 24-5. 

   � � � �7 8 81 1
2 2 24.78C 3.5 10 V 4.337 10 J 4.3 10 JU QV  u  u | u  

 
81. We treat this as N capacitors in parallel, so that the total capacitance is N times the capacitance of a 

single capacitor.  The maximum voltage and dielectric strength are used to find the plate separation 
of a single capacitor. 

  

3
6

6 6
S

eq 0

100 V 6.0 10 m
3.33 10 m  ;  1800

30 10 V m 3.33 10 m

  

V
d N

E d

A
C NC N K

d
H

�
�

�

u
   u    

u u

  o

l
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� � � �

� � � � � �
6 6

eq
12 2 2 3 3

0

1.0 10 F 3.33 10 m
1.244 1.2

1800 8.85 10 C N m 12.0 10 m 14.0 10 m
C d

K
N AH

� �

� � �

u u
   |

u � u u
 

   
82. The total charge doesn’t change when the second capacitor is connected, since the two-capacitor 

combination is not connected to a source of charge.  The final voltage across the two capacitors must 
be the same.  Use Eq. 24-1. 

  � � � �

0 1 0 1 2 1 1 2 2 1 1 2 1

0 1
2 1

1

12.4 V 5.9 V
3.5 F 3.856 F 3.9 F

5.9 V

Q C V Q Q C V C V C V C V

V V
C C

V
P P P

  �  �  �

� �
   |

§ ·
¨ ¸
© ¹

 

 
83. (a) Use Eq. 24-5 to calculate the stored energy. 

   � � � �22 8 41 1
2 2 8.0 10 F 2.5 10 V 25JU CV �  u u   

 (b) The power is the energy converted per unit time. 

   
� � 5

6

0.15 25JEnergy
9.38 10 W 940 kW

time 4.0 10 s
P

�
   u |

u
 

 
84. The pressure is the force per unit area on a face of the dielectric.  The force is related to the potential 

energy stored in the capacitor by Eq. 8-7, ,dU
F

dx
 �  where x is the separation of the capacitor 

plates. 

  
� � � �

� � � �

2 2
2 2 0 01 1

02 2 2 2

242

12 2 2
0

     ;   
2 2

2 1.0 10 m 40.0 Pa2
170 V

3.1 8.85 10 C N m

A dU K AV F K V
U CV K V F P

x dx x A x

x P
V

K

H H
H

H

�

�

  o  �    o

u
   

u �

§ ·
¨ ¸
© ¹

  

 
85. (a) From the diagram, we see that one group of 4 plates is connected together, and the other group  

of 4 plates is connected together.  This common grouping shows that the capacitors are 
connected  in parallel . 

 (b) Since they are connected in parallel, the equivalent capacitance is the sum of the individual  
capacitances.  The variable area will change the equivalent capacitance. 

   
� � � �

� �

eq 0

4 2
12 2 2 12min

min 0 3

7 7

2.0 10 m
7 7 8.85 10 C N m 7.7 10 F

1.6 10 m

A
C C

d

A
C

d

H

H
�

� �

�

  

u
  u  u

u
<

 

   � � � �
� �

4 2
12 2 2 11max

max 0 3

9.0 10 m
7 7 8.85 10 C N m 3.5 10 F

1.6 10 m
A

C
d

H
�

� �

�

u
  u  u

u
<  

  And so the range is from 7.7 pF to 35pF . 
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86. (a) Since the capacitor is charged and then disconnected from the power supply, the charge is  
constant.  Use Eq. 24-1 to find the new voltage. 

   � � 41
1 1 2 2 2 1

2

8.0pF
constant        7500V 6.0 10 V

1.0pF
C

Q CV CV C V V V
C

  o  o    u   

 (b) In using this as a high voltage power supply, once it discharges, the voltage drops, and it needs  
to be recharged.  So it is not a constant source of high voltage.  You would also have to be sure 
it was designed to not have breakdown of the capacitor material when the voltage gets so high.  
Another disadvantage is that it has only a small amount of energy stored:  21

2U CV  

� � � �212 4 31
2 1.0 10 C 6.0 10 V 1.8 10 J� � u u  u   , and so could actually only supply a small amount 

of power unless the discharge time was extremely short. 
 
87. Since the two capacitors are in series, they will both have the same charge on them. 

� � � �
� � � � � �

1 2 series
series series 1 2

12 12
12series 1

2 12 12
1 series

1 1 1
  ;    

125 10 C 175 10 F
5.15 10 F

175 10 F 25.0V 125 10 C

V
Q Q Q

C Q C C

Q C
C

CV Q

� �

�

� �

    � o

u u
   u

� u � u

 

 
88. (a) The charge can be determined from Eqs. 24-1 and 24-2. 

   
� � � �

� � � �
4 2

12 2 2 11
0 4

11

2.0 10 m
8.85 10 C N m 12 V 4.248 10 C

5.0 10 m

4.2 10 C

A
Q CV V

d
H

�

� �

�

�

u
   u  u

u

| u

<
 

 (b) Since the battery is disconnected, no charge can flow to or from the plates.  Thus the charge is  
constant. 

 114.2 10 CQ � u  
 (c) The capacitance has changed and the charge has stayed constant, and so the voltage has  

changed. 

   
� �

1 1 0 0 0 1 0 0
1 0

1
1 0

0

constant          

0.75mm
12 V 18V

0.50mm

A A
Q CV CV C V V V

d d

d
V V

d

H H  o  o  o

   
 

 (d) The work is the change in stored energy. 

   � � � � � �11 101 1 1 1
1 0 1 02 2 2 2 4.248 10 C 6.0V 1.3 10 JW U QV QV Q V V � � '  �  �  u  u  

 
89. The first capacitor is charged, and so has a certain amount of charge on its plates.  Then, when the 

switch is moved, the capacitors are not connected to a source of charge, and so the final charge is 
equal to the initial charge.  Initially treat capacitors 2C  and 3C  as their equivalent capacitance, 

� � � �2 3
23

2 3

2.0 F 2.4 F
1.091 F.

4.4 F
C C

C
C C

P P
P

P
   

�
  The final voltage across 1C  and 23C  must be the 

same.  The charge on 2C  and 3C  must be the same.  Use Eq. 24-1. 
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  � �

0 1 0 1 23 1 1 23 23 1 1 23 1

1
1 0 1 23

1 23

    

1.0 F
24 V 11.48V

1.0 F 1.091 F

Q C V Q Q C V C V C V C V

C
V V V V

C C
P

P P

  �  �  � o

     
� �

 

  

� � � �
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1 1 1

23 23 23 2 3

2 3
2 3

2 3

1.0 F 11.48V 11.48 C

1.091 F 11.48 V 12.52 C

12.52 C 12.52 C
6.26 V  ;  5.22 V

2.0 F 2.4 F

Q C V

Q C V Q Q

Q Q
V V

C C

P P

P P

P P
P P

   

     

      

 

 To summarize:  1 1 2 2 3 311 C , 11V  ;  13 C , 6.3V  ;  13 C , 5.2 VQ V Q V Q VP P P       

 
90. The metal conducting strips connecting cylinders b and c mean that b and c 

are at the same potential.  Due to the positive charge on the inner cylinder 
and the negative charge on the outer cylinder, cylinders b and c will 
polarize according to the first diagram, with negative charge on cylinder c, 
and positive charge on cylinder b.  This is then two capacitors in series, as 
illustrated in the second diagram.  The capacitance per unit length of a 
cylindrical capacitor is derived in Example 24-2. 
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91. The force acting on one plate by the other plate is equal to the electric field produced by one charged 

plate multiplied by the charge on the second plate. 
2

0 02 2
Q Q

F EQ Q
A AH H

   
§ ·
¨ ¸
© ¹

 

The force is attractive since the plates are oppositely charged.  Since the force is constant, the work 
done in pulling the two plates apart by a distance x is just the force times distance. 

2

02
Q xW Fx
AH

   

The change in energy stored between the plates is obtained using Eq. 24-5. 
2 2 2

2 1 0 0 0

1 1 2
2 2 2

Q Q x x Q xW U
C C A A AH H H

§ ·§ ·
 '  �  �  ¨ ¸¨ ¸

© ¹ © ¹
 

The work done in pulling the plates apart is equal to the increase in energy between the plates. 
 

R a 
Rb

Rc R d 
+

–
+

–

Cyl. d
Cyl. c

Cyl. b
Cyl. a
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92. Since the other values in this problem manifestly have 2 significant figures, we assume that the  
capacitance also has 2 significant figures. 
(a) The number of electrons is found from the charge on the capacitor. 

   
� � � �15

5
19

30 10 F 1.5V
    2.8 10 's

1.60 10 C
CV

Q CV Ne N e
e

�

�

u
  o    u

u
 

 (b) The thickness is determined from the dielectric strength. 

   9
max min 9

min max

1.5V
    1.5 10 m

1.0 10 V m
V V

E d
d E

� o    u
u

 

 (c) The area is found from Eq. 24-8. 
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� �

15 9
13

0 12 2 2
0

30 10 F 1.5 10 m
    2.0 10 m

25 8.85 10 C N m
A Cd

C K A
d K

H
H

� �

�

�

u u
 o    u

u �
 

 
93. Use Eq. 24-2 for the capacitance. 
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� �

12 2 2 4 2
160 0

8.85 10 C N m 1.0 10 m
    9 10 m

1F
A A

C d
d C
H H

� �

�
u � u

 o    u  

  No , this is not practically achievable.  The gap would have to be smaller than the radius of a proton. 
 
94. See the schematic diagram for the arrangement.  The two 

“capacitors” are in series, and so have the same charge.  Thus 
their voltages, which must total 25kV, will be inversely 
proportional to their capacitances.   Let C1 be the glass-filled 
capacitor, and C2 be the vinyl capacitor.  The area of the foot is 
approximately twice the area of the hand, and since there are 
two feet on the floor and only one hand on the screen, the area 

ratio is foot

hand

4
.

1
A
A

  

  

2
1 1 2 2 1 2

1

0 glass hand 0 vinyl foot
1 2

glass vinyl

    

  ;  

C
Q C V C V V V

C

K A K A
C C

d d
H H

  o  

  
 

� � � � � �
� � � � � �

0 vinyl foot

vinyl vinyl foot glass2

0 glass hand1 glass hand vinyl

glass

2
1 2 2 2 2 2

1

3 4 0.63
1.5

5 1 1.0

2.5 25,000 V    10,000 V

K A
d K A dC

K AC K A d
d

C
V V V V V V V

C

H

H
    

 �  �   o  

  

 
95. (a) Use Eq. 24-2 to calculate the capacitance. 

   
� � � �

� �
12 2 2 2

90
0 3

8.85 10 C N m 2.0 m
5.9 10 F

3.0 10 m
A

C
d
H

�

�

�

u �
   u

u
 

  Use Eq. 24-1 to calculate the charge. 

25kV

6.3mm glass

1cm vinyl

hand
feet

floor
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   � � � �9 7 7
0 0 0 5.9 10 F 45V 2.655 10 C 2.7 10 CQ C V � � �  u  u | u  

  The electric field is the potential difference divided by the plate separation. 

   0
0 3

45V
15000 V m

3.0 10 m
V

E
d �

   
u

 

  Use Eq. 24-5 to calculate the energy stored. 

   � � � �22 9 61 1
0 0 02 2 5.9 10 F 45V 6.0 10 JU C V � �  u  u  

 (b) Now include the dielectric.  The capacitance is multiplied by the dielectric constant. 

   � �9 8 8
0 3.2 5.9 10 F 1.888 10 F 1.9 10 FC KC � � �  u  u | u  

The voltage doesn’t change.  Use Eq. 24-1 to calculate the charge. 

 � � � �9 7 7
0 3.2 5.9 10 F 45V 8.496 10 C 8.5 10 CQ CV KC V � � �   u  u | u  

Since the battery is still connected, the voltage is the same as before, and so the electric field 
doesn’t change. 

   0 15000 V mE E   

Use Eq. 24-5 to calculate the energy stored. 

   � � � � � �22 2 9 51 1 1
02 2 2 3.2 5.9 10 F 45V 1.9 10 JU CV KC V � �   u  u  

 
96. (a) For a plane conducting surface, the electric field is given by Eq. 22-5. 

   
� � � � � �6 12 2 2 4 2

max S 0
0 0

7 7

    3 10 N C 8.85 10 C N m 150 10 m

3.98 10 C 4 10 C                                    

Q
E Q E A

A
V

H
H H

� �

� �

  o   u u � u

 u | u

 

 (b) The capacitance of an isolated sphere is derived in the text, right after Example 24-3. 

   � � � �12 2 2 10 10
04 4 8.85 10 C N m 1m 1.11 10 F 1 10 FC rSH S � � �  u �  u | u   

 (c) Use Eq. 24-1, with the maximum charge from part (a) and the capacitance from part (b). 

   
7

10

3.98 10 C
    3586 V 4000 V

1.11 10 F
Q

Q CV V
C

�

�

u
 o    |

u
 

 
97. (a)  The initial capacitance is obtained directly from Eq. 24-8. 

� � � � � �0
0 3

3.7 8.85 pF/m 0.21m 0.14 m
32 nF

0.030 10 m
K A

C
d
H

�
   

u
 

(b) Maximum charge will occur when the electric field between the plates is equal to the dielectric 
strength.  The charge will be equal to the capacitance multiplied by the maximum voltage, 
where the maximum voltage is the electric field times the separation distance of the plates. 

� � � � � �6 3
max 0 0 32 nF 15 10 V/m 0.030 10 m

14 C

Q C V C Ed

P

�   u u

 
 

(c) The sheets of foil would be separated by sheets of paper with 
alternating sheets connected together on each side.  This capacitor 
would consist of 100 sheets of paper with 101 sheets of foil. 

� � � �Al paper101 100 101 0.040 mm 100 0.030 mm

7.0 mm

t d d �  �
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(d) Since the capacitors are in parallel, each capacitor has the same voltage which is equal to the  

total voltage.  Therefore breakdown will occur when the voltage across a single capacitor 
provides an electric field across that capacitor equal to the dielectric strength. 

� � � �6 3
max max 15 10 V/m 0.030 10 m 450 VV E d �  u u     

 

98. From Eq. 24-2, 0 .C A
d
H

   So if 

we plot C vs. A, we should get a 

straight line with a slope of 0 .
d
H

 

  

0

0

12 2 2

12 2

3

slope  

slope

8.85 10 C N m
8606 10 F m

1.03 10 m 1.0 mm

d

d

H

H

�

�

�

 o

 

u �
 

u

 u |

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH24.XLS,” on tab “Problem 24.98.” 

  

C  = 8606 A
R2 = 0.99

0

200
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CHAPTER 25:  Electric Currents and Resistance 
 
Responses to Questions 
 
1.  A battery rating in ampere-hours gives the total amount of charge available in the battery.  
 
2.  The chemical reactions within the cell cause electrons to pile up on the negative electrode. If the 

terminals of the battery are connected in a circuit, then electrons flow from the negative terminal 
because it has an excess of electrons. Once the electrons return to the cell, the electrolyte again 
causes them to move to the negative terminal. 

 
3.  When a flashlight is operated, the battery energy is being used up. 
 
4.  The terminal of the car battery connected to “ground” is actually connected to the metal frame of the 

car. This provides a large “sink” or “source” for charge. The metal frame serves as the common 
ground for all electrical devices in the car, and all voltages are measured with respect to the car’s 
frame. 

 
5.  Generally, water is already in the faucet spout, but it will not come out until the faucet valve is 

opened. Opening the valve provides the pressure difference needed to force water out of the spout. 
The same thing is essentially true when you connect a wire to the terminals of a battery. Electrons 
already exist in the wires. The battery provides the potential that causes them to move, producing a 
current. 

 
6.  Yes. They might have the same resistance if the aluminum wire is thicker. If the lengths of the wires 

are the same, then the ratios of resistivity to cross-sectional area must also be the same for the 
resistances to be the same. Aluminum has a higher resistivity than copper, so if the cross-sectional 
area of the aluminum is also larger by the same proportion, the two wires will have the same 
resistance.  

 
7. If the emf in a circuit remains constant and the resistance in the circuit is increased, less current will 

flow, and the power dissipated in the circuit will decrease. Both power equations support this result. 
If the current in a circuit remains constant and the resistance is increased, then the emf must increase 
and the power dissipated in the circuit will increase.  Both equations also support this result. There is 
no contradiction, because the voltage, current, and resistance are related to each other by V = IR.  

 
8.  When a lightbulb burns out, the filament breaks, creating a gap in the circuit so that no current flows. 
 
9.  If the resistance of a small immersion heater were increased, it would slow down the heating 

process. The emf in the circuit made up of the heater and the wires that connect it to the wall socket 
is maintained at a constant rms value. If the resistance in the circuit is increased, less current will 
flow, and the power dissipated in the circuit will decrease, slowing the heating process. 

 
10.  Resistance is proportional to length and inversely proportional to cross-sectional area. 

(a) For the least resistance, you want to connect the wires to maximize area and minimize length.  
Therefore, connect them opposite to each other on the faces that are 2a by 3a. 

(b) For the greatest resistance, you want to minimize area and maximize length. Therefore, connect  
the wires to the faces that are 1a by 2a. 
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11. When a light is turned on, the filament is cool, and has a lower resistance than when it is hot. The 
current through the filament will be larger, due to the lower resistance. This momentary high current 
will heat the wire rapidly, possibly causing the filament to break due to thermal stress or vaporize. 
After the light has been on for some time, the filament is at a constant high temperature, with a 
higher resistance and a lower current. Since the temperature is constant, there is less thermal stress 
on the filament than when the light is first turned on. 

 
12.  When connected to the same potential difference, the 100-W bulb will draw more current (P = IV). 

The 75-W bulb has the higher resistance (V = IR or P = V²/R).  
 
13. The electric power transferred by the lines is P = IV. If the voltage across the transmission lines is 

large, then the current in the lines will be small. The power lost in the transmission lines is P = I²R. 
The power dissipated in the lines will be small, because I is small. 

 
14.  If the circuit has a 15-A fuse, then it is rated to carry current of no more than 15 A. Replacing the 15-

A fuse with a 25-A fuse will allow the current to increase to a level that is dangerously high for the 
wiring, which might result in overheating and possibly a fire. 

 
15. The human eye and brain cannot distinguish the on-off cycle of lights when they are operated at the 

normal 60 Hz frequency. At much lower frequencies, such as 5 Hz, the eye and brain are able to 
process the on-off cycle of the lights, and they will appear to flicker. 

 
16.  The electrons are not “used up” as they pass through the lamp. Their energy is dissipated as light and 

heat, but with each cycle of the alternating voltage, their potential energy is raised again. As long as 
the electrons keep moving (converting potential energy into kinetic energy, light, and heat) the lamp 
will stay lit.  

 
17. Immediately after the toaster is turned on, the Nichrome wire heats up and its resistance increases. 

Since the (rms) potential across the element remains constant, the current in the heating element 
must decrease.  

 
18.  No. Energy is dissipated in a resistor but current, the rate of flow of charge, is not “used up.”  
 
19. In the two wires described, the drift velocities of the electrons will be about the same, but the current 

density, and therefore the current, in the wire with twice as many free electrons per atom will be 
twice as large as in the other wire. 

 
20. (a) If the length of the wire doubles, its resistance also doubles, and so the current in the wire will  

be reduced by a factor of two. Drift velocity is proportional to current, so the drift velocity will 
be halved. 

(b) If the wire’s radius is doubled, the drift velocity remains the same. (Although, since there are  
more charge carriers, the current will quadruple.) 

(c) If the potential difference doubles while the resistance remains constant, the drift velocity and  
current will also double.  

 
21.  If you turn on an electric appliance when you are outside with bare feet, and the appliance shorts out 

through you, the current has a direct path to ground through your feet, and you will receive a severe 
shock. If you are inside wearing socks and shoes with thick soles, and the appliance shorts out, the 
current will not have an easy path to ground through you, and will most likely find an alternate path. 
You might receive a mild shock, but not a severe one. 

 

Jeroen
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Solutions to Problems 
 
1. Use the definition of current, Eq. 25-1a. 

  18
19

1.30C 1 electron
    1.30A 8.13 10 electrons s

s 1.60 10 C
Q

I
t �

'
 o  u  u
' u

 

 
2. Use the definition of current, Eq. 25-1a. 

  � � � � � � 5    6.7 A 5.0h 3600s h 1.2 10 C
Q

I Q I t
t

'
 o '  '   u
'

 

 
3. Use the definition of current, Eq. 25-1a. 

  
� �� �19

11
6

1200 ions 1.60 10 C ion
5.5 10 A

3.5 10 s
Q

I
t

�

�

�

u'
   u
' u

 

 
4. Solve Eq. 25-2a for resistance. 

  
120V

29
4.2A

V
R

I
   :  

 
5. (a) Use Eq. 25-2b to find the current. 

   
240V

    27.91A 28A
8.6

V
V IR I

R
 o    |

:
 

 (b) Use the definition of current, Eq. 25-1a. 

   � � � � � � 4    27.91A 50min 60s min 8.4 10 C
Q

I Q I t
t

'
 o '  '   u
'

 

 
6. (a) Solve Eq. 25-2a for resistance. 

   
120V

12.63 13
9.5A

V
R

I
   : | :  

 (b) Use the definition of average current, Eq. 25-1a. 

   � � � � � �    9.5A 15min 60s min 8600C
Q

I Q I t
t

'
 o '  '   
'

 

 
7. Use Ohm’s Law, Eq. 25-2a, to find the current.  Then use the definition of current, Eq. 25-1a, to 

calculate the number of electrons per minute. 

21
19

4.5V 2.8C 1 electron 60s electrons
1.1 10

1.6 s 1.60 10 C 1min minute
V Q

I
R t �

'
    u u  u

' : u
 

 
8. Find the potential difference from the resistance and the current. 

  
� � � �

� � � �

5 2 6

6 3

2.5 10 m 4.0 10 m 1.0 10

3100A 1.0 10 3.1 10 V

R

V IR

� � �

� �

 u : u  u :

  u :  u
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9. (a) Use Eq. 25-2b to find the resistance. 

   
12V

20
0.60A

V
R

I
   :  (2 sig. fig.) 

 (b) An amount of charge Q'  loses a potential energy of � �Q V'  as it passes through the resistor.   
The amount of charge is found from Eq. 25-1a. 

   � � � � � � � � � �0.60A 60s 12 V 430JU Q V I t V'  '  '    

 
10. (a) If the voltage drops by 15%, and the resistance stays the same, then by Eq. 25-2b, V IR , the  

current will also drop by 15%. 
   � �final initial0.85 0.85 6.50A 5.525A 5.5AI I   |  

(b) If the resistance drops by 15% (the same as being multiplied by 0.85), and the voltage stays the  
same, then by Eq. 25-2b, the current must be divided by 0.85. 

 initial
final

6.50A
7.647 A 7.6A

0.85 0.85
I

I    |  

 
11. Use Eq. 25-3 to find the diameter, with the area as 2 2 4A r dS S  . 

  
� � � �

� �

8
4

2

4 1.00m 5.6 10 m4 4
    4.7 10 m

0.32
R d

A d R
U

U U
S S S

�

�
u :

  o    u
:

l l l <
  

 
12. Use Eq. 25-3 to calculate the resistance, with the area as 2 2 4A r dS S  . 

  � � � �
� �

8 2
22 3

4 4.5m4
1.68 10 m 4.3 10

1.5 10 m
R

A d
U U

S S
� �

�
   u :  u :

u

l l
<  

 
13. Use Eq. 25-3 to calculate the resistances, with the area as 2 2 4.A r dS S    

2

4
R

A d
U U

S
  

l l
. 

  
� � � � � �
� � � � � �

Al
28Al 22

Al Al Al CuAl
22 8

CuCu Cu Cu Al
Cu 2

Cu

4
2.65 10 m 10.0m 1.8mm

0.64
4 1.68 10 m 20.0m 2.0mm

R dd
R d

d

U
US
UU

S

�

�

u :
    

u :

l

l

l l

<

<
 

 

14. Use Eq. 25-3 to express the resistances, with the area as 2 2 4A r dS S  , and so 
2

4 .R
A d

U U
S

  
l l

 

  

� �

W Cu W Cu2 2
W Cu

8
W

W Cu 8
Cu

4 4
      

5.6 10 m
2.2 mm 4.0mm

1.68 10 m

R R
d d

d d

U U
S S

U
U

�

�

 o  o

u :
   

u :

l l

<
<

 

 The diameter of the tungsten should be 4.0 mm. 
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15. (a) If the wire obeys Ohm’s law, then V IR  or 
1

,I V
R

  showing a linear relationship between I  

and V.  A graph of I vs. V should give a straight line with a slope of 
1
R

 and a y-intercept of 0. 

(b) From the graph and the  
calculated linear fit, we see that 
the wire obeys Ohm’s law. 

  

1
slope   

1
A V

0.720
  1.39

R

R

 o

 

 :

 

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH25.XLS,” on tab “Problem 25.15b.” 

(c) Use Eq. 25-3 to find the resistivity. 

   
� � � �

� �

242
6

3.2 10 m 1.39
    1.0 10 m

4 4 0.11m
AR d R

R
A

SS
U U

�

�
u :

 o     u :
l

l l
<  

  From Table 25-1, the material is nichrome. 
 
16. Use Eq. 25-5 multiplied by Al  so that it expresses resistance instead of resistivity. 

  
� �> @ � �

� �

0 0 0 0

0 1

1 1.15     1 1.15  

0.15 0.15
22C

.0068 C

R R T T R T T

T T

D D

D �

 � �  o � �  o

�    q
q

 

 So raise the temperature by 22 Cq  to a final temperature of 42 Cq . 
 
17. Since the resistance is directly proportional to the length, the length of the long piece must be 4.0  

times the length of the short piece. 
  short long short short short short long4.0 5.0     0.20  , 0.80 �  �  o   l l l l l l l l l l  
 Make the cut at  20% of the length of the wire . 

short long short long0.20  , 0.80     0.2 2.0  , 0.8 8.0R R R R  o   :   :l l l l  

 
18. Use Eq. 25-5 for the resistivity. 

  

� �> @

� �

T Al 0 Al Al 0 0 W

8
0 W

0 1 8
Al 0 Al

1   

1 1 5.6 10 m
1 20 C 1 279.49 C 280 C

2.65 10 m0.00429 C

T T

T T

U U D U

U
D U

�

� �

 � �  o

u :
 � �  q � �  q | q

u :q

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

<
<

 

 
19. Use Eq. 25-5 multiplied by Al  so that it expresses resistances instead of resistivity. 

  � �> @0 01   R R T TD � � o  

  
� �0 1

0

1 1 140
1 20 C 1 2390 C 2400 C

120.0045 C
R

T T
RD �

:
 � �  q � �  q | q

:q

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

I  = 0.720 V

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6
V  (V)

I 
(A

)
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20. Calculate the voltage drop by combining Ohm’s Law (Eq. 25-2b) with the expression for resistance,  
Eq. 25-3. 

  � � � � � �
� �

8

22 3

4 1.68 10 m 26m4
12A 2.5V

1.628 10 m
V IR I I

A d
U U

S S

�

�

u :
     

u

l l <
 

 
21. The wires have the same resistance and the same resistivity. 

� �
2

long longshortshort short
long short 2

1 2 short shortlong

4 2 4
            2

d
R R

A A d dd

U U
SS

 o  o  o  
l ll l

 

 
22.  In each case calculate the resistance by using Eq. 25-3 for resistance. 

 (a) 
� � � �
� � � �

5 2
4 4

2 2

3.0 10 m 1.0 10 m
3.75 10 3.8 10

2.0 10 m 4.0 10 m
x

x
yz

R
A
U

� �

� �

� �

u : u
   u : | u :

u u
l <

  

 (b) 
� � � �
� � � �

5 2
3

2 2

3.0 10 m 2.0 10 m
1.5 10

1.0 10 m 4.0 10 m
y

y
xz

R
A
U � �

�

� �

u : u
   u :

u u

l <
 

 (c) 
� � � �
� � � �

5 2
3

2 2

3.0 10 m 4.0 10 m
6.0 10

1.0 10 m 2.0 10 m
z

z
xy

R
A
U

� �

�

� �

u : u
   u :

u u
l <

 

 
23. The original resistance is 0 0R V I , and the high temperature resistance is R V I , where the two  

voltages are the same.  The two resistances are related by Eq. 25-5, multiplied by Al  so that it 
expresses resistance instead of resistivity. 

  

� �> @

� �

0
0 0 0 0 0

0 0

1

1 1 1
1     1 1 1

1 0.4212A
                                                20.0 C 1 44.1 C

0.3818A0.00429 C

R V I I
R R T T T T T T

R V I I
D

D D D

�

 � � o  � �  � �  � �

 q � �  q
q

§ · § · § ·
¨ ¸¨ ¸ ¨ ¸ © ¹© ¹ © ¹

§ ·
¨ ¸
© ¹

 

 

24. For the cylindrical wire, its (constant) volume is given by 0 0 ,V A A  l l  and so .
V

A  
l

  Combine 

this relationship with Eq. 25-3.  We assume that 0.'l l�  

  

2 2
0 0

0
0 0 0 0

0 0 1
222

0

0

  ;    ;  2

2         
2 2 2

dR
R R

A V A V d V

dR V R V R R R
R

d V R
V

U U U U U

U
UU U

     

' ' ' ' '
' | '  ' o '  o    

l l l l l

l

l l
l l l

ll l l l

 

 This is true for any initial conditions, and so 1
2

0 0

R
R

' '
 

l

l
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25. The resistance depends on the length and area as .R AU l   Cutting the wire and running the wires 
side by side will halve the length and double the area. 

� �1
2 1 1

2 14 42
R R

A A
U U

   
l l

   

 
26. The total resistance is to be 3700 ohms � �totalR  at all temperatures.  Write each resistance in terms of  

Eq.25-5 (with o
0 0 CT  ), multiplied by Al  to express resistance instead of resistivity. 

  
> @ > @

� �
total 0C C 0N N 0C 0C C 0N 0N N

0C 0N 0C C 0N N

1 1

      

R R T R T R R T R R T

R R R R T

D D D D

D D

 � � �  � � �

 � � �
 

For the above to be true, the terms with a temperature dependence must cancel, and the terms 
without a temperature dependence must add to totalR .  Thus we have two equations in two unknowns. 

  

� �

� �

0C C
0C C 0N N 0N

N

0C N C0C C
total 0C 0N 0C

N N

0     

 

R
R R T R

RR
R R R R

D
D D

D

D DD
D D

 � o  �

�
 �  �  o

 

  � �
� � � �

� � � �

1o

N
0C total 1 1o o

N C

0N total 0C

0.0004 C
3700 1644 1600

0.0004 C 0.0005 C

3700 1644 2056 2100

R R

R R R

D
D D

�

� �  :  : | :
� �

 �  :� :  : | :

 

 
27. We choose a spherical shell of radius r and thickness dr as a differential element.  The area of this 

element is 24 .rS   Use Eq. 25-3, but for an infinitesimal resistance.  Then integrate over the radius of 
the sphere. 

22

11

2 2
1 2

1 1 1 1 1
        

4 4 4 4

rr

rr

d dr dr
R dR R dR

A A r r r r r
U U

SV SV SV SV
 o   o    �  �

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

³ ³
l l

 

 

28. (a) Let the values at the lower temperature be indicated by a subscript “0”.  Thus 0
0 0

0

R
A

U 
l

  

0
0 2

0

4
.

d
U
S

 
l

  The change in temperature results in new values for the resistivity, the length, and 

the diameter.  Let D  represent the temperature coefficient for the resistivity, and TD  represent 
the thermal coefficient of expansion, which will affect the length and diameter. 

 

� �> @ � �> @
� �> @^ `

� �> @
� �> @

� �> @
� �> @ � �> @ � �> @

0 T 0 00
0 0 022 2

0 T 00 T 0

0
0 T 0 0 0

T 0

4 1 14 4
1

11

1
    1 1   

1

T T T T
R T T

A d d T Td T T

T T
R R T T R T T

T T

D D
U U U D U

S S DS D

D
D D

D

� � � �
   � �  

� �� �

� �
 o � �  � � o

� �

ll l l
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� �
� �

� �
� � � � � � � �

0
0 1 6 1

0 T

140 12
20 C

12 0.0045C 140 5.5 10 C

20 C 2405 C 2425 C 2400 C

R R
T T

R RD D � � �

� :� :
 �  q �

� : q � : u q

 q � q  q | q

ª º¬ ¼  

  (b) The net effect of thermal expansion is that both the length and diameter increase, which lowers  
the resistance. 

   

� �> @
� �> @^ ` � �> @

� � � �

2 20 2
0 T 00 0

22
00 0 0 T 00 T 00 2
0

6 1

0

0 0

4
1 1

4 11

1
    0.9869

1 5.5 10 C 2405 C

% change 100 1 100 1.31 1.3%

T TR d dd
R d T Td T T

d

R R R
R R

U DS
DDU

S

� �

� �
    

� �� �

  
� u q q

�
  �  � | �

ª º¬ ¼
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l

ll

l l l

 

  The net effect of resistivity change is that the resistance increases. 

   

� �> @ � �> @ � � � �
0
2

10 00
0

00 0 0
0 2

0

0

0 0

4
1

1 1 0.0045C 2405 C
4

11.82

% change 100 1 100 1082 1100%

     

T TR d
T T

R
d

R R R
R R

U
U DUS

D
U UU

S

�� �
    � �  � q q

 

�
  �  |

ª º¬ ¼

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

l

l

 

 
29. (a) Calculate each resistance separately using Eq. 25-3, and then add the resistances together to find  

the total resistance. 

   

� � � �
� �

� � � �
� �

8

Cu Cu
Cu 22 3

8

Al Al
Al 22 3

total Cu Al

4 1.68 10 m 5.0m4
0.054567

1.4 10 m

4 2.65 10 m 5.0m4
0.086074

1.4 10 m

0.054567 0.086074 0.140641 0.14

R
A d

R
A d

R R R

U U
S S

U U
S S

�

�

�

�

u :
    :

u

u :
    :

u

 �  :� :  : | :

l l

l l

<

<
 

 (b) The current through the wire is the voltage divided by the total resistance. 

   
3

total

85 10 V
0.60438A 0.60A

0.140641
V

I
R

�u
   |

:
 

 (c) For each segment of wire, Ohm’s law is true.  Both wires have the current found in (b) above. 

   
� � � �

� � � �
Cu Cu

Al Al

0.60438A 0.054567 0.033V

0.60438A 0.086074 0.052V

V IR

V IR

  : |

  : |
 

  Notice that the total voltage is 85 mV. 
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30. (a) Divide the cylinder up into concentric cylindrical shells of  
radius r, thickness dr, and length l.  See the diagram.  The 
resistance of one of those shells, from Eq. 25-3, is found.  Note 
that the “length” in Eq. 25-3 is in the direction of the current flow, 
so we must substitute in dr for the “length” in Eq. 25-3.  The area 
is the surface area of the thin cylindrical shell.  Then integrate over 
the range of radii to find the total resistance. 

   
2

1

2

1

" "
      ;

2

ln
2 2

r

r

dr
R dR

A r
dr r

R dR
r r

U U
S

U
U

S S

 o  

   ³ ³

l

l

l l

 

 (b) Use the data given to calculate the resistance from the above  
formula. 

 
� �

5
42

1

15 10 m 1.8mm
ln ln 5.8 10

2 2 0.024m 1.0mm
r

R
r

U
S S

�
�u :

   u :
§ ·
¨ ¸
© ¹l

<
 

 (c) For resistance along the axis, we again use Eq. 25-3, but the current is flowing in the direction  
of length l.   The area is the cross-sectional area of the face of the hollow cylinder. 

   � �
� � � �

� � � �

5

2 2 2 23 3
2 1

15 10 m 0.024m
0.51

1.8 10 m 1.0 10 m
R

A r r
U U

S S

�

� �

u :
    :

� u � uª º
¬ ¼

l l <
 

 
31. Use Eq. 25-6 to find the power from the voltage and the current. 
  � � � �0.27 A 3.0V 0.81WP IV    

 
32. Use Eq. 25-7b to find the resistance from the voltage and the power. 

  
� �22 2 240V

    17
3300 W

V V
P R

R P
 o    :  

 
33. Use Eq. 25-7b to find the voltage from the power and the resistance. 

  � � � �
2

    3300 0.25W 29V
V

P V RP
R

 o   :   

 
34. Use Eq. 25-7b to find the resistance, and Eq. 25-6 to find the current.  

(a) � �22 2 110V
    161.3 160

75W
V V

P R
R P

 o    : | :  

 
75W

    0.6818A 0.68A
110V

P
P IV I

V
 o    |   

 (b) � �22 2 110V
    27.5 28

440W
V V

P R
R P

 o    : | :  

  
440W

    4.0A
110V

P
P IV I

V
 o     

 
 

r1

r 

dr 

r2 
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35. (a) From Eq. 25-6, if power P is delivered to the transmission line at voltage V, there must be a  
current .I P V   As this current is carried by the transmission line, there will be power losses 
of 2I R  due to the resistance of the wire.  This power loss can be expressed as  2P I R'   

2 2 .P R V   Equivalently, there is a voltage drop across the transmission lines of .V IRc    

Thus the voltage available to the users is ,V V c�  and so the power available to the users is  

� � 2 2 .P V V I VI V I VI I R P I Rc c c �  �  �  �   The power loss is  � �2P P P P P I Rc'  �  � �  

2 2 2 .I R P R V   

(b) Since 
2

1
,P

V
' v  V should be as large as possible to minimize .P'  

 

36. (a) Since 
2 2

    
V V

P R
R P

 o   says that the resistance is inversely proportional to the power for a  

constant voltage, we predict that the 850 W setting has the higher resistance. 

 (b) 
� �22 120V

17
850 W

V
R

P
   :  

 (c) 
� �22 120V

12
1250 W

V
R

P
   :  

 
37. (a) Use Eq. 25-6 to find the current. 

   
95W

    0.83A
115V

P
P IV I

V
 o     

 (b) Use Eq. 25-7b to find the resistance. 

   � �22 2 115V
    140

95W
V V

P R
R P

 o   | :  

 
38. The power (and thus the brightness) of the bulb is proportional to the square of the voltage,  

according to Eq. 25-7b, 
2V

P
R

 .  Since the resistance is assumed to be constant, if the voltage is cut 

in half from 240 V to 120V, the power will be reduced by a factor of 4.  Thus the bulb will appear 
only about  1/4 as bright  in the United States as in Europe. 

 
39. To find the kWh of energy, multiply the kilowatts of power consumption by the number of hours in 

operation. 

  � � � � � � � �1kW 1h
Energy in kW in h 550W 6.0min 0.055kWh

1000W 60min
P t   

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

To find the cost of the energy used in a month, multiply times 4 days per week of usage, times 4 
weeks per month, times the cost per kWh. 

  
kWh 4d 4 week 9.0cents

Cost 0.055 7.9cents month
d 1week 1month kWh

 
§ ·§ ·§ · § ·  ¨ ¸ ¨ ¸¨ ¸¨ ¸© ¹ © ¹© ¹© ¹
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40. To find the cost of the energy, multiply the kilowatts of power consumption by the number of hours  
in operation times the cost per kWh. 

  � � � �1kW 24h $0.095
Cost 25W 365day $21

1000 W 1day kWh
 |

§ · § ·§ ·
¨ ¸¨ ¸ ¨ ¸© ¹© ¹ © ¹

 

 
41. The A h<  rating is the amount of charge that the battery can deliver.  The potential energy of the  

charge is the charge times the voltage. 

  � � � � 63600s
75A h 12V 3.2 10 J 0.90kWh

1h
U QV   u  

§ ·
¨ ¸
© ¹

<   

 
42. (a) Calculate the resistance from Eq. 25-2b and the power from Eq. 25-6. 

   � � � �3.0V
7.895 7.9          0.38A 3.0V 1.14 W 1.1W

0.38A
V

R P IV
I

   : | :    |  

 (b) If four D-cells are used, the voltage will be doubled to 6.0 V.  Assuming that the resistance of  
the bulb stays the same (by ignoring heating effects in the filament), the power that the bulb 

would need to dissipate is given by Eq. 25-7b, 
2V

P
R

 . A doubling of the voltage means the 

power is increased by a factor of  4  .  This should not be tried because the bulb is probably not 
rated for such a high wattage.  The filament in the bulb would probably burn out, and the glass 
bulb might even explode if the filament burns violently. 

 
43. Each bulb will draw an amount of current found from Eq. 25-6. 

  bulb    
P

P IV I
V

 o   

 The number of bulbs to draw 15 A is the total current divided by the current per bulb. 

  
� �� �total

total bulb

120 V 15 A
    24 bulbs

75 W
VIP

I nI n n
V P

  o     

 
44. Find the power dissipated in the cord by Eq. 25-7a, using Eq. 25-3 for the resistance. 

  
� � � � � �

� �
22 2 2 2 8

22 2 2

4 5.4 m4
15.0 A 1.68 10 m

4 0.129 10 m

15.62 W 16 W

P I R I I I
A d d

U U U
S S S

�

�
     u :

u

 |

l l l
<

 

 
45. Find the current used to deliver the power in each case, and then find the power dissipated in the  

resistance at the given current. 

  � �
� �

� �

2
2

dissipated 2

25

dissipated 2412,000 V

         = 

7.5 10 W
3.0 11719 W

1.2 10 V

P P
P IV I P I R R

V V

P

 o   

u
 :  

u

 

  
� �
� �

� �
25

4
dissipated 2450,000 V

7.5 10 W
3.0 675W        difference 11719 W 675W 1.1 10 W

5 10 V
P

u
 :   �  u

u
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46. (a) By conservation of energy and the efficiency claim, 75% of the electrical power dissipated by  
the heater must be the rate at which energy is absorbed by the water. 

   � � heat water
emitted by absorbed
electromagnet by water

0.75     0.75   
Q mc T

P IV
t t

'
 o   o  

   � � � � � �
� � � � � �

0.120 kg 4186J kg 95 C 25 C
8.139 A 8.1A

0.75 0.75 12 V 480s
mc T

I
Vt

q � q'
   |  

 (b) Use Ohm’s law to find the resistance of the heater. 

   
12 V

    1.5
8.139 A

V
V IR R

I
 o    :  

 
47. The water temperature rises by absorbing the heat energy that the electromagnet dissipates.  Express 

both energies in terms of power, which is energy per unit time. 

 
� � � �

� � � �

heat water
electric to heat

water

      

17.5A 240 V
0.154 kg s 0.15kg s

4186J kg C 6.50C

Q mc T
P P IV

t t
m IV
t c T

'
 o   o

   |
' q q<

 

 This is 154 mL s.  
 
48. For the wire to stay a constant temperature, the power generated in the resistor is to be dissipated by 

radiation.  Use Eq. 25-7a and 19-18, both expressions of power (energy per unit time).  We assume 
that the dimensions requested and dimensions given are those at the higher temperature, and do not 
take any thermal expansion effects into account.  We also use Eq. 25-3 for resistance. 

  

� � � �

� �
� � � �

� � � � � � � �

2 4 4 2 4 4
high low high low2

1/ 31/ 3 2 82

2 4 4 4 42 8 2 4
high low

5

4
      

4 15.0 A 5.6 10 m4

1.0 5.67 10 W m K 3100 K 293K

9.92 10 m 0.099 mm

I R A T T I d T T
d

I
d

T T

U
HV HVS

S

U
S HV S

�

�

�

 � o  � o

u :
  

� u �

 u |

§ ·§ ·
¨ ¸¨ ¸¨ ¸ ¨ ¸ª º© ¹ ¬ ¼© ¹

l
l

<

<
 

 
49. Use Ohm’s law and the relationship between peak and rms values. 

  rms
peak rms

220V
2 2 2 0.12 A

2700
V

I I
R

    
:

  

 
50. Find the peak current from Ohm’s law, and then find the rms current from Eq. 25-9a. 

  � �peak
peak rms peak

180 V
0.47368A 0.47 A      2 0.47368A 2 0.33A

380
V

I I I
R

   |    
:

 

 
51. (a) When everything electrical is turned off, no current will be flowing into the house, even though  

a voltage is being supplied.  Since for a given voltage, the more resistance, the lower the 
current, a zero current corresponds to an infinite resistance. 

 (b) Use Eq. 25-7a to calculate the resistance. 

   � �
� �

22 2 120 V
    = 96

2 75W
V V

P R
R P

 o   :  
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52. The power and current can be used to find the peak voltage, and then the rms voltage can be found  
from the peak voltage. 

  � �peak
rms rms rms rms

peak

2 1500 W2
    390 V

5.4 A2

I P
P I V V V

I
  o     

 
53. Use the average power and rms voltage to calculate the peak voltage and peak current. 
 (a) � �peak rms2 2 660 V 933.4 V 930 VV V   |  

 (b) 
� �peak

rms rms rms peak
rms

2 1800 W2
    3.9 A

660 V2

I P
P I V V I

V
  o     

 
54. (a) We assume that the 2.5 hp is the average power, so the maximum power is twice that, or 5.0 hp,  

as seen in Figure 25-22. 

   
746W

5.0hp 3730W 3700W
1hp

 |
§ ·
¨ ¸
© ¹

 

 (b) Use the average power and the rms voltage to find the peak current. 

   
� �> @1

peak 2
rms rms rms peak

rms

2 3730 W2
    11A

240 V2

I P
P I V V I

V
  o     

 
55. (a) The average power used can be found from the resistance and the rms voltage by Eq. 25-10c. 

   � �22
rms 240 V

1309 W 1300 W
44

V
P

R
   |

:
 

(b) The maximum power is twice the average power, and the minimum power is 0. 
� �max min2 2 1309 W 2600 W       0 WP P P  |   

 
56. (a) Find rms.V   Use an integral from Appendix B-4, page A-7. 

   

1/ 2

1/ 2 1/ 22 2 2
0 0 0

rms 0
0

0

4
sin

1 2
sin

82 2 2

T

T
t

t V t V VTV V dt
T T T

T

S
S

S
  �   

ª º§ ·§ ·
¨ ¸« »¨ ¸ª º § ·§ · © ¹« »¨ ¸¨ ¸« » ¨ ¸© ¹ « » © ¹¬ ¼ ¨ ¸¨ ¸« »© ¹¬ ¼

³  

(b) Find rms.V  

  � �
1/ 2 1/ 2 1/ 2/ 2 2

22 2 0 0
rms 0

0 0 / 2

1 1 1
0 0

2 2

T T T

T

V T V
V V dt V dt dt

T T T T
  �  �  
ª º ª º ª º
« » « » « »

¬ ¼¬ ¼ ¬ ¼
³ ³ ³  

 
57. (a) We follow the derivation in Example 25-14.  Start with Eq. 25-14, in absolute value. 

   

� �
� �

� �

� � � �
� � � � � � � �

d d 2
2 D1

2D

6 3
10

d 223 3 3 19 3

4
    

1 mole
1 mole

4 2.3 10 A 63.5 10 kg
5.1 10 m s

6.02 10 8.9 10 kg m 1.60 10 C 0.65 10 m

j I I I m
j nev v

ne neA N e dN
e d

m

v

U S
U S

S

� �

�

� �

 o     

u u
  u

u u u u

§ · ª º¨ ¸ ¬ ¼© ¹  
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 (b) Calculate the current density from Eq. 25-11. 

   
� �
� �

6
2 2

22 2 4

4 2.3 10 A4
6.931A m 6.9 A m

6.5 10 m

I I I
j

A r dS S S

�

�

u
     

u
|   

 (c) The electric field is calculated from Eq. 25-17. 

� � � �8 2 71
    1.68 10 m 6.931A m 1.2 10 V mj E E jU

U
� � o   u :  u<  

    
58. (a) Use Ohm’s law to find the resistance. 

   
0.0220 V

    0.02933 0.029
0.75A

V
V IR R

I
 o    : | :  

 (b) Find the resistivity from Eq. 25-3. 

   
� � � �

� �

232
8 8

  

0.02933 1.0 10 m
1.589 10 m 1.6 10 m

5.80 m

R
A

RA R r

U

SS
U

�

� �

 o

: u
    u : | u :

l

l l
< <

 

 (c) Use Eq. 25-11 to find the current density. 

   
� �

5 2 5 2
22

0.75
2.387 10 A m 2.4 10 A m

0.0010 m
I I

j
A rS S

    u | u  

 (d) Use Eq. 25-17 to find the electric field. 

   

� � � �8 5 2 3 3

1
  

1.589 10 m 2.387 10 A m 3.793 10 V m 3.8 10 V m

j E

E j

U

U � � �

 o

  u : u  u | u<

 

 (e) Find the number of electrons per unit volume from the absolute value of Eq. 25-14. 

   � � � �
5 2

28 3
d 5 19

d

2.387 10 A m
    8.8 10 e m

1.7 10 m s 1.60 10 C
j

j nev n
v e � �

�u
 o    u

u u
    

 
59. We are given a charge density and a speed (like the drift speed) for both types of ions.  From that we 

can use Eq. 25-13 (without the negative sign) to determine the current per unit area.  Both currents 
are in the same direction in terms of conventional current – positive charge moving north has the 
same effect as negative charge moving south – and so they can be added. 

  
� � � � � � � � � �

� � � � � �

d

12 3 19 6
d dHe O

11 3 19 6

2 2

  

2.8 10 ions m 2 1.60 10 C ion 2.0 10 m s

                                        7.0 10 ions m 1.60 10 C ion 6.2 10 m s

2.486 A m 2.5A m , North

I neAv

I
nev nev

A
�

�

 o

 �  u u u �

u u u

 |

ª º¬ ¼

ª º¬ ¼
 

 
60. The magnitude of the electric field is the voltage change per unit meter. 

  
3

6
8

70 10 V
7.0 10 V m

1.0 10 m
V

E
x

�

�

' u
   u
' u
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61. The speed is the change in position per unit time. 

  
2 27.20 10 m 3.40 10 m

35 m s
0.0063s 0.0052s

x
v

t

� �' u � u
   
' �

 

Two measurements are needed because there may be a time delay from the stimulation of the nerve 
to the generation of the action potential. 

 
62. The power is the work done per unit time.  The work done to move a charge through a potential 

difference is the charge times the potential difference.  The charge density must be multiplied by the 
surface area of the cell (the surface area of an open tube, length times circumference) to find the 
actual charge moved. 

  � � � �� �7 23 19 6
2

9

mol ions C
   3 10 6.02 10 1.6 10 0.10 m 20 10 m 0.030 V

m s mol ion

   5.4 10 W

W QV Q
P V

t t t

S� � �

�

   

 u u u u

 u

§ ·§ ·§ ·
¨ ¸¨ ¸¨ ¸
© ¹© ¹© ¹<

 

 
63. The energy supplied by the battery is the energy consumed by the lights. 

  � � � � � �
supplied consumed       

85A h 3600s h 12V 1h
39913s 11.09 h 11h

92 W 3600s

E E Q V Pt

Q V
t

P

 o '  o

'
    |

§ ·
¨ ¸
© ¹

<  

 
64. The ampere-hour is a unit of charge. 

� � 1C s 3600s
1.00A h 3600 C

1A 1 h
 

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

<  

 
65. Use Eqs. 25-3 and 25-7b. 

  
� � � �
� � � �

2 2

2 2

2

242 2

8

2

4
  ;    

4

1.5V 5.0 10 m
1.753m 1.8m

4 4 1.68 10 m 15W

V V
R P

A r d R
d

V d
P

U
U U

US S
S

SS
U

�

�

     o

u
   |

u :

l l l

l

l
<

 

If the voltage increases by a factor of 6 without the resistance changing, the power will increase by a 
factor of 36.  The blanket would theoretically be able to deliver 540 W of power, which might make 
the material catch on fire or burn the occupant. 

 
66. Use Eq. 25-6 to calculate the current. 

  
746 W

    6.22 A
120 V

P
P IV I

V
 o     

 
67. From Eq. 25-2b, if R V I , then G I V  

  
0.48A

0.16S
3.0 V

I
G

V
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68. Use Eq. 25-7b to express the resistance in terms of the power, and Eq. 25-3 to express the resistance  
in terms of the wire geometry. 

  � � � � � �
� �

2 2

2 2

82
4

22 2

            4

4 9.71 10 m 3.5m 1500 W4
4     2.3 10 m

110 V

V V
P R R

R P A r d

V P
d

d P V

U U U
S S

U
U
S S S

�

�

 o     

u :
 o    u

l l l

l l <
 

 
69. (a) Calculate the total kWh used per day, and then multiply by the number of days and the cost per  

kWh. 
� � � � � � � � � � � � � �

� � � �

1.8kW 2.0 h d 4 0.1kW 6.0 h d 3.0 kW 1.0 h d 2.0 kWh d

             11.0 kWh d

$0.105
Cost 11.0 kWh d 30d $34.65 $35 per month

kWh

� � �

 

  |§ ·
¨ ¸
© ¹

 

 (b) The energy required by the household is 35% of the energy that needs to be supplied by the  
power plant. 

   

� � � �

� � � �

� � � �

� �

Household Energy 0.35 coal mass coal energy per mass   

1000 W 3600s
11.0 kWh d 365d

kW 1hHousehold Energy
coal mass

0.35 coal energy per mass kcal 4186J
0.35 7500

kg 1kcal

               1315kg

 o

  

 

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

1300 kg of coal|

 

 

70. To deliver 15 MW of power at 120 V requires a current of 
6

515 10 W
1.25 10 A

120 V
P

I
V

u
   u .   

Calculate the power dissipated in the resistors using the current and the resistance. 

 

� � � � � �
� �

� � � � � � � � � �

22 2 2 2 8
22 2 3

7

7

5 2 1.0 m
4 4 1.25 10 A 1.68 10 m

5.0 10 m

   2.674 10 W

1kW $0.090
Cost Power time rate per kWh 2.674 10 W 1h

1000 W kWh

       $2407 $2,400 per hour per meter

L L L
P I R I I I

A r d
U U U

S S S
�

�
     u u :

u

 u

  u

 |

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

<

 

 
71. (a) Use Eq. 25-7b to relate the power to the voltage for a constant resistance. 

   
� �
� �

� �
� �

2 22
105

2 2
117

105 V 105 V
    0.805 or a 19.5% decrease

117 V 117 V

RPV
P

R P R
 o     

(b) The lower power output means that the resistor is generating less heat, and so the resistor’s 
temperature would be lower.  The lower temperature results in a lower value of the resistance, 
which would increase the power output at the lower voltages.  Thus the decrease would be  
smaller than the value given in the first part of the problem. 
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72. Assume that we have a meter of wire, carrying 35 A of current, and dissipating 1.5 W of heat.  The  

power dissipated is 2
RP I R , and the resistance is R

A
U

 
l

. 

  

� � � � � �
� �

2 2 2 2
2 2

8
2 3

4
  

1.68 10 m 1.0 m4
2 2 35A 4.2 10 m

1.5W

R

R R

P I R I I I
A r d

d I I
P P

U U U
S S

U U
S S S

�

�

    o

u :
    u

l l l

l l <
 

 
73. (a)   The resistance at the operating temperature can be calculated directly from Eq. 25-7. 

� �22 2 120 V
190

75W
V V

P R
R P

 o    :  

(b) The resistance at room temperature is found by converting Eq. 25-5 into an equation for  
resistances and solving for 0.R  

� �> @

� �> @ � �� �

0 0

0 1
0

1

192
15

1 1 0.0045K 3000 K 293K

R R T T

R
R

T T

D

D �

 � �

:
   :

� � � �ª º¬ ¼

 

 
74. (a) The angular frequency is 210 rad sZ  . 

   
210 rad s

33.42 Hz 33Hz
2 2

f
Z
S S

   |  

 (b) The maximum current is 1.80 A. 

   max
rms

1.80 A
1.27 A

2 2
I

I     

 (c) For a resistor, V IR . 
   � � � � � � � �1.80 A sin 210 24.0 43.2sin 210 VV IR t t  :   

 
75. (a) The power delivered to the interior is 65% of the power drawn from the source. 

   interior
interior source source

950 W
0.65     1462 W 1500 W

0.65 0.65
P

P P P o    |  

 (b) The current drawn is current from the source, and so the source power is used to calculate the  
current. 

 source
source source

source

1462 W
    12.18A 12 A

120 V
P

P IV I
V

 o    |  

 
76. The volume of wire is unchanged by the stretching.  The volume is equal to the length of the wire  

times its cross-sectional area, and since the length was increased by a factor of 1.20, the area was 
decreased by a factor of 1.20.  Use Eq. 25-3. 

� �20 0 0 0
0 0 0

00 0

1.20
     1.20           1.20 1.44 1.44

1.20
1.20

A
R A R R

AA A A
U U U U        :
l l l l

l l  
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77. The long, thick conductor is labeled as conductor number 1, and the short, thin conductor is labeled  

as number 2.  The power transformed by a resistor is given by Eq. 25-7b, 2P V R , and both have 
the same voltage applied. 

  

� �1 2
1 2 1 2 1 2 1 2

1 2

2
1 1 1 2 2 2 2 1

1 22
2 2 2 1 1 1 1 2

          2      4  diameter 2diameter

1
4 2     : 2 :1

2

R R A A
A A

P V R R A A
P P

P V R R A A

U U

U
U

     

     u   

l l
l l

l l

l l

  

 
78. The heater must heat 3108m  of air per hour from o5 C  to o20 C , and also replace the heat being lost 

at a rate of 850 kcal/h.  Use Eq. 19-2 to calculate the energy needed to heat the air.  The density of 
air is found in Table 13-1. 

  

� �
3

3

m kg kcal kcal
    108 1.29 0.17 15C 355

h m kg C h

kcal kcal kcal 4186J 1h
Power required 355 850 1205 1401W 1400 W

h h h kcal 3600s

Q m
Q mc T c T

t t
 ' o  '  q  

q

 �   |

§ · § ·§ ·
¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹

§ ·§ ·
¨ ¸¨ ¸© ¹© ¹

<
 

 
79. (a) Use Eq. 25-7b. 

   � �22 2 240 V
    20.57 21

2800 W
V V

P R
R P

 o    : | :  

 (b) Only 75% of the heat from the oven is used to heat the water.  Use Eq. 19-2. 

   

� �

� �

� � � � � �

� �
� �

oven

oven

0.75 Heat absorbed by water   

1kg
0.120 L 4186J kg C 85C

1L
20.33s 20s 2 sig. fig.

0.75 0.75 2800 W

P t mc T

mc T
t

P

  ' o

q q
'

   |

§ ·
¨ ¸
© ¹

<  

 (c) � � � �11cents 1h
2.8 kW 20.33s 0.17 cents

kWh 3600s
  

 
80. (a) The horsepower required is the power dissipated by the frictional force, since we are neglecting  

the energy used for acceleration. 

 � � � � 1m s 1hp
240 N 45 km hr 3000W 4.0 hp

3.6 km hr 746 W
P Fv    

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 (b) The charge available by each battery is 595A h 95C s 3600s 3.42 10 CQ    u< < , and so the  
total charge available is 24 times that.  The potential energy of that charge is the charge times 
the voltage.  That energy must be delivered (batteries discharged) in a certain amount of time to 
produce the 3000 W necessary.  The speed of the car times the discharge time is the range of the 
car between recharges. 

        
U QV QV d

P t
t t P v

  o   o  

  
� � � �524 3.42 10 C 12 V

410 km
240 N

QV QV QV
d vt v v

P Fv F

u
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81. The mass of the wire is the density of copper times the volume of the wire, and the resistance of the  

wire is given by Eq. 25-3.  We represent the mass density by mU  and the resistivity by U . 

  
� � � �

� � � �

� � � � � �
� �

m m

3 3 8
m

8
2 41

2

              

0.0155kg 12.5
35.997 m 36.0 m

8.9 10 kg m 1.68 10 m

4 1.68 10 m 35.997 m4
    2.48 10 m

12.5

R A m A
A R R

mR

A d d
R R

U U
U U U

U U

U U
S

S S

�

�

�

 o    o

:
   |

u u :

u :
  o    u

:

l l l

l

l l

l l

<

<

 

 
82. The resistance can be calculated from the power and voltage, and then the diameter of the wire can 

be calculated from the resistance. 

  
� � � �

� � � � � �
� �

2 2 2

2 21 1
2 2

8
4 4

22

               

4 100 10 m 3.8 m 95W4
1.787 10 m 1.8 10 m

120 V

V V L L V L
P R R

R P A Pd d

LP
d

V

U U U
S S

U
S S

�

� �

 o    o  o

u :
   u | u

<
 

 
83. Use Eq. 25-7b. 

 (a) 
� �22 120 V

1200 W
12

V
P

R
   

:
 

 (b) 
� �22 120 V

103 W 100 W
140

V
P

R
   |

:
 (2 sig. fig.) 

 
84. Use Eq. 25-7b for the power in each case, assuming the resistance is constant. 

  
� �
� �

2
2

13.8V 13.8V

22
12.0 V 12.0 V

13.8
1.3225 32% increase

12.0

V RP

P V R
     

 
85. Model the protons as moving in a continuous beam of cross-sectional area A.  Then by Eq. 25-13,  

dI neAv , where we only consider the absolute value of the current.  The variable n is the number 

of protons per unit volume, so 
N

n
A

 
l

, where N is the number of protons in the beam and A is the 

circumference of the ring.  The “drift” velocity in this case is the speed of light. 

 d d d  
N N

I neAv eAv ev
A

   o
l l

 

 
� � � �

� � � �
3

12
19 8

d

11 10 6300 m
1.4 10 protons

1.60 10 C 3.00 10 m s
I

N
ev

�

�

u
   u

u u
l

 

 
86. (a) The current can be found from Eq. 25-6. 
        40W 120 V 0.33A      40W 12 V 3.3AA A A B B BI P V I P V I P V        

Jeroen
Marked ingesteld door Jeroen



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

152 

 
 (b) The resistance can be found from Eq. 25-7b. 

   
� � � �2 22 22 120 V 12 V

     360        3.6
40 W 40 W

A B
A B

A B

V VV
R R R

P P P
    :    :  

 (c) The charge is the current times the time. 

   
� � � �

� �� �

     0.33A 3600s 1200 C

              3.3A 3600s 12,000C

A A

B B

Q It Q I t

Q I t

    

   
 

 (d) The energy is the power times the time, and the power is the same for both bulbs. 

   � � � � 5     40 W 3600s 1.4 10 JA BE Pt E E    u  
(e) Bulb B requires a larger current, and so should have larger diameter connecting wires to avoid  

overheating the connecting wires. 
 
87. (a) The power is given by P IV . 
   � � � �14 A 220 V 3080W 3100 WP IV   |  

 (b) The power dissipated is given by 2
RP I R , and the resistance is R

A
U

 
l

. 

   
� � � � � �

� �

8
22 2 2 2

22 2 3

4 1.68 10 m 15m4
14 A 23.73W

1.628 10 m

    24 W

RP I R I I I
A r d
U U U

S S S

�

�

u :
      

u

|

l l l <

 

 (c) � � � � � �
� �

8
22

22 3

4 1.68 10 m 15m4
14 A 14.92 W 15W

2.053 10 m
R

L
P I

d
U
S S

�

�

u :
   |

u

<
 

 (d) The savings is due to the power difference. 

   
� � � �1kW 12 h $0.12

Savings 23.73W 14.92 W 30d
1000 W 1d 1kWh

            $0.3806 / month 38cents per month

 �

 |

§ · § ·§ ·
¨ ¸ ¨ ¸¨ ¸
© ¹ © ¹© ¹  

 
88. The wasted power is due to losses in the wire.  The current in the wire can be found by I P V . 

 (a) 
2 2 2 2

2
2 2 2 2 2 2

4
R

P P L P L P L
P I R R

V V A V r V d
U U U

S S
      

  � �
� �

� � � �
� �

82

2 23

4 1.68 10 m 25.0 m1750 W
    16.954 W 17.0 W

120 V 2.59 10 mS

�

�

u :
  |

u

<
 

 (b) � �
� �

� � � �
� �

822

2 22 2 3

4 1.68 10 m 25.0 m1750 W4
6.70 W

120 V 4.12 10 m
R

P L
P

V d
U
S S

�

�

u :
   

u

<
 

 
89. (a) The D-cell provides 25 mA at 1.5 V for 820 h, at a cost of $1.70. 

   � � � � � � 1kW
Energy 1.5V 0.025A 820 h 0.03075kWh

1000 W
Pt VIt    

§ ·
¨ ¸
© ¹

 



Chapter 25  Electric Currents and Resistance 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

153 

  
$1.70

Cost kWh $55.28 kWh $55 kWh
0.03075kWh

  |  

(b) The AA-cell provides 25 mA at 1.5 V for 120 h, at a cost of $1.25. 

  
� � � � � � 1kW

Energy 1.5V 0.025A 120 h 0.0045kWh
1000 W

$1.25
Cost kWh $277.78 kWh $280 kWh

0.0045kWh

Pt VIt    

  |

§ ·
¨ ¸
© ¹  

The D-cell is 
$55.28 kWh

550 as costly
$0.10 kWh

.| u   The AA-cell is 
$277.78 kWh

2800 ascostly
$0.10 kWh

.| u  

 
90. The electrons are assumed to be moving with simple harmonic motion.  During one cycle, an object 

in simple harmonic motion will move a distance equal to the amplitude from its equilibrium point.  
From Eq. 14-9a, we know that max ,v AZ  where Z is the angular frequency of oscillation.  From 
Eq. 25-13 in absolute value, we see that max max .I neAv   Finally, the maximum current can be 
related to the power by Eqs. 25-9 and 25-10.  The charge carrier density, n, is calculated in Example 
25-14.  

  

� �
� � � � � � � � � �

1
rms rms max rms2

max max
2

rms

7
228 3 19 3

2

4
4 2 550 W

5.6 10 m
2 60 Hz 8.4 10 m 1.60 10 C 1.7 10 m 120 V

P I V I V

v I P
A

dneA ne V
SZ Z Z

S S
�

� � �

  

   

  u
u u u

 

 The electron will move this distance in both directions from its equilibrium point. 
 
91. Eq. 25-3 can be used.  The area to be used is the cross-sectional area of the pipe. 

  � �
� � � �

� � � �outside inside

8
4

2 22 2 2 2

1.68 10 m 10.0 m
1.34 10

2.50 10 m 1.50 10 m
R

A r r
U U

S S

�

�

� �

u :
    u :

� u � uª º
¬ ¼

l l <
 

 
92. We assume that all of the current that enters at a leaves at b, so that the current is the same at each 

end.  The current density is given by Eq. 25-11. 

  
� �

� �
� �

� �
� �

� �

5 2
a 2 22 31

a 2

5 2
b 2 22 31

b 2

4 2.0 A4
4.1 10 A m

2.5 10 m

4 2.0 A4
1.6 10 A m

4.0 10 m

I I I
j

A aa

I I I
j

A bb

SS S

SS S

�

�

     u
u

     u
u
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93. Using Eq. 25-3, we find the infinitesimal resistance 
first of a thin vertical slice at a horizontal distance 
x from the center of the left side towards the center 
of the right side.  Let the thickness of that slice be 
dx.  That thickness corresponds to the variable l  in 
Eq. 25-3.  The diameter of this slice is 

� � .x
a b a� �

l
  Then integrate over all the slices to 

find the total resistance. 

  

� �

� � � �

2

1
4

2
0 1

4
0

      

4 1 4

dx
R dR

A x
a b a

dx
R dR

xb a abx a b aa b a

U U
S

U U
U

S S
S

 o  o

� �

   �  
� � �� �

§ ·
¨ ¸
© ¹

§ ·§ · ¨ ¸¨ ¸ © ¹© ¹

³ ³

l

l

l

l

l l

ll

 

 

94. The resistance of the filament when the flashlight is on is 
3.2 V

16
0.20 A

V
R

I
   : .  That can be used 

with a combination of Eqs. 25-3 and 25-5 to find the temperature. 

  

� �> @

� �

0 0

o o o
0 1o

0

1   

1 1 16
1 20 C 1 2168 C 2200 C

1.50.0045 C

R R T T

R
T T

R

D

D �

 � � o

:
 � �  � �  |

:

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 
95. When the tank is empty, the entire length of the wire is in a non-superconducting state, and so has a 

non-zero resistivity, which we call .U   Then the resistance of the wire when the tank is empty is 

given by 0
0 .

V
R

A I
U  

l
  When a length x of the wire is superconducting, that portion of the wire 

has 0 resistance.  Then the resistance of the wire is only due to the length ,x�l and so 

0 .
x x x

R R
A A

U U
� � �

   
l l l l

l l
  This resistance, combined with the constant current, gives 

.V IR  

  � �0
0 0 0

0 0

1 1     1
V x x V

V IR R V V f f
R V

�
   �  � o  �

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

l

l l
 

 Thus a measurement of the voltage can give the fraction of the tank that is filled with liquid helium. 
 
 
 
 
 
 
 
 
 

 0 

x

dx
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96. We plot resistance vs. temperature.   
The graph is shown as follows, with no 
curve fitted to it.  It is apparent that a 
linear fit will not be a good fit to this 
data.  Both quadratic and exponential 
equations fit the data well, according to 
the R-squared coefficient as given by 
Excel.  The equations and the 
predictions are given below. 

  
� �4 0.0442

exp 30.1 10 TR e� u :

 � �4 2 4
quad 7.39 10 8200 25.9 10R T T u � � u :ª º¬ ¼  

Solving these expressions for 57,641R  :  (using the spreadsheet) gives exp 37.402 CT  q  and 

quad 37.021 CT  q .  So the temperature is probably in the range between those two values: 

37.021 C 37.402 C .Tq � � q   The average of those two values is 37.21 C .T  q   The spreadsheet 
used for this problem can be found on the Media Manager, with filename “PSE4_ISM_CH25.XLS,” 
on tab “Problem 25.96.” 

  

As an extra comment, how might you choose between the exponential and quadratic fits?  While 
they both give almost identical predictions for this intermediate temperature, they differ significantly 
at temperatures near 0 C.q  The exponential fit would give a resistance of about 301,000:  at 0 C,q  
while the quadratic fit would give a resistance of about 259,000 :  at 0 C.q   So a measurement of 
resistance near 0 Cq might be very useful. 

  
 

0

2

4

6

8

10

12

14

20 25 30 35 40 45 50
T  (oC)

R
 (1

04  :
)



 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

156 

CHAPTER 26:  DC Circuits 
 
Responses to Questions 
 
1.  Even though the bird’s feet are at high potential with respect to the ground, there is very little 

potential difference between them, because they are close together on the wire. The resistance of the 
bird is much greater than the resistance of the wire between the bird’s feet. These two resistances are 
in parallel, so very little current will pass through the bird as it perches on the wire. When you put a 
metal ladder up against a power line, you provide a direct connection between the high potential line 
and ground. The ladder will have a large potential difference between its top and bottom. A person 
standing on the ladder will also have a large potential difference between his or her hands and feet.  
Even if the person’s resistance is large, the potential difference will be great enough to produce a 
current through the person’s body large enough to cause substantial damage or death. 

 
2. Series: The main disadvantage of Christmas tree lights connected in series is that when one bulb 

burns out, a gap is created in the circuit and none of the bulbs remains lit. Finding the burned-out 
bulb requires replacing each individual bulb one at a time until the string of bulbs comes back on. As 
an advantage, the bulbs are slightly easier to wire in series.  

 

Parallel: The main advantage of connecting the bulbs in parallel is that one burned-out bulb does not 
affect the rest of the strand, and is easy to identify and replace. As a disadvantage, wiring the bulbs 
in parallel is slightly more difficult. 

 
3.  Yes. You can put 20 of the 6-V lights in series, or you can put several of the 6-V lights in series with 

a large resistance. 
 
4.  When the bulbs are connected in series, they have the same current through them. R2, the bulb with 

the greater resistance, will be brighter in this case, since P = I²R. When the bulbs are connected in 
parallel, they will have the same voltage across them. In this case, R1, the bulb with the lower 
resistance, will have a larger current flowing through it and will be brighter: P = V²/R. 

 
5.  Double outlets are connected in parallel, since each has 120 V across its terminals and they can be 

used independently. 
 
6.  Arrange the two batteries in series with each other and the two bulbs in parallel across the combined 

voltage of the batteries. This configuration maximizes the voltage gain and minimizes the equivalent 
resistance, yielding the maximum power. 

 
7. The battery has to supply less power when the two resistors are connected in series than it has to 

supply when only one resistor is connected. 
R

V
IVP

2

  , so if V is constant and R increases, the 

power decreases. 
 
8. The overall resistance decreases and more current is drawn from the source. A bulb rated at 60-W 

and 120-V has a resistance of 240 ȍ. A bulb rated at 100-W and 120-V has a resistance of 144 ȍ. 
When only the 60-W bulb is on, the total resistance is 240 ȍ. When both bulbs are lit, the total 
resistance is the combination of the two resistances in parallel, which is only 90 ȍ.  

 
9.  No. The sign of the battery’s emf does not depend on the direction of the current through the battery. 

Yes, the terminal voltage of the battery does depend on the direction of the current through the 
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battery. Note that the sign of the battery’s emf in the loop equation does depend on the direction the 
loop is traversed (+ in the direction of the battery’s potential, – in the opposite direction), and the 
terminal voltage sign and magnitude depend on whether the loop is traversed with or against the 
current. 

 
10.  When resistors are connected in series, the equivalent resistance is the sum of the individual 

resistances, Req,series = R1 + R2 + …. The current has to go through each additional resistance if the 
resistors are in series and therefore the equivalent resistance is greater than any individual resistance. 
In contrast, when capacitors are in parallel the equivalent capacitance is equal to the sum of the 
individual capacitors, Ceq,parallel = C1 + C2 + …. Charge drawn from the battery can go down any one 
of the different branches and land on any one of the capacitors, so the overall capacitance is greater 
than that of each individual capacitor. 

 

When resistors are connected in parallel, the current from the battery or other source divides into the 
different branches and so the equivalent resistance is less than any individual resistor in the circuit. 
The corresponding expression is 1/Req,parallel = 1/R1 + 1/R2 + …. The formula for the equivalent 
capacitance of capacitors in series follows this same form, 1/Ceq,series = 1/C1 + 1/C2 + …. When 
capacitors are in series, the overall capacitance is less than the capacitance of any individual 
capacitor. Charge leaving the first capacitor lands on the second rather than going straight to the 
battery.  
 

Compare the expressions defining resistance (R = V/I) and capacitance (C = Q/V). Resistance is 
proportional to voltage, whereas capacitance is inversely proportional to voltage. 

 
11. When batteries are connected in series, their emfs add together, producing a larger potential. The 

batteries do not need to be identical in this case. When batteries are connected in parallel, the 
currents they can generate add together, producing a larger current over a longer time period. 
Batteries in this case need to be nearly identical, or the battery with the larger emf will end up 
charging the battery with the smaller emf. 

 
12.  Yes. When a battery is being charged, current is forced through it “backwards” and then Vterminal = 

emf + Ir, so Vterminal  > emf.  
 
13. Put the battery in a circuit in series with a very large resistor and measure the terminal voltage. With 

a large resistance, the current in the circuit will be small, and the potential across the battery will be 
mainly due to the emf. Next put the battery in parallel with the large resistor (or in series with a 
small resistor) and measure the terminal voltage and the current in the circuit. You will have enough 
information to use the equation Vterminal = emf – Ir to determine the internal resistance r. 

 
14.  No.  As current passes through the resistor in the RC circuit, energy is dissipated in the resistor. 

Therefore, the total energy supplied by the battery during the charging is the combination of the 
energy dissipated in the resistor and the energy stored in the capacitor.  

 
15. (a) Stays the same; (b) Increases; (c) Decreases; (d) Increases; (e) Increases; 

(f) Decreases;  (g) Decreases; (h) Increases; (i) Remains the same. 
 
16.  The capacitance of a parallel plate capacitor is inversely proportional to the distance between the 

plates:     (C = İ0A/d).  As the diaphragm moves in and out, the distance between the plates changes 
and therefore the capacitance changes with the same frequency. This changes the amount of charge 
that can be stored on the capacitor, creating a current as the capacitor charges or discharges. The 
current oscillates with the same frequency as the diaphragm, which is the same frequency as the 
incident sound wave, and produces an oscillating Voutput. 
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17. See the adjacent figure. If both switches are connected to the 
same wire, the circuit is complete and the light is on. If they are 
connected to opposite wires, the light will remain off.  

 
 
 
 
18.  In an analog ammeter, the internal resistor, or shunt resistor, has a small value and is in parallel with 

the galvanometer, so that the overall resistance of the ammeter is very small. In an analog voltmeter, 
the internal resistor has a large value and is in series with the galvanometer, and the overall 
resistance of the voltmeter is very large.  
 

19. If you use an ammeter where you need to use a voltmeter, you will short the branch of the circuit. 
Too much current will pass through the ammeter and you will either blow the fuse on the ammeter 
or burn out its coil. 

 
20. An ammeter is placed in series with a given circuit element in order to measure the current through 

that element. If the ammeter did not have very low (ideally, zero) resistance, its presence in the 
circuit would change the current it is attempting to measure by adding more resistance in series. An 
ideal ammeter has zero resistance and thus does not change the current it is measuring.  

 

 A voltmeter is placed in parallel with a circuit element in order to measure the voltage difference 
across that element. If the voltmeter does not have a very high resistance, than its presence in 
parallel will lower the overall resistance and affect the circuit. An ideal voltmeter has infinite 
resistance so that when placed in parallel with circuit elements it will not change the value of the 
voltage it is reading. 

 
21. When a voltmeter is connected across a resistor, the voltmeter is in parallel with the resistor. Even if 

the resistance of the voltmeter is large, the parallel combination of the resistor and the voltmeter will 
be slightly smaller than the resistor alone. If Req decreases, then the overall current will increase, so 
that the potential drop across the rest of the circuit will increase. Thus the potential drop across the 
parallel combination will be less than the original voltage drop across the resistor. 

 
22. A voltmeter has a very high resistance. When it is connected to the battery very little current will 

flow. A small current results in a small voltage drop due to the internal resistance of the battery, and 
the emf and terminal voltage (measured by the voltmeter) will be very close to the same value. 
However, when the battery is connected to the lower-resistance flashlight bulb, the current will be 
higher and the voltage drop due to the internal resistance of the battery will also be higher. As a 
battery is used, its internal resistance increases. Therefore, the terminal voltage will be significantly 
lower than the emf: Vterminal = emf – Ir. A lower terminal voltage will result in a dimmer bulb, and 
usually indicates a “used-up” battery. 

 
23. (a) With the batteries in series, a greater voltage is delivered to the lamp, and the lamp will burn  
  brighter.  
 (b)  With the batteries in parallel, the voltage across the lamp is the same as for either battery alone.  

  Each battery supplies only half of the current going through the lamp, so the batteries will last 
twice as long. 
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Solutions to Problems 
 
1. See Figure 26-2 for a circuit diagram for this problem.  Using the same analysis as in Example 26-1,  

the current in the circuit is I
R r

 
�
e

.  Use Eq. 26-1 to calculate the terminal voltage. 

 (a) 
� � � �

� �ab

81.0
6.00V 5.93V

81.0 0.900

R r r R
V Ir r

R r R r R r

� � :
 �  �     

� � � � :
§ ·
¨ ¸
© ¹

e ee
e e e  

(b) � �
� �ab

810
6.00V 5.99 V

810 0.900

R
V

R r

:
   

� � :
e  

 

2. See the circuit diagram below.  The current in the circuit is I.  The voltage 
ab

V  is given by Ohm’s law 

to be 
ab

V IR .  That same voltage is the terminal voltage of the series EMF.  

 

 
� � � � � � � � � �

� � � � � � � �
ab ab

11
44

4    and   

1.5V 0.45A 12
4     0.333 0.3

0.45A

V Ir Ir Ir Ir Ir V IR

IR
Ir IR r

I

 � � � � � � �  �  

� :�
�  o    : | :

e e e e e

e
e

 

 
3. We take the low-resistance ammeter to have no resistance.  The 

circuit is shown.  The terminal voltage will be 0 volts. 

 
ab

1.5V
0    0.060

25A
V Ir r

I
 �  o    :

e
e  

 
4. See Figure 26-2 for a circuit diagram for this problem.  Use Eq. 26-1. 

  

ab
ab

ab
ab

12.0V 8.4 V
    0.038

95A

8.4 V
    0.088

95A

V
V Ir r

I

V
V IR R

I

� �
 � o    :

 o    :

e
e

 

 
5. The equivalent resistance is the sum of the two resistances:  

eq 1 2R R R � .  The current in the circuit is then the voltage 

divided by the equivalent resistance:  
eq 1 2

I
R R R

  
�

e e
.  The 

voltage across the 2200-: resistor is given by Ohm’s law. 

  � �2
2200 2 2

1 2 1 2

2200
12.0V 9.3V

650 2200

R
V IR R

R R R R

:
     

� � :� :
e

e  

 
 

Ie e e e

R

r rrr
ab

A

ab

Ie
r

Ie

1R
2R
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6. (a) For the resistors in series, use Eq. 26-3, which says the resistances add linearly. 

� � � �eq 3 45 3 65 330R  : � :  :  

 (b) For the resistors in parallel, use Eq. 26-4, which says the resistances add reciprocally. 

   

� � � �
� � � �

� � � �
� � � �

eq

eq

3 65 3 451 1 1 1 1 1 1 3 3
 

45 45 45 65 65 65 45 65 65 45

65 45
8.9

3 65 3 45

R

R

: � :
 � � � � �  �  o

: : : : : : : : : :

: :
  :

: � :

 

 
7. (a) The maximum resistance is made by combining the resistors in series. 

   eq 1 2 3 680 720 1200 2.60 kR R R R � �  : � : � :  :  

 (b) The minimum resistance is made by combining the resistors in parallel. 

   
eq 1 2 3

1 1

eq

1 2 3

1 1 1 1
  

1 1 1 1 1 1
270

680 720 1200

R R R R

R
R R R

� �

 � � o

 � �  � �  :
: : :

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 
8. The equivalent resistance of five 100-:  resistors in parallel is found, and then that resistance is 

divided by 10:  to find the number of 10-:  resistors needed. 

  � �
1 1

eq

1 2 3 4 5

1 1 1 1 1 5 20
20 10     2

100 10
R n n

R R R R R

� �
:

 � � � �   :  : o   
: :

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 
9. Connecting nine of the resistors in series will enable you to make 

a voltage divider with a 4.0 V output.  To get the desired output, 
measure the voltage across four consecutive series resistors. 

 

� �

� � � � � �

eq

eq

ab

9 1.0      
9.0

9.0V
4.0 4.0 4.0 4.0V

9.0 9.0

R I
R

V I

 :   
:

 :  :  :  
: :

e e

e
 

 
10. The resistors can all be connected in series. 

  � �eq
3 1.70k 5.10kR R R R � �  :  :  

 The resistors can all be connected in parallel. 

  
1

eq

eq

1 1 1 1 3 1.70k
    567

3 3

R
R

R R R R R

� :
 � � o     :§ ·

¨ ¸
© ¹

 

Two resistors in series can be placed in parallel with the third. 

� �
eq

eq

2 1.70k1 1 1 1 1 3 2
   1.13k

2 2 3 3

R
R

R R R R R R R

:
 �  �  o    :

�
 

Two resistors in parallel can be placed in series with the third. 

� �
1

eq

1 1 3
1.70k 2.55k

2 2

R
R R R

R R

�

 � �  �  :  :§ ·
¨ ¸
© ¹

 

I
e

4.0:5.0:

ab
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11. The resistance of each bulb can be found from its power rating. 

  
� �22 2 12.0V

    36
4.0W

V V
P R

R P
 o    :  

 Find the equivalent resistance of the two bulbs in parallel. 

  
eq

eq

1 1 1 2 36
    18

2 2

R
R

R R R R

:
 �  o    :  

The terminal voltage is the voltage across this equivalent resistance.  
Use that to find the current drawn from the battery. 

 ab ab ab
ab eq

eq

2
    

2

V V V
V IR I

R R R
 o     

Finally, use the terminal voltage and the current to find the internal resistance, as in Eq. 26-1. 

  � �
� �

ab ab ab
ab

ab ab

12.0V 11.8V
    36 0.305 0.3

2 2 2 11.8V

V V V
V Ir r R

VI V
R

� � � �
 � o     :  : | :

§ ·
¨ ¸
© ¹

e e
e

E
 

 
12. (a) Each bulb should get one-eighth of the total voltage, but let us prove that instead of assuming it.   

Since the bulbs are identical, the net resistance is 
eq 8R R .  The current flowing through the  

bulbs is then tot tot
tot eq

eq

    
8

V V
V IR I

R R
 o   .  The voltage across one bulb is found from Ohm’s 

law. 

tot tot 110V
13.75V 14V

8 8 8

V V
V IR R

R
     |  

 (b) 
� �

tot tot 110V
    32.74 33

8 8 8 0.42 A

V V
I R

R I
 o    : | :  

  � � � �22 0.42 A 32.74 5.775W 5.8WP I R  :  |  

 
13. We model the resistance of the long leads as a single resistor r.  Since the bulbs are in parallel, the 

total current is the sum of the current in each bulb, and so 8 RI I .  The voltage drop across the long 

leads is � � � �leads
8 8 0.24 A 1.4 2.688VRV Ir I r   :  .  Thus the voltage across each of the parallel 

resistors is 
tot leads

110V 2.688V 107.3VRV V V �  �  .  Since we have the current through each 

resistor, and the voltage across each resistor, we calculate the resistance using Ohm’s law. 
107.3V

    447.1 450
0.24A

R
R R

R

V
V I R R

I
 o    :  :  

The total power delivered is 
tot

P V I , and the “wasted” power is 2I r .  The fraction wasted is the 

ratio of those powers. 

� � � �2

tot tot

8 0.24A 1.4
fraction wasted 0.024

110V

I r Ir

IV V

:
     

So about 2.5% of the power is wasted. 
 
14. The power delivered to the starter is equal to the square of the current in the circuit multiplied by the 

resistance of the starter.  Since the resistors in each circuit are in series we calculate the currents as 
the battery emf divided by the sum of the resistances. 

r
I

R

R

e
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2 22 22
eq 0eqS S

2
0 0 S 0 0eq eq S C

2
0.02 0.15

0.40
0.02 0.15 0.10

R RP I R I r R
P I R I R R r R R

§ · § ·§ · § ·�
     ¨ ¸ ¨ ¸¨ ¸ ¨ ¸¨ ¸ ¨ ¸ � �© ¹ © ¹© ¹ © ¹

§ ·: � :
  ¨ ¸: � :� :© ¹

e

e
 

 
15. To fix this circuit, connect another resistor in parallel with the 480-: resistor so that the equivalent  

resistance is the desired 370 :. 

  

1 1

2

eq 1 2 eq 1

1 1 1 1 1 1 1
    1615 1600

370 480
R

R R R R R

� �

 � o  �  �  : | :
: :

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

 So solder a 1600-: resistor in parallel with the 480-: resistor. 
 
16. (a) The equivalent resistance is found by combining the 820 : and 680 : resistors in parallel, and  

then adding the 960 : resistor in series with that parallel combination. 

   

1

eq

1 1
960 372 960 1332 1330

820 680
R

�

 � � :  : � :  : | :
: :

§ ·
¨ ¸
© ¹

 

(b) The current delivered by the battery is 3

eq

12.0V
9.009 10 A

1332

V
I

R
�   u

:
.  This is the  

current in the 960 : resistor.  The voltage across that resistor can be found by Ohm’s law. 

� � � �3

470 9.009 10 A 960 8.649 V 8.6VV IR �  u :  |  

Thus the voltage across the parallel combination must be 12.0V 8.6V 3.4 V�  .  This is the 

voltage across both the 820 : and 680 : resistors, since parallel resistors have the same voltage 
across them.  Note that this voltage value could also be found as follows. 

� � � �3

parallel parallel
9.009 10 A 372 3.351V 3.4VV IR �  u :  |  

 

17. The resistance of each bulb can be found by using Eq. 25-7b, 2P V R .  The two individual  

resistances are combined in parallel.  We label the bulbs by their wattage. 

  

� � � �

2

2

11

eq 2 2

75 40

1
    

1 1 75W 25W
121 120

110V 110V

P
P V R

R V

R
R R

��

 o  

 �  �  : | :
§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

 

 
18. (a) The three resistors on the far right are in series, so their equivalent  

resistance is 3R.  That combination is in parallel with the next 
resistor to the left, as shown in the dashed box in the second figure.  
The equivalent resistance of the dashed box is found as follows. 

   
1

3
eq1 4

1 1

3
R R

R R

�

 �  § ·
¨ ¸
© ¹

 

This equivalent resistance of 3
4

R  is in series with the next two 

resistors, as shown in the dashed box in the third figure (on the next 
page).  The equivalent resistance of that dashed box is 3 11

eq2 4 4
2 .R R R R �    This 11

4
R  is in 
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parallel with the next resistor to the left, as shown in the fourth 
figure.  The equivalent resistance of that dashed box is found as 
follows. 

  
1

11
eq2 15

1 4
.

11
R R

R R

�

 �  § ·
¨ ¸
© ¹

 

This is in series with the last two resistors, the ones connected 
directly to A and B.  The final equivalent resistance is given below. 

  � �11 41 41
eq 15 15 15

2 125 341.67 342R R R R �   :  : | :  

(b) The current flowing from the battery is found from Ohm’s law.  

total

eq

50.0V
0.1463A 0.146A

341.67

V
I

R
   |

:
 

This is the current in the top and bottom resistors.  There will be less current in the next resistor 
because the current splits, with some current passing through the resistor in question, and the 
rest of the current passing through the equivalent resistance of 11

4
R , as shown in the last figure.  

The voltage across R and across 11
4

R  must be the same, since they are in parallel.  Use this to 

find the desired current. 

   
� � � � � �

� �

11 11

4 4

11 11
total4 4

11 11
total total15 15

      

0.1463A 0.107A

R R RR R

R

V V I R I R I I R

I I I

 o   � o

   
 

 
19. The resistors have been numbered in the accompanying diagram to help in  

the analysis.  
1

R  and 
2

R  are in series with an equivalent resistance of 

12
2R R R R �  .  This combination is in parallel with

3
R , with an 

equivalent resistance of 

1

2
123 3

1 1

2
R R

R R

�

 �  § ·
¨ ¸
© ¹

.  This combination is in 

series with 
4

R , with an equivalent resistance of 52
1234 3 3

R R R R �  .  This 

combination is in parallel with 
5

R , with an equivalent resistance of 
1

5
12345 8

1 3

5
R R

R R

�

 �  § ·
¨ ¸
© ¹

.  Finally, this combination is in series with 
6

R , 

and we calculate the final equivalent resistance. 
5 13

eq 8 8
R R R R �     

 
20. We reduce the circuit to a single loop by combining series 

and parallel combinations.  We label a combined 
resistance with the subscripts of the resistors used in the 
combination.  See the successive diagrams. 

1
R  and 

2
R  are in series. 

 
12 1 2

2R R R R R R �  �   

12
R  and 

3
R  are in parallel.

 

1 1

2
123 3

12 3

1 1 1 1

2
R R

R R R R

� �

 �  �  
§ · § ·

¨ ¸¨ ¸ © ¹© ¹
 

6
R

1R

2R

3R
4

R

5
R

6R

1R
2R

3R

5R

4R

e

A

B

C

6R

12R

3R

5R

4R

e

A

B

C
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123
R  and 

4
R  are in series. 

 52
1234 123 4 3 3

R R R R R R �  �   

1234
R  and 

5
R  are in parallel. 

 

1 1

5
12345 85

31234 5

1 1 1 1
R R

R R R R

� �

 �  �  
§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

12345
R  and 

6
R  are in series, producing the equivalent  

resistance. 

 5 13
eq 12345 6 8 8

R R R R R R �  �   

 
Now work “backwards” from the simplified circuit.  
Resistors in series have the same current as their 
equivalent resistance, and resistors in parallel have the 
same voltage as their equivalent resistance.  To avoid rounding errors, we do not use numeric values 
until the end of the problem. 

 
eq 6 1234513

8eq

8

13
I I I

R R R
     
e e e

 

 

� �

� �

5
1355 5

5 1234 12345 12345 12345 5 58 13

5

5
131234 2 2

1234 4 123 123 123 123 12 33 135
31234

2
133 12

3 3 12

3 12

8 5
  ;  

13 13

3 3
  ;  

13 13

2
  ;  

13 2 13

V
V V V I R R I I

R R R R

V
I I I V I R R V V

R R R R

V V
I I I

R R R R

         

          

      

§ ·
¨ ¸
© ¹

§ ·
¨ ¸
© ¹

e e e
e

e e e
e

e e e
1 2

I I
R
  

 

Now substitute in numeric values. 

 
� �1 2 3 4

2
5 6 AB 3 13

12.0 V 2 3
0.77 mA   ;  1.54 mA  ; 2.31mA  ;

13 13 1.20 k 13 13

5 8
3.85mA   ;  6.15mA   ;  1.85V

13 13

I I I I
R R R

I I V V
R R

        
:

       

e e e

e e
e

 

 
21. The resistors r and R are in series, so the equivalent resistance of the circuit is  R r�  and the current  

in the resistors is .I
R r

 
�
e

  The power delivered to load resistor is found from Eq. 25-7a.  To find 

the value of R that maximizes this delivered power, set 0
dP

dR
  and solve for R. 

  � �
� � � � � �

� �

� � � � � �

22
2 2

2 4

2 2 2 2

2
  ;  0  

0 02     2 2 2     

R r R R rR dP
P I R R

R r dRR r R r

R r R R r R Rr r R Rr R r

� � �
     o

� � �

  

ª º§ ·
¨ ¸ « »
© ¹ ¬ ¼

� � � o � � � � o  

e e
e

 

 
22. It is given that the power used when the resistors are in series is one-fourth the power used when the 

resistors are in parallel.  The voltage is the same in both cases.  Use Eq. 25-7b, along with the 
definitions of series and parallel equivalent resistance. 

6R

123R

5R

4R

e

A

B

C

6R
5R

e

A C

1234R

6R
12345R

e

A C
eqR

e
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� �

� �

� � � �

2 2

1 21 1
series parallel series parallel 1 24 4

series parallel 1 2

2 22 2

1 2 1 2 1 1 2 2 1 2 1 2 1 2

        4     4   

4     2 4 0     

V V R R
P P R R R R

R R R R

R R R R R R R R R R R R R R

 o  o  o �  o
�

�  o � � �   � o  

  

 Thus the two resistors must be the same, and so the “other” resistor is 3.8k .:  

 

23. We label identical resistors from left to right as 
left

R , 
middle

R , and 
rightR .  When the switch is opened,  

the equivalent resistance of the circuit increases from 3
2

R r�  to 2R r� .  Thus the current delivered 

by the battery decreases, from 
3
2 R r�
e

 to 
2R r�
e

.  Note that this is LESS than a 50% decrease. 

(a) Because the current from the battery has decreased, the voltage drop across 
left

R  will decrease, 

since it will have less current than before.  The voltage drop across 
rightR  decreases to 0, since no 

current is flowing in it.  The voltage drop across 
middle

R  will increase, because even though the 

total current has decreased, the current flowing through 
middle

R  has increased since before the 

switch was opened, only half the total current was flowing through 
middle

R .   

left middle right decreases ;  increases ;  goes to 0V V V . 

 (b) By Ohm’s law, the current is proportional to the voltage for a fixed resistance. 

left middle right decreases ;  increases ;  goes to 0I I I  

 (c) Since the current from the battery has decreased, the voltage drop across r will decrease, and  
thus the terminal voltage increases. 

 (d) With the switch closed, the equivalent resistance is 3
2

R r� .  Thus the current in the circuit is  

closed 3
2

I
R r

 
�
e

, and the terminal voltage is given by Eq. 26-1. 

 
� �

� �terminal closed 3 3 3
closed 2 2 2

0.50
1 9.0V 1

5.50 0.50

         8.486V 8.5V

r
V I r r

R r R r

:
 �  �  �  �

� � : � :

 |

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

e
e e e

 

 (e) With the switch open, the equivalent resistance is 2R r� .  Thus the current in the circuit is  

closed
2

I
R r

 
�

e
, and again the terminal voltage is given by Eq. 26-1. 

 
� �

� �terminal closed
closed

0.50
1 9.0V 1

2 2 2 5.50 0.50

         8.609V 8.6V

r
V I r r

R r R r

:
 �  �  �  �

� � : � :

 |

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

e
e e e

 

 
24. Find the maximum current and resulting voltage for each resistor under the power restriction. 

� � � �

2
2

3

1800 18003

     , 

0.5W
0.0167 A     0.5W 1.8 10 30.0V

1.8 10

V P
P I R I V RP

R R

I V

  o   

   u :  
u :
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� � � �

� � � �

3

2800 28003

3

3700 37003

0.5W
0.0134 A     0.5W 2.8 10 37.4 V

2.8 10

0.5W
0.0116A      0.5W 3.7 10 43.0V

3.7 10

I V

I V

   u :  
u :

   u :  
u :

 

The parallel resistors have to have the same voltage, and so the voltage across that combination is 
limited to 37.4 V.  That would require a current given by Ohm’s law and the parallel combination of 
the two resistors. 

 � �parallel

parallel parallel

parallel 2800 2100

1 1 1 1
37.4V 0.0235A

2800 3700

V
I V

R R R
  �  �  

: :

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

This is more than the maximum current that can be in 
1800

R .  Thus the maximum current that 
1800

R  

can carry, 0.0167 A , is the maximum current for the circuit.  The maximum voltage that can be 

applied across the combination is the maximum current times the equivalent resistance.  The 

equivalent resistance is the parallel combination of 
2800

R  and 
3700

R  added to 
1800

R . 

 
� �

1 1

max max eq max 1800

2800 3700

1 1 1 1
0.0167 A 1800

2800 3700

      56.68V 57V

V I R I R
R R

� �

  � �  :� �
: :

 |

ª º ª º§ · § ·
« » « »¨ ¸ ¨ ¸

© ¹© ¹ « »« » ¬ ¼¬ ¼  

 
25. (a) Note that adding resistors in series always results in a larger resistance, and adding resistors in  

parallel always results in a smaller resistance.  Closing the switch adds another resistor in 

parallel with 
3

R  and 
4

R , which lowers the net resistance of the parallel portion of the circuit, 

and thus lowers the equivalent resistance of the circuit.  That means that more current will be 

delivered by the battery.  Since 
1

R  is in series with the battery, its voltage will increase.  

Because of that increase, the voltage across 
3

R  and 
4

R  must decrease so that the total voltage 

drops around the loop are equal to the battery voltage.  Since there was no voltage across
2

R  

until the switch was closed, its voltage will increase.  To summarize:  

1 2 3 4
 and  increase ;  and  decreaseV V V V  

 (b) By Ohm’s law, the current is proportional to the voltage for a fixed resistance.  Thus  

   
1 2 3 4
 and  increase ;  and  decreaseI I I I  

 (c) Since the battery voltage does not change and the current delivered by the battery increases, the  
power delivered by the battery, found by multiplying the voltage of the battery by the current 

delivered, increases . 

 (d) Before the switch is closed, the equivalent resistance is 
3

R  and 
4

R  in parallel, combined with  

1
R  in series. 

   

1 1

eq 1

3 4

1 1 2
125 187.5

125
R R

R R

� �

 � �  :�  :
:

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
  

The current delivered by the battery is the same as the current through 
1

R .  

battery

total 1

eq

22.0V
0.1173A

187.5

V
I I

R
    

:
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The voltage across 
1

R  is found by Ohm’s law. 

� � � �1 1
0.1173A 125 14.66VV IR  :   

  The voltage across the parallel resistors is the battery voltage less the voltage across 1R .  

p battery 1 22.0V 14.66V 7.34VV V V �  �   

The current through each of the parallel resistors is found from Ohm’s law. 

p

3 4

2

7.34V
0.0587A

125

V
I I

R
    

:
 

Notice that the current through each of the parallel resistors is half of the total current, within 
the limits of significant figures.  The currents before closing the switch are as follows. 

   1 3 40.117 A     0.059AI I I    

After the switch is closed, the equivalent resistance is
2

R ,
3

R , and
4

R  in parallel, combined with 

1
R  in series.  Do a similar analysis. 

   � �� �

1 1

eq 1

2 3 4

battery

total 1 1 1

eq

p

p battery 1 2 3 4

2

1 1 1 3
125 166.7

125

22.0V
0.1320A      0.1320A 125 16.5V

166.7

5.5V
22.0V 16.5V 5.5V     0.044A

125

R R
R R R

V
I I V IR

R

V
V V V I I I

R

� �

 � � �  :�  :
:

      :  
:

 �  �       
:

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

Notice that the current through each of the parallel resistors is one third of the total current, 
within the limits of significant figures.  The currents after closing the switch are as follows. 

   1 2 3 40.132A     0.044AI I I I     

  Yes, the predictions made in part (b) are all confirmed. 
 

26. The goal is to determine r so that 
0

0.R

R R

dP

dR  

   This ensures that R produce very little change in ,RP   

since .R
R

dP
P R

dR
' | '   The power delivered to the heater can be found by 2

heater heater
,P V R  and so we 

need to determine the voltage across the heater.  We do this by calculating the current drawn from 
the voltage source, and then subtracting the voltage drop across r from the source voltage. 

 

� �
� �

� �
� �

� �
� �

� �
� � � � � �

� � � � � � � �
� �

� �
0

2

eq total

eq

2 2

heater
heater total heater 2

2

22 0 0 0heater
0 04

0

22
  ;  

2 2

  ;  
2 2 2 2

2 2 2 2
0    2

2R R

r R r R rRr Rr r
R r I

r R rR r R r R r R r R r
R r

R r R r R V R
V I r r P

r R r R r R r R R r

R r R R rdP
R r R

dR R r 

� ��
 �      

�� � � �
�

� �
 �  �  �    

� � � �

� � �
  o � �

�

ee e

e e e e
e e e

e � � � � � �0

2 2 2 2 2

0 0 0 0 0 0

2 2 2 0  

4 4 8 4 0    4     2

R r

R R r r R R r r R r R

�  o

� � � �  o  o  
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27. All of the resistors are in series, so the equivalent resistance is just the sum of the resistors.  Use  
Ohm’s law then to find the current, and show all voltage changes starting at the negative pole of the 
battery and going counterclockwise. 

  

� �
� � � � � � � � � � � �

eq

9.0V
0.383A 0.38A

9.5 12.0 2.0

voltages 9.0V 9.5 0.383A 12.0 0.383A 2.0 0.383A

                  9.0V 3.638V 4.596V 0.766V 0.00V

I
R

   |
� � :

 � : � : � :

 � � �  

¦

E

 

 
28. Apply Kirchhoff’s loop rule to the circuit starting at the upper left corner of the circuit diagram, in 

order to calculate the current.  Assume that the current is flowing clockwise. 

  � � � � � � 6V
2.0 18V 6.6 12V 1.0 0    0.625A

9.6
I I I I� : � � : � � :  o   

:
   

 The terminal voltage for each battery is found by summing the potential differences across the 
internal resistance and EMF from left to right.  Note that for the 12 V battery, there is a voltage gain 
going across the internal resistance from left to right. 

  
� � � � � �

� � � � � �
terminal

terminal

18V battery:  2.0 18V 0.625A 2.0 18V 16.75V 17V

12V battery:  1.0 12V 0.625A 1.0 12V 12.625V 13V

V I

V I

 � : �  � : �  |

 : �  : �  |
   

 
29. To find the potential difference between points a and b, the current must be found from Kirchhoff’s 

loop law.  Start at point a and go counterclockwise around the entire circuit, taking the current to be 
counterclockwise. 

  

ab a b

0    
2

2 2 0V
2

IR IR IR IR I
R

V V V IR IR IR R
R

� � � � � �  o  

 �  � � �  �  �  

e

e

e e

e e e

 

 
30. (a) We label each of the currents as shown in the accompanying  

figure.  Using Kirchhoff’s junction rule and the first three 
junctions (a-c) we write equations relating the entering and 
exiting currents.   

1 2

2 3 4

1 4 5

                              [1]

                            [2]

                            [3]

I I I

I I I

I I I

 �
 �
�  

 

We use Kirchhoff’s loop rule to write equations for loops 
abca, abcda, and bdcb. 

 

2 4 1

2 3

3 5 4

0              [4]

0 [5]

0              [6]

I R I R I R

I R I R

I R I R I R

 � � �
 � � �
 � � �

e     

 

We have six unknown currents and six equations.  We solve these equations by substitution.  
First, insert Eq. [3] into [6] to eliminate current I5.  Next insert Eq. [2] into Eqs. [1], [4], and [5] 
to eliminate I2. 
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� �

� �
� �

3 1 4 4 3 1 4

1 3 4

3 4 4 1 3 4 1

3 4 3 4 3

0   0 2        [6*]

                                                                   [1*]

0 0 2 R         [4*]

0 0 2

I R I I R I R I R I R I R

I I I I

I I R I R I R I R I I R

I I R I R I R I R

 � � � � o  � � �

 � �

 � � � � o  � � �

 � � � � o  � �e           [5*]� e 

 

 

  Next we solve Eq. [4*] for I4 and insert the result into Eqs. [1*], [5*],  and [6*]. 
 

   � �

1 1
3 4 1 4 1 32 2

31 1 1
1 3 1 3 1 32 2 2 2

1 1
3 1 1 3 3 1 1 32 2

1
12

0 2                                           

-                                      [1**]

0 2 - 2 2       [6**]

0

I R I R I R I I I

I I I I I I I I

I R I R I I R I R I R I I

I

 � � � o  �

 � � o  �

 � � �  � � o  

 � �� � 31 1
3 3 1 32 2 22 0     [5**]I R I R I R I R� � o  � � �e e 

 

Finally we substitute Eq. [6**] into Eq [5**] and solve for I1.  We insert this result into Eq. 
[1**] to write an equation for the current through the battery in terms of the battery emf and 
resistance. 

3 31 1
1 1 1 1 1 12 2 2 20   ;   2  

2
I R I R I I I I I I

R R
 � � � o   �  o  

e e
e  

 (b) We divide the battery emf by the current to determine the effective resistance. 

eqR R
I R

   
e e

e
 

 
31. This circuit is identical to Example 26-9 and Figure 26-13 except for the numeric values.  So we may 

copy the same equations as developed in that Example, but using the current values. 

Eq. (a): 
3 1 2

I I I �  ;   Eq. (b): 
1 3

34 45 48 0I I� � �   

Eq. (c): 
1 234 19 75 0I I� � �    Eq. (d): 1

2 1

75 34
3.95 1.79

19

I
I I

�
  �  

Eq. (e): 1
3 1

45 34
0.938 0.708

48

I
I I

�
  �  

  
3 1 2 1 1 1 1

2 1 3 1

    0.938 0.708 3.95 1.79     0.861A

3.95 1.79 2.41A  ;  0.938 0.708 1.55A

I I I I I I I

I I I I

 � o �  � � o  �

 �   �  
 

 (a) To find the potential difference between points a and d, start at point a and add each individual  
potential difference until reaching point d.  The simplest way to do this is along the top branch. 

   � � � � � �ad d a 1 34 0.861A 34 29.27 V 29 VV V V I �  � :  � � :  |  

Slight differences will be obtained in the final answer depending on the branch used, due to 
rounding.  For example, using the bottom branch, we get the following. 

� � � � � �ad d a 1 2
19 75V 2.41A 19 29.21V 29 VV V V I �  � :  � :  |e  

 (b) For the 75-V battery, the terminal voltage is the potential difference from point g to point e.  For  
the 45-V battery, the terminal voltage is the potential difference from point d to point b. 

   
� � � �

� � � �
terminal 1 2

terminal 2 3

75V battery:  75V 2.41A 1.0 73V

45V battery:  45V 1.55A 1.0 43V

V I r

V I r

 �  � :  

 �  � :  

e

e
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32. There are three currents involved, and so there must be three 
independent equations to determine those three currents.  One 
comes from Kirchhoff’s junction rule applied to the junction of 
the three branches at the top center of the circuit. 

1 2 3
I I I �  

Another equation comes from Kirchhoff’s loop rule applied to 
the left loop, starting at the negative terminal of the battery and 
progressing counterclockwise. 

  � � � � � �1 1 2 1 2
58V 120 82 64 0    58 202 64I I I I I� : � : � :  o  �  

The final equation comes from Kirchhoff’s loop rule applied to the right loop, starting at the negative 
terminal of the battery and progressing counterclockwise. 

  � � � � � �3 2 3 2 3
3.0V 25 64 110 0    3 64 135I I I I I� : � : � :  o  � �  

 Substitute 
1 2 3

I I I �  into the left loop equation, so that there are two equations with two unknowns. 

  � �2 3 2 2 3
58 202 64 266 202I I I I I � �  �  

 Solve the right loop equation for 
2

I  and substitute into the left loop equation, resulting in an 

equation with only one unknown, which can be solved. 

  

3 3
2 3 2 2 3 3

3
3 2 1 2 3

135 3 135 3
3 64 135       ;  58 266 202 266 202   

64 64

135 3
0.09235A  ;  0.1479 A  ;  0.24025A

64

I I
I I I I I I

I
I I I I I

� �
 � � o   �  � o

�
    �  

§ ·
¨ ¸
© ¹

 

 The current in each resistor is as follows: 

  120 : 0.24 A     82 : 0.24A     64 : 0.15A    25 : 0.092A     110 : 0.092 A: : : : :  

 
33. Because there are no resistors in the bottom branch, it is possible to write Kirchhoff loop equations 

that only have one current term, making them easier to solve.  To find the current through
1

R , go 

around the outer loop counterclockwise, starting at the lower left corner. 

  3 1
3 1 1 1 1

1

6.0V 9.0V
0    0.68A, left

22

V V
V I R V I

R

� �
� �  o    

:
 

 To find the current through 
2

R , go around the lower loop counterclockwise, starting at the lower left 

corner. 

  3
3 2 2 2

2

6.0V
0    0.33A, left

18

V
V I R I

R
�  o    

:
 

 
34. (a) There are three currents involved, and so there must be three  

independent equations to determine those three currents.  One comes 
from Kirchhoff’s junction rule applied to the junction of the three 
branches on the right of the circuit. 

2 1 3 1 2 3
    I I I I I I � o  �  

Another equation comes from Kirchhoff’s loop rule applied to the top 
loop, starting at the negative terminal of the battery and progressing 
clockwise. 

   
1 1 1 2 2 1 2

0    9 25 48I R I R I I� �  o  �e  

The final equation comes from Kirchhoff’s loop rule applied to the 
bottom loop, starting at the negative terminal of the battery and 

1e

2e

2R

3R

2I

3I

1R1I

1I 3I

2I
3.0V58V

120:

82:
64: 110:

25:
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progressing counterclockwise. 

   
2 3 3 2 2 3 2

0    12 35 48I R I R I I� �  o  �e  

Substitute 
1 2 3

I I I �  into the top loop equation, so that there are two equations with two 

unknowns. 

   � �1 2 2 3 2 2 3 3 2
9 25 48 25 48 73 25   ;  12 35 48I I I I I I I I I �  � �  �  �  

Solve the bottom loop equation for 
2

I  and substitute into the top loop equation, resulting in an 

equation with only one unknown, which can be solved. 

   

3
3 2 2

3
2 3 3 3 3

3
3 2

1 2 3

12 35
12 35 48     

48

12 35
9 73 25 73 25     432 876 2555 1200   

48

444 12 35
0.1182 A 0.12 A , up   ;  0.1638A 0.16A , left

3755 48

0.0456A 0.046A , right

I
I I I

I
I I I I I

I
I I

I I I

�
 � o  

�
 �  � o  � � o

�
  |   |

 �  |

§ ·
¨ ¸
© ¹  

(b) We can include the internal resistances simply by adding 1.0:  to 1R  and 3.R   So let 
1 26R  :  

and let 
3 36 .R  :   Now re-work the problem exactly as in part (a). 

2 1 3 1 2 3
    I I I I I I � o  �  

1 1 1 2 2 1 2
0    9 26 48I R I R I I� �  o  �e  

2 3 3 2 2 3 2
0    12 36 48I R I R I I� �  o  �e  

� �1 2 2 3 2 2 3 3 2
9 26 48 26 48 74 26   ;  12 36 48I I I I I I I I I �  � �  �  �  

3 3
3 2 2

3
2 3 3 3 3

3
3 2

1 2 3

12 36 1 3
12 36 48     

48 4

1 3
9 74 26 74 26     36 74 222 104   

4

38 1 3
0.1166A 0.12A , up   ;  0.1626A 0.16A, left

326 4

0.046A , right

I I
I I I

I
I I I I I

I
I I

I I I

� �
 � o   

�
 �  � o  � � o

�
  |   |

 �  

§ ·
¨ ¸
© ¹  

  The currents are unchanged to 2 significant figures by the inclusion of the internal resistances. 
 
35. We are to find the ratio of the power used when the resistors are in series, to the power used when 

the resistors are in parallel.  The voltage is the same in both cases.  Use Eq. 25-7b, along with the 
definitions of series and parallel equivalent resistance. 

  

1 1

series 1 2 parallel

1 2 n

2
parallelseries series

2 2

parallel parallel series

1 1 1
  ;  

1

n

n R
R R R R nR R

R R R R n

RP V R R n

P V R R nR n

� �

 � �   � �   

    

§ · § ·
¨ ¸¨ ¸ © ¹© ¹

" "
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36. (a) Since there are three currents to determine, there must be three independent equations to  
determine those three currents.  One comes from Kirchhoff’s junction rule applied to the 
junction near the negative terminal of the middle battery. 

1 2 3
I I I �  

Another equation comes from Kirchhoff’s loop rule applied to the top loop, starting at the 
negative terminal of the middle battery, and progressing counterclockwise.  We add series 
resistances. 

   � � � �2 1 1 2
12.0V 12 12.0V 35 0    24 35 12I I I I� : � � :  o  �  

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, starting at the 
negative terminal of the middle battery, and progressing clockwise. 

   � � � �2 3 2 3
12.0V 12 6.0V 34 0    6 12 34I I I I� : � � :  o  �  

Substitute 
1 2 3

I I I �  into the top loop equation, so that there are two equations with two 

unknowns. 

   � �1 2 2 3 2 2 3
24 35 12 35 12 47 35I I I I I I I �  � �  �  

Solve the bottom loop equation for 
2

I  and substitute into the top loop equation, resulting in an 

equation with only one unknown, which can be solved for 
3

I . 

   

3 3
2 3 2 2 3 3

3
3 2 1 2 3

6 34 6 34
6 12 34       ;  24 47 35 47 35   

12 12

6 34
2.97mA   ;  0.508A   ;  0.511A

12

I I
I I I I I I

I
I I I I I

� �
 � o   �  � o

�
    �  

§ ·
¨ ¸
© ¹

 

(b) The terminal voltage of the 6.0-V battery is � � � �3

3
6.0V 6.0V 2.97 10 A 1.0I r ��  � u :  

5.997V 6.0V . |  

 
37. This problem is the same as Problem 36, except the total resistance in the top branch is now 23:  

instead of 35 .:   We simply reproduce the adjusted equations here without the prose.   

1 2 3
I I I �  

  � � � �2 1 1 2
12.0V 12 12.0V 23 0    24 23 12I I I I� : � � :  o  �  

  � � � �2 3 2 3
12.0V 12 6.0V 34 0    6 12 34I I I I� : � � :  o  �  

  � �1 2 2 3 2 2 3
24 23 12 23 12 35 23I I I I I I I �  � �  �  

  

3 3
2 3 2 2 3 3

3
3 2 1 2 3

6 34 6 34
6 12 34       ;  24 35 23 35 23   

12 12

6 34
0.0532A  ;  0.6508A  ;  0.704 A 0.70A

12

I I
I I I I I I

I
I I I I I

� �
 � o   �  � o

�
    �  |

§ ·
¨ ¸
© ¹
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38. The circuit diagram has been labeled with six different currents.  We 
apply the junction rule to junctions a, b, and c.  We apply the loop rule 
to the three loops labeled in the diagram. 

  

� � �
� �
�

1 2 1 3 5 3 4

1 1 5 5 2 2 3 3 4 4 5 5

2 2 4 4

1     ;  2     ;  3   

4  0  ;  5  0

6  0

I I I I I I I I I

I R I R I R I R I R I R

I R I R

 �  � �  

� � �  � � �  

� �  e

 

 Eliminate I using equations 1) and 3). 

  

� �
� �
�

3 4 1 2 1 3 5

1 1 5 5 2 2 3 3 4 4 5 5

2 2 4 4

1    ;  2   

4  0  ;  5  0

6  0

I I I I I I I

I R I R I R I R I R I R

I R I R

�  �  �

� � �  � � �  

� �  e

 

 Eliminate 
1

I  using equation 2. 

  � 3 4 3 5 2 4 5 2
1      I I I I I I I I�  � � o  �  

  

� � � � �
�
�

3 5 1 5 5 2 2 3 1 5 1 5 2 2

3 3 4 4 5 5

2 2 4 4

4  0    0

5  0

6  0

I I R I R I R I R I R R I R

I R I R I R

I R I R

� � � �  o � � � �  

� � �  

� �  e

 

 Eliminate 
4

I  using equation 1. 

  

� � �
� � � � �
� � � � �

3 1 5 1 5 2 2

3 3 5 2 4 5 5 3 3 5 4 5 2 4

2 2 5 2 4 2 2 4 5 4

4  0

5  0    0

6  0    0

I R I R R I R

I R I I R I R I R I R R I R

I R I I R I R R I R

� � � �  

� � � �  o � � � �  

� � �  o � � �  e e

 

 Eliminate 
2

I  using equation 4: � �> @2 3 1 5 1 5

2

1
.I I R I R R

R
 � �  

  

� � � � �> @

� � � �

� � �> @� �

� � � �

3 3 5 4 5 3 1 5 1 5 4

2

3 1 4 2 3 5 2 4 2 5 1 4 5 4

3 1 5 1 5 2 4 5 4

2

2 3 1 2 4 5 1 2 1 4 5 2 5 4 2 4

1
5  0  

     0

1
6  0  

     0

I R I R R I R I R R R
R

I R R R R I R R R R R R R R

I R I R R R R I R
R

R I R R R I R R R R R R R R R R

� � � � � �  o

� � � � �  

� � � � �  o

� � � � � � �  

e

e

 

 Eliminate 
3

I  using equation 5:  
� �

� �
2 4 2 5 1 4 5 4

3 5

1 4 2 3

R R R R R R R R
I I

R R R R

� � �

�
 �  

 

� �
� �

� � � �

� �
� �

� � � �

� � � � � � � � � � � � � � � �
� � � �

2 4 2 5 1 4 5 4

2 5 1 2 4 5 1 2 1 4 5 2 5 4 2 4

1 4 2 3

2 4 2 5 1 4 5 45
1 2 4 1 2 1 4 5 2 5 4 2 4

2 1 4 2 3

5

0

25 14 25 15 22 14 15 14

22 14 25  
25

R R R R R R R R
R I R R R I R R R R R R R R R R

R R R R

R R R R R R R RI
R R R R R R R R R R R R R

R R R R R

I

� � �
� � � � � � �  

�

� � �
 � � � � � � �

�

: : � : : � : : � : :

: : � �
:

ª º
« »
¬ ¼
 ½ª º
® ¾« »
¬ ¼¯ ¿

e

e

� � � �
� � � �

� � � � � � � � � � � � � � � � � � � �> @

22 25 14
12

22 25 22 14 15 25 15 14 25 14

: :� :
: :

� : : � � : : � : : � : :

 ½ª º
° °« »
® ¾¬ ¼
° °
¯ ¿

 

+ –

å

a

b

1 2

I1

I2

I3
c

d

R1

3

I4

I5

I

R3

R4
R2

R5
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 � � � �5 5

6.0V
  5261     1.140mA upwards

5261
I I � : o  �  �

:
 

  

� �
� �

� � � � � � � � � � � � � � � � � �
� � � � � � � �

2 4 2 5 1 4 5 4

3 5

1 4 2 3

25 14 25 15 22 14 15 14
   1.140mA 0.1771A

22 14 25 12

R R R R R R R R
I I

R R R R

� � �
 �

�

: : � : : � : : � : :
 � �  

: : � : :

 

  � �> @ � � � � � � � �> @2 3 1 5 1 5

2

1 1
0.1771A 22 0.00114 A 37 0.1542 A

25
I I R I R R

R
 � �  : � � :  

:
 

  
4 5 2

1 3 5

0.00114 A 0.1542 A 0.1531A

0.1771A 0.00114 A 0.1760A

I I I

I I I

 �  � �  

 �  �  
 

 We keep an extra significant figure to show the slight difference in the currents. 

  
22 25 12 14 150.176A     0.154 A     0.177 A     0.153A    0.001A, upwardsI I I I I: : : : :      

 

39. The circuit diagram from Problem 38 is reproduced, with 
2

0.R    This 

circuit can now be simplified significantly.  Resistors 
1

R and 
5

R  are in 

parallel.  Call that combination 
15

.R   That combination is in series with 

3
.R   Call that combination 

153
.R  That combination is in parallel with 

4
.R   

See the second diagram.  We calculate the equivalent resistance 
153

,R use 

that to find the current through the top branch in the second diagram, and 

then use that current to find the current through 
5
.R  

   

1 1

153 3

1 5

1 1 1 1
12 20.92

22 15
R R

R R

� �

 � �  � � :  :
: :

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹
 

Use the loop rule for the outside loop to find the current in the top branch. 

  153 153 153

153

6.0V
0    0.2868A

20.92
I R I

R
�  o    

:
e

e  

This current is the sum of the currents in 
1

R and 
5
.R   Since those two 

resistors are in parallel, the voltage across them must be the same. 

  

� �

� �
� �

1 5 1 1 5 5 153 5 1 5 5

1
5 153

5 1

          

22
0.2868A 0.17 A

37

V V I R I R I I R I R

R
I I

R R

 o  o �  o

:
   

� :

 

 
40. (a) As shown in the diagram, we use symmetry to reduce the  

number of independent currents to six.  Using Kirchhoff’s 
junction rule, we write equations for junctions a, c, and d.  We 
then use Kirchhoff’s loop rule to write the loop equations for 
loops afgba, hedch, and aba (through the voltage source).   

1 2 3 4 1 5 42   [1]  ;    [2]  ;  2   [3]I I I I I I I I � �    

1 3 2 4 5 3

2

0 2   [4]  ;  0 2   [5]

0   [6]

I R I R I R I R I R I R

I R

 � � �  � � �
 �e

 

 

+ –
å

R1 R3

R5

 

R1 

+ –

å

R3 

R5 

 

I1 I2

I3

I
a b

e

h

g

d

c

f

I1

I1
I1

I3

I4

I4 I4

I4I5

I
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We have six equations with six unknown currents.  We use the method of substitution to reduce 
the equations to a single equation relating the emf from the power source to the current through 
the power source.  This resulting ratio is the effective resistance between points a and b.  We 
insert Eqs. [2], [3], and [6] into the other three equations to eliminate I1, I2, and I5. 

� �

� �

3 4 3 4

3 4 3 4 3

4 4 3 4 3

2  =2 2                                    [1*]

0 2  = 2 3          [4*]

0 2 2 4                             [5*]

I I I I I
R R

I I R I R R I R I R
R

I R I R I R I R I R

 � � � �

 � � � � � � �

 � � �  � �

e e

e
e  

We solve Eq. [5*] for I3  and insert that into Eq. [4*].  We then insert the two results into Eq. 
[1*] and solve for the effective resistance. 

� �

� �

3 4 4 4 4

7
4 4 4 eq 12

4   ;  0 2 3 4
14

10 24 12
2 4 2 10      

14 14 7

I I I R I R I
R

I I I I R R
R R R R R R I

  � � � o  

 � �  �  �   o   

e
e

e e e e e e e
 

 (b) As shown in the diagram, we use symmetry to reduce the  
number of currents to four.  We use Kirchhoff’s junction rule 
at junctions a and d and the loop rule around loops abca 
(through the voltage source) and afgdcha.  This results in four 
equations with four unknowns.  We solve these equations for 
the ratio of the voltage source to current I, to obtain the 
effective resistance. 

1 2 3 2

2 2 3 1

2   [1]      ;  2   [2]

0 2   [3]  ;  0 2 2 2   [4]

I I I I I

I R I R I R I R

 �  
 � �  � � �e

 

We solve Eq. [3] for I2 and Eq. [2] for I3.  These results are 
inserted into Eq. [4] to determine I1.  Using these results and 
Eq. [1] we solve for the effective resistance. 

2
2 3 1 2 3

1
1 2 eq 2

3
  ;    ;  

2 2 4 2 4 4

3 2
2 2   ;  = =               

4 2

I
I I I I I

R R R R R

I I I R R
R R R I

    �  �  

§ · �  �  ¨ ¸
© ¹

e e e e e

e e e e
 

 (c) As shown in the diagram, we again use symmetry to reduce  
the number of currents to three.  We use Kirchhoff’s 
junction rule at points a and b and the loop rule around the 
loop abgda (through the power source) to write three 
equations for the three unknown currents.  We solve these 
equations for the ratio of the emf to the current through the 
emf (I) to calculate the effective resistance. 

1 1 2

1 2

3   [1]  ;  2   [2]

0 2   [3]

I I I I

I R I R

  
 � � � e

 

We insert Eq. [2] into Eq. [3] and solve for I1.  Inserting I1 

into Eq. [1] enables us to solve for the effective resistance. 

51
1 1 1 1 eq2 6

2 6
0 2   ;  3

5 5
I R I R I I I R R

R R I
 � � � o    o   

e e e
e  

 
 
 

I1

I2
I

a b

e

h

g

d

c

f

I1

I1

I=0

I3

I1

I2

I3 I3
I3

I=0

I

I1

I2

I
a b

e

h

g

d

c

f

I1I1 I1

I2

I1

I1

I2

I2

I2

I2

I
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41. (a) To find the equivalent resistance between points a and c,  
apply a voltage between points a and c, find the current that 

flows from the voltage source, and then calculate 
eq

.R I e   

There is no symmetry to exploit. 

   

� �
� �
� �
� �
� �
� �

3

1 5 2

2 6 3

5 6 4

1 2 3

Bottom Loop   1)    0

a - d - b            2)   0

a - b - c            3)    0

d - b - c            4)    0

junction a        5)    

junction d        6)  

RI

RI RI RI

RI RI RI

RI RI R I

I I I I

�  

� � �  

� � �  

c� � �  

 � �

e

� �
1 4 5

2 5 6

  

junction b        7)    

I I I

I I I

 �

�  

 

  From Eq. 1, substitute 
3

.I R e  

   
� �

1 5 2 1 5 2

2 6 2 6

5 6 4 5 6 4

1 2 1 4 5 2 5 6

2)   0    

3)    0    

4)    0    

5)    6)    7)       ;      ;   

RI RI RI I I I

RI RI R I I
R R

RI RI R I R I I R I

I I I I I I I I I
R

� � �  o �  

� � �  o �  

c c� � �  o �  

 � �  � �  

e e

e

 

  From Eq. 7, substitute 
6 2 5

I I I�  

   

� �

1 5 2 2 2 5 2 5

5 2 4 1 2 1 4 5

2)   3)        2

4)    2 5)    6)    

   ;   

   ;      ;   

I I I I I I I I
R R

R I I R I I I I I I I
R

�  � �  o �  

c�   � �  �

e e

e
 

  From Eq. 6, substitute 
1 4 5 5 1 4

    I I I I I I � o  �  

   

� �

1 4 2 2 1 4

1 4 2 4 1 2

2)   2 3)   2

4)    2 2 5)    

        ;        

      ;      

I I I I I I
R

R I I I R I I I I
R

�  � �  

c� �   � �

e

e
 

  From Eq. 2, substitute 
1 4 2 4 1 2

2     2I I I I I I�  o  �  

   

� �

� �� � � � � � � �

2 1 1 2 2 1

1 1 2 2 1 2 2 1 1 2

1 2

3)   2 2     3

4)    2 2 2 2     3 2 2

5)    

I I I I I I
R R

R I I I I R I I R I I R I I

I I I
R

� � �  o �  

c c� � �  � o �  �

 � �

e e

e

 

From Eq. 3, substitute 2 1 1 23     3I I I I
R R

�  o  �
e e

 

   2 2 2 2 2 24)    3 2 3 2 3     3 2 5 2R I I R I I R I R I
R R R R

c c� �  � � o � �  �§ · § ·§ · § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸© ¹ © ¹ © ¹ © ¹© ¹ © ¹

e e e e
 

1
I

6
I

4
I

3
I

2I

5
I

I
I

R

R

RR

R
Rc

a

b

d

c

e
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   2 2 25)    3     4I I I I I
R R

 � � � o  
e e

 

From Eq. 5, substitute 
2

1
4I I  

   � � � � � �
� �

1 1
eq4 4

5 3
4)    3 2 5 2     

8

R R R
R I R I R

R R I R R

c �
c� �  � o   

c�
§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

e e e
 

 (b) In this case, apply a voltage between points a and b.  Now  
there is symmetry.  In this case no current would flow through 
resistor ,Rc  and so that branch can be eliminated from the 
circuit.  See the adjusted diagram.  Now the upper left two 
resistors (from a to d to b) are in series, and the lower right two 
resistors (from a to c to b) are in series.  These two 
combinations are in parallel with each other, and with the 
resistor between a and b.  The equivalent resistance is now 
relatively simple to calculate. 

   
1 1

1
eq 2

1 1 1 4

2 2 2
R R

R R R R

� �

 � �   § · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

 

 

42. Define
1

I  to be the current to the right through the 2.00 V 

battery � �1
,e  and

2
I  to be the current to the right through the 

3.00 V battery � �2
.e   At the junction, they combine to give 

current 
1 2

I I I �  to the left through the top branch.  Apply 

Kirchhoff’s loop rule first to the upper loop, and then to the 
outer loop, and solve for the currents. 

� � � �
� � � �

1 1 1 2 1 1 2

2 2 1 2 2 1 2

0    0

0    0

I r I I R R r I RI

I r I I R RI R r I

� � �  o � � �  

� � �  o � � �  

e e

e e
 

 Solve the first equation for
2

I  and substitute into the second equation to solve for
1
.I  

  

� � � �

� � � � � � � �

1 1 1
1 1 2 2 1

2 1 2 1 1

1 2 1

2.00 4.450
0    0.500 1.1125

4.00

3.00V 4.00 4.45 0.500 1.1125 0    

0.815A  ;  0.500 1.1125 1.407A

R r I I
R r I RI I I

R

RI R r I I I

I I I

� � �
� � �  o    �

� � �  � : � : �  o

 �  �  

e
e

e  

 The voltage across R is its resistance times 
1 2

I I I � . 

  � � � � � �1 2 4.00 0.815A 1.407A 2.368V 2.37VRV R I I �  : � �  |  

 Note that the top battery is being charged – the current is flowing through it from positive to 
negative. 

 
43. We estimate the time between cycles of the wipers to be from 1 second to 15 seconds.  We take these  

times as the time constant of the RC combination. 

6 6

1s 1s6 6

1s 15s
    10   ;  15 10

1 10 F 1 10 F
RC R R

C C

W W
W

� �
 o    :    u :

u u
 

So we estimate the range of resistance to be 1M   15M .: � :  

 
 

R

R

RR

R

a

b

d

c

R

r

1I

2I

1 2I I�

1e

2e

r
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44. (a) From Eq. 26-7 the product RC is equal to the time constant. 

   
6

9

3

24.0 10 s
    1.60 10 F

15.0 10
RC C

R

W
W

�
�u

 o    u
u :

 

(b) Since the battery has an EMF of 24.0 V, if the voltage across the resistor is 16.0 V, the voltage 
across the capacitor will be 8.0 V as it charges.  Use the expression for the voltage across a 
charging capacitor. 

 

� �

� �

/ /

6 6

1     1     ln 1   

8.0 V
ln 1 24.0 10 s ln 1 9.73 10 s

24.0 V

t t C C
C

C

V t V
V e e

V
t

W W

W

W

� �

� �

 � o  � o �  � o

 � �  � u �  u

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

§ ·§ ·
¨ ¸ ¨ ¸© ¹ © ¹

e e

e

e

 

 
45. The current for a capacitor-charging circuit is given by Eq. 26-8, with R 

the equivalent series resistance and C the equivalent series capacitance. 

  eq eq

eq

  

t

R C
I e

R

�
§ ·
¨ ¸
© ¹ o

e
 

� � � �eq 1 21 2
eq eq 1 2

1 2

ln ln
IR I R RC C

t R C R R
C C

�
 �  � �

�

§ ·§ · ª º
¨ ¸¨ ¸ « »¬ ¼© ¹ © ¹e e

 � � � � � � � �
� �

26 3

3

6

3.8 10 F 1.50 10 A 4400
 4400 ln 5.0 10 s

7.6 10 F 12.0V

� �

�

�

u u :
 � :  u

u

ª º ª º
« » « »
« » « »¬ ¼¬ ¼

 

 
46. Express the stored energy in terms of the charge on the capacitor, using Eq. 24-5.  The charge on the  

capacitor is given by Eq. 26-6a. 

   

� � � � � �

� � � �
� �

2
2

2 221 1 1
max2 2 2

2 2

max max max

1
1 1   ;

0.75     1 0.75     1 0.75  

ln 1 0.75 2.01

t

t t

t t

C eQ
U C e U e

C C

U U U e U e

t

W

W W

W W

W W

�

� �

� �

�
   �  �

 o �  o �  o

 � �  

ª º¬ ¼e
e

 

 
47. The capacitance is given by Eq. 24-8 and the resistance by Eq. 25-3.  The capacitor plate separation 

d is the same as the resistor length l.  Calculate the time constant. 

  � � � � � �12 12 2 2

0 0 1.0 10 m 5.0 8.85 10 C N m 44s
d A

RC K K
A d

U
W H U H �    u : u  § ·§ ·

¨ ¸¨ ¸
© ¹© ¹

< <  

 
48. The voltage of the discharging capacitor is given by 

C 0

t RCV V e� .  The capacitor voltage is to be 

00.0010V . 

  
� �

� � � � � � � �

C 0 0 0

6

    0.0010     0.0010     ln 0.010   

ln 0.010 8.7 10 3.0 10 F ln 0.0010 0.18s

t RC t RC t RC t
V V e V V e e

RC

t RC

� � �

� �

 o  o  o  � o

 �  � u : u  
 

 
 
 

+– +–

+–

1R
1C

2C2R

S e

I
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49. (a) At t = 0, the capacitor is uncharged and so there is no voltage difference across it.  The capacitor  
is a “short,” and so a simpler circuit can be drawn just by eliminating the capacitor.  In this 
simpler circuit, the two resistors on the right are in parallel with each other, and then in series 
with the resistor by the switch.  The current through the resistor by the switch splits equally 
when it reaches the junction of the parallel resistors. 

   
1

3 1
eq 1 2 3 12 23

2eq

1 1 2
     ; 

3 3
R R R I I I I

R R R R R R

�

 � �  o       § ·
¨ ¸
© ¹

e e e e
 

 (b) At ,t  f  the capacitor will be fully charged and there will be no current in the branch  
containing the capacitor, and so a simpler circuit can be drawn by eliminating that branch.  In 
this simpler circuit, the two resistors are in series, and they both have the same current. 

eq 1 2 3

eq

2       ;  0
2

R R R R I I I
R R

 �  o     
e e

 

 (c) At ,t  f since there is no current through the branch containing the capacitor, there is no  
potential drop across that resistor.  Therefore the voltage difference across the capacitor equals 

the voltage difference across the resistor through which 2I  flows. 

   
2

1
2 2

2
C RV V I R R

R
    § ·

¨ ¸
© ¹
e

e  

 
50. (a) With the currents and junctions labeled as in the diagram, we use  

point a for the junction rule and the right and left loops for the 
loop rule.  We set current I3 equal to the derivative of the charge 
on the capacitor and combine the equations to obtain a single 
differential equation in terms of the capacitor charge.  Solving this 
equation yields the charging time constant. 

1 2 3 1 1 2 2 2 2  [1]  ;  0  [2]  ;  0  [3]
Q

I I I I R I R I R
C

 � � �  � �  e  

  We use Eq. [1] to eliminate I1 in Eq. [2].  Then we use Eq. [3] to eliminate I2 from Eq. [2].   

     � � � � � �2 3 1 2 2 2 1 2 3 1 1 2 3 1

2

0   ;  0   ;  0
Q

I I R I R I R R I R R R I R
R C

§ ·
 � � �  � � �  � � �¨ ¸

© ¹
e e e  

We set I3 as the derivative of the charge on the capacitor and solve the differential equation by 
separation of variables. 

    

� � � �

� � � �

1 2
1 2 1 0 0

2 1 22

1 2

2

1 2 1 21 22

1 2 1 2 1 2200

1 2

2

1

0=       

ln     ln     

Q t

Q t

R RQ dQ dQ
R R R dt

R C dt R R CR C
Q

R R

R C
Q

R R R RR RR C
Q t t

R R R R C R R CR C
R R

R C
Q

R

� �§ · c
c� � � o  o¨ ¸ § ·© ¹ c � ¨ ¸�© ¹

ª º§ ·
�« »¨ ¸ª º � ��§ · © ¹« »c c�  � o  � o« »¨ ¸ « »� § ·© ¹¬ ¼ « »¨ ¸�« »© ¹¬ ¼

 

³ ³e
e

e

e

e

e
� �1 2

1 2

2

1
R R

t
R R Ce

R

�
�§ ·

¨ ¸�
¨ ¸� © ¹

 

From the exponential term we obtain the time constant, 1 2

1 2

.
R R C
R R

W  
�

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

180 

 (b) We obtain the maximum charge on the capacitor by taking the limit as time goes to infinity. 
� �1 2

1 22 2
max

1 2 1 2

1  lim

R R
t

R R C

t

R C R C
Q e

R R R R

�
�

of

§ ·
¨ ¸ �  
¨ ¸� �© ¹

e e
 

 
51. (a) With the switch open, the resistors are in series with each other, and so have the same current.   

Apply the loop rule clockwise around the left loop, starting at the negative terminal of the 
source, to find the current. 

   
1 2

1 2

24V
0    1.818A

8.8 4.4

V
V IR IR I

R R
� �  o    

� :� :
 

  The voltage at point a is the voltage across the 4.4: -resistor. 

   � �� �2
1.818A 4.4 8.0VaV IR  :   

 (b) With the switch open, the capacitors are in series with each other.  Find the equivalent  
capacitance.  The charge stored on the equivalent capacitance is the same value as the charge 
stored on each capacitor in series. 

   

� � � �
� �

� � � �

1 2
eq

eq 1 2 1 2

eq eq 1 2

0.48 F 0.36 F1 1 1
    0.2057 F

0.48 F 0.36 F

24.0V 0.2057 F 4.937 C

C C
C

C C C C C

Q VC Q Q

P P
P

P P

P P

 � o    
� �

     

 

  The voltage at point b is the voltage across the 0.24 FP -capacitor. 

   2

2

4.937 C
13.7 V 14 V

0.36 F
b

Q
V

C

P
P

   |  

 (c) The switch is now closed.  After equilibrium has been reached a long time, there is no current  
flowing in the capacitors, and so the resistors are again in series, and the voltage of point a must 
be 8.0 V.  Point b is connected by a conductor to point a, and so point b must be at the same 

potential as point a, 8.0V .  This also means that the voltage across 2C  is 8.0 V, and the 

voltage across 1C  is 16 V. 

 (d) Find the charge on each of the capacitors, which are no longer in series. 

� � � �
� � � �

1 1 1

2 2 2

16V 0.48 F 7.68 C

8.0V 0.36 F 2.88 C

Q V C

Q V C

P P

P P

   

   
 

When the switch was open, point b had a net charge of 0, because the charge on the negative 

plate of 1C  had the same magnitude as the charge on the positive plate of 2C .  With the switch 

closed, these charges are not equal.  The net charge at point b is the sum of the charge on the 

negative plate of 1
C  and the charge on the positive plate of 2C . 

 
b 1 2

7.68 C 2.88 C 4.80 C 4.8 CQ Q Q P P P P � �  � �  � | �  

Thus 4.8 CP  of charge has passed through the switch, from right to left. 
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52. Because there are no simple series or parallel connections in this 
circuit, we use Kirchhoff’s rules to write equations for the currents, 
as labeled in our diagram.  We write junction equations for the 
junctions c and d.  We then write loop equations for each of the three 
loops.   We set the current through the capacitor equal to the 
derivative of the charge on the capacitor. 

1 2
1 3 2 4

1 2

1 2
3 3 4 4

1 2

  [1]  ;    [2]  ;  0  [3]

0  [4]  ;  0  [5]

Q Q
I I I I I I

C C

Q Q
I R I R

C C

 �  � � �  

�  �  

e

 

 We differentiate Eq. [3] with respect to time and set the derivative of the charge equal to the current.   

1 2 1 2 2
2 1

1 2 1 2 1

1 1
0 0 =      

dQ dQ I I Cd
I I

dt dt C dt C C C C
 � �  � � o �
e

 

We then substitute Eq. [1] into Eq. [2] to eliminate I.  Then using Eqs. [4] and [5] we eliminate I3 
and I4 from the resulting equation.  We eliminate I2 using the derivative equation above. 

1 2 2
1 3 2 4 1 1

3 1 1 4 2

  ;   
Q C Q

I I I I I I
R C C R C

�  � �  � �  

Finally, we eliminate Q2  using Eq.[3]. 

1 2 1 1 2 4 3
1 1 1 4 1

3 1 1 4 1 1 3 1

1 1 2 3
1 4 1

1 4 3

1
       

        where      and 

Q C Q C C R R
I I I R Q

R C C R C C R C

Q C C R
I R R R C C

C C R R

§ ·§ · § ·� �
�  � � � o  � o¨ ¸¨ ¸ ¨ ¸

© ¹ © ¹ © ¹
§ ·§ ·�

 �   ¨ ¸¨ ¸ �© ¹ © ¹

e e

e

 

This final equation represents a simple RC circuit, with time constant .RCW   

� �

� �� �� �

4 3 1 21 2 3
4 1

1 4 3 4 3

8.8 4.4 0.48 F 0.36 F
2.5 s

8.8 4.4

R R C CC C R
RC R C

C R R R R
W

P P
P

�§ ·§ ·�
   ¨ ¸¨ ¸ � �© ¹ © ¹

: : �
  

:� :

 

 
53. The full-scale current is the reciprocal of the sensitivity. 

  5

full-
scale

1
2.9 10 A

35,000 V
I �  u

:
 or 29 AP  

 
54. The resistance is the full-scale voltage multiplied by the sensitivity. 

  � � � � � � 6 6

full-
scale

sensitivity 250V 35,000 V 8.75 10 8.8 10R V  :  u : | u :  

 
55. (a) The current for full-scale deflection of the galvanometer is  

5

G

1 1
2.222 10 A

sensitivity 45,000 V
I �   u

:
 

To make an ammeter, a shunt resistor must be placed in parallel with the galvanometer.  The  
voltage across the shunt resistor must be the voltage across the galvanometer.  The total current 
is to be 2.0 A.  See Figure 26-28 for a circuit diagram. 
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� �

5

G G
G G s s s G G 5

s full G

4 4

2.222 10 A
    20.0

2.0A 2.222 10 A

2.222 10 2.2 10  in parallel                            

I I
I r I R R r r

I I I

�

�

� �

u
 o    :

� � u

 u : | u :

 

 (b) To make a voltmeter, a resistor must be placed in series with the galvanometer, so that the  
desired full scale voltage corresponds to the full scale current of the galvanometer.  See Figure 
26-29 for a circuit diagram.  The total current must be the full-scale deflection current. 

    

� �full G G

full
G 5

G

  

1.00V
20.0 44985 45k  in series

2.222 10 A

V I r R

V
R r

I �

 � o

 �  � :  : | :
u

 

 
56. (a) To make an ammeter, a shunt resistor must be placed in parallel with the galvanometer.  The  

voltage across the shunt resistor must be the voltage across the galvanometer.  See Figure 26-28  
for a circuit diagram. 

� �

� �
� � � �
� �

shunt G full G shunt G G

6

5G G
shunt 6

full G

      

55 10 A 32
7.0 10

25A 55 10 A

V V I I R I R

I R
R

I I

�

�

�

 o �  o

u :
   u :

� � u

 

 (b) To make a voltmeter, a resistor must be placed in series with the galvanometer, so that the  
desired full-scale voltage corresponds to the full scale current of the galvanometer.  See Figure 
26-29 for a circuit diagram. 

   � � 6full scale
full scale G ser G ser G 6

G

250V
    30 4.5 10

55 10 A

V
V I R R R R

I �
 � o  �  � :  u :

u
 

 
57. We divide the full-scale voltage of the electronic module by the module’s internal resistance to 

determine the current through the module that will give full-scale deflection.  Since the module and 
R2 are in parallel they will have the same voltage drop across them (400 mV) and their currents will 
add to equal the current through R1.  We set the voltage drop across R1 and R2 equal to the 40 volts 
and solve the resulting equation for R2. 

� �

� �
� �� �

� �

meter meter meter
meter 2 1 2 meter meter

2 2

meter
1 1 meter meter meter 1

2

6

1 meter
2

meter meter 1

400 mV
4.00 nA  ;    ;  

100 M

      

10 10  0.400 V

40 V 0.400 V 4.00 1

V V V
I I I I I I

r R R

V
V I R V V V I R

R

RV
R

V V I R

     �  �
:

§ ·
 � o �  � o¨ ¸

© ¹

u :
  

� � � � u� �� �9 6
100 k

0  A 10 10  �
 :

u :

 

 

58. To make a voltmeter, a resistor serR must be placed in 

series with the existing meter so that the desired full 
scale voltage corresponds to the full scale current of the 
galvanometer.  We know that 25 mA produces full scale 
deflection of the galvanometer, so the voltage drop 
across the total meter must be 25 V when the current 
through the meter is 25 mA. 

   

G
GR

shuntRserR

full
scale

V

full
scale

I
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1

full full eq full ser
scale scale scale G shunt

1 1full
scale

ser 3

full G shunt
scale

1 1
  

1 1 25V 1 1
999.8 1000

25 10 A 33 0.20

V I R I R
R R

V

R
I R R

�

� �

�

  � � o

 � �  � �  : | :
u : :

ª º§ ·
« »¨ ¸

© ¹« »¬ ¼

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 The sensitivity is 
1000

40 V
25V

:
 :  

 
59. If the voltmeter were ideal, then the only resistance in the circuit would be the series combination of 

the two resistors.  The current can be found from the battery and the equivalent resistance, and then 
the voltage across each resistor can be found. 

  � � � �
� � � �

4

tot 1 2 3

tot

4 3

44 1

4 3

27 2

45V
44 k 27 k 71k   ;  6.338 10 A

71 10

6.338 10 A 44 10 27.89 V

6.338 10 A 27 10 17.11V

V
R R R I

R

V IR

V IR

�

�

�

 �  :� :  :    u
u :

  u u :  

  u u :  

 

 Now put the voltmeter in parallel with the 44 k:  resistor.  Find its equivalent resistance, and then 

follow the same analysis as above. 

� � � �

� �

1

eq

4

tot eq 2 3

tot

4 3

44 eq eq

1 1
30.07 k

44 k 95k

45V
30.07 k 27k 57.07 k      7.885 10 A

57.07 10

7.885 10 A 30.07 10 23.71V 24 V

23.71V 27.89V
% error 100 15% reading too low

27.89 V

R

V
R R R I

R

V V IR

�

�

�

 �  :
: :

 �  :� :  :    u
u :

   u u :  |

�
 u  �

§ ·
¨ ¸
© ¹

 

 And now put the voltmeter in parallel with the 27k:  resistor, and repeat the process. 

  

� � � �

� �

1

eq

4

tot eq 1 3

tot

4 3

27 eq eq

1 1
21.02 k

27 k 95k

45V
21.02 k 44 k 65.02 k      6.921 10 A

65.02 10

6.921 10 A 21.02 10 14.55V 15V

14.55V 17.11V
% error 100 15% reading too low

17.11V

R

V
R R R I

R

V V IR

�

�

�

 �  :
: :

 �  :� :  :    u
u :

   u u :  |

�
 u  �

§ ·
¨ ¸
© ¹

 

 
60. The total resistance with the ammeter present is 

eq 650 480 53 1183 .R  : � :� :  :   The voltage 

supplied by the battery is found from Ohm’s law to be � � � �3

battery eq 5.25 10 A 1183V IR �  u :  

6.211V.   When the ammeter is removed, we assume that the battery voltage does not change.  The 

equivalent resistance changes to 
eq 1130Rc  : , and the new current is again found from Ohm’s law. 
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A

V

er
0.50:

7.5k: 7.5k:

15k:

  
battery 3

eq

6.211V
5.50 10 A

1130

V
I

R
�   u

c :
 

 
61. Find the equivalent resistance for the entire circuit, and then 

find the current drawn from the source.  That current will be 
the ammeter reading.  The ammeter and voltmeter symbols 
in the diagram below are each assumed to have resistance. 

  

� � � �
� �eq

4

source

eq

7500 15000
1.0 0.50 7500

7500 15000

12.0V
12501.5 12500   ;  9.60 10 A

12500
    

R

I
R

�

: :
 :� :� :�

:� :

 : | :    u
:

e
 

The voltmeter reading will be the source current times the equivalent resistance of the resistor–
voltmeter combination. 

  � � � � � �
� �

4

meter source eq

7500 15000
9.60 10 A 4.8V

7500 15000
V I R � : :

  u  
:� :

 

 
62. From the first diagram, write the sum of the currents at junction  

a, and then substitute in for those currents as shown. 

  1 1

1

1 1

1 1A 1V

1V
1 2 1 1 1

2 1 V

1V

2 1 V

0      ;    ;  
R R

R A V

R R

I I I

V V V
V I R I I I

R R R

V V V

R R R

 �

�
� �  o    

�
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e
e

e

 

 Then do a similar procedure for the second diagram. 

  2 2

2

2 2

2 2A 2V

2V
2 1 2 2 2

1 2 V

2V

1 2 V

0      ;    ;  
R R

R A V

R R

I I I

V V V
I R V I I I

R R R

V V V

R R R

 �

�
� �  o    

�
 �

e
e

e

 

Now there are two equations in the two unknowns of 1R  and 2.R   Solve for the reciprocal values and 

then find the resistances.  Assume that all resistances are measured in kilohms. 

  

1 1

2 2

1V

2 1 V 2 1 2 1

2V

1 2 V 1 2 1 2

1 2 2 1

2 1

12.0 5.5 5.5 5.5 6.5 5.5
          0.30556

18.0

12.0 4.0 4.0 4.0 8.0 4.0
        0.22222

18.0

8.0 4.0 1 2
0.22222    0.05556

6.5 5.5
0.3

R R

R R

V V V

R R R R R R R

V V V

R R R R R R R

R R R R

R R

� �
 � o  � o  �

� �
 � o  � o  �

 � o  �

 �

e

e

1 1 1

2 5.5 1 0.66667
0556    6.5 0.05556 0.30556      

7.5R R R
o �  � o  o

§ ·
¨ ¸
© ¹

 

RV+

–

R1

R2

I1

a

b

c

+

–

R1

R2

I2

d

e

f

V

RV

V

I1A I1V

I2A
I2V

å

å
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  1 2

2 1

1 2
11.25k   ;  0.05556    8.18kR R

R R
 :  � o  :  

 So the final results are 1 211k   ;  8.2kR R :  :  

 
63. The sensitivity of the voltmeter is 1000 ohms per volt on the 3.0 

volt scale, so it has a resistance of 3000 ohms.  The circuit is 
shown in the diagram.  Find the equivalent resistance of the 
meter–resistor parallel combination and the entire circuit. 

� �� �1

V
p

V V

eq p

3000 94001 1
2274

3000 9400

2274 9400 11674

R R
R

R R R R

R R R

�
: :

 �    :
� :� :

 �  :� :  :

§ ·
¨ ¸
© ¹  

Using the meter reading of 2.3 volts, calculate the current into the parallel combination, which is the 
current delivered by the battery.  Use that current to find the EMF of the battery. 

� � � �

3

p

3

eq

2.3V
1.011 10 A

2274

1.011 10 A 11674 11.80V 12 V

V
I

R

IR

�

�

   u
:

  u :  |e
 

 
64. By calling the voltmeter “high resistance,” we can assume it has no current passing through it.  Write 

Kirchhoff’s loop rule for the circuit for both cases, starting with the negative pole of the battery and 
proceeding counterclockwise. 

  

� � � �

� � � �

1
meter 1 1 1 1 1 1 1 1 1

1

2
meter 2 2 2 2 2 2 2 2 2

2

Case 1:      0    

Case 2:      0    

V
V V I R I r I R I r R r R

R

V
V V I R I r I R I r R r R

R

  � �  o  �  �

  � �  o  �  �

e e

e e

 

 Solve these two equations for the two unknowns of e  and r . 

  

� � � �

� � � �
� � � � � � � �

� � � �

1 2
1 2

1 2

2 1
1 2

1 2 2 1

1
1

1

  

8.1V 9.7 V
35 14.0 5.308 5.3

9.7 V 14.0 8.1V 35

9.7 V
5.308 35 11.17 V 11V

35

V V
r R r R

R R

V V
r R R

V R V R

V
r R

R

 �  � o

� �
  : :  : | :

� : � :

 �  :� :  |
:

§ ·§ ·
¨ ¸¨ ¸

© ¹ © ¹

e

e

 

 
65. We connect the battery in series with the body and a resistor.  The current through this series circuit 

is the voltage supplied by the battery divided by the sum of the resistances.  The voltage drop across 
the body is equal to the current multiplied by the body’s resistance.  We set the voltage drop across 
the body equal to 0.25 V and solve for the necessary resistance. 

� �  1.5 V 
1 1 1800 9000 9.0 k

0.25 V

B

B
B B

B

I
R R

R
V IR R R

R R V

 
�

§ · § ·  o  �  � :  :  :¨ ¸ ¨ ¸� © ¹ © ¹

e

e e
 

 

V

e

R R

VR
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66. (a) Since 2P V R  and the voltage is the same for each combination, the power and resistance are  

inversely related to each other.  So for the  50 W output, use the higher-resistance filament  .  
For the  100 W output, use the lower-resistance filament  .  For the  150 W output, use the   
 filaments in parallel  . 

(b) 2   P V R o  

� � � �2 22

50 W 100 W

120V 120V
     288 290      144 140

50W 100W

V
R R R

P
   : | :   : | :  

As a check, the parallel combination of the resistors gives the following.  

� �� � � �22

1 2
p

1 2

288 144 120 V
96      150 W

288 144 96

R R V
R P

R R R

: :
   :    

� :� : :
. 

 
67. The voltage drop across the two wires is the 3.0 A current times their total resistance. 

  � � � � � �wires wires p
3.0A 0.0065 m 130m 2.535V 2.5VV IR R  :  |  

 Thus the voltage applied to the apparatus is source wires
120V 2.535V 117.465V 117VV V V �  �  | . 

 
68. The charge on the capacitor and the current in the resistor both decrease exponentially, with a time 

constant of .RCW    The energy stored in the capacitor is given by 
2

1
2

,
Q

U
C

 and the power 

dissipated in the resistor is given by 2 .P I R  

  

� �

/ / / /0 0
0 0

22 2 2 1 2
20 0 01 1 1 1 1

decrease 0 2 2 2 2 2

0

/ 2 /0

2 2
2 0

dissipated 2
0 0 0

  ;  

1

t RC t RC t RC t RC

t t

t t

t RC t RC

V Q
Q Q e I I e e e

R RC

Q Q Q Q e Q
U U U U e

C C C C C

Q
e e

RC

Q
U Pdt I Rdt Rdt dt

RC

W

W

W W

� � � �

�
�

  

  

� �

    

 �'  �  �  �  �
§ · § · § ·
¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

§ ·    ¨ ¸
© ¹³ ³ ³ � �

� � � �

2 /

2
2 201

2

2
0

2 0

2
01

2 1

2

             1

t RCe

Q
e e

C

Q RC
RC

Q
C

W
W�

� � �

§ · �¨ ¸
© ¹

 � �

³
 

 And so we see that 
decrease dissipated .U U  

 
69. The capacitor will charge up to 75% of its maximum value, and then discharge.  The charging time is  

the time for one heartbeat. 

  � �

� � � � � �

beat beat

beat

beat
0 0 0

4beat

6

1min 60s
0.8333s

72beats 1min

1     0.75 1     0.25    ln 0.25   

0.8333s
9.2 10

ln 0.25 6.5 10 F 1.3863

t tt

RC RC RC

t

t
V V e V V e e

RC

t
R

C

� � �

�

 u  

 � o  � o  o �  o

 �  �  u :
u �

§ ·§ · § ·
¨ ¸¨ ¸¨ ¸ © ¹© ¹ © ¹
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70. (a) Apply Ohm’s law to find the current. 

  
body

body

110V
0.116A 0.12A

950

V
I

R
   |

:
 

(b) The description of “alternative path to ground” is a statement that the 35:  path is in parallel 

with the body.  Thus the full 110 V is still applied across the body, and so the current is the 

same: 0.12A . 

(c) If the current is limited to a total of 1.5 A, then that current will get divided between the person  
and the parallel path.  The voltage across the body and the parallel path will be the same, since 
they are in parallel. 

   

� �

� � � �

body alternate body body alternate alternate total body alternate

alternate
body total

body alternate

      

35
1.5A 0.0533A 53mA

950 35

V V I R I R I I R

R
I I

R R

 o   � o

:
   |

� :� :

 

 This is still a very dangerous current. 
 
71. (a) If the ammeter shows no current with the closing of the switch, then points B and D must be at  

the same potential, because the ammeter has some small resistance.  Any potential difference 
between points B and D would cause current to flow through the ammeter.  Thus the potential 
drop from A to B must be the same as the drop from A to D.  Since points B and D are at the 
same potential, the potential drop from B to C must be the same as the drop from D to C.  Use 
these two potential relationships to find the unknown resistance. 

   

3 1
BA DA 3 3 1 1

1 3

1
CB CD 3 1 2 2

3

2 3 1

        

        x x

R I
V V I R I R

R I

I
V V I R I R R R

I
R R R

 o  o  

 o  o   
 

 (b) � �3
2

1

78.6
972 121

630
x

R
R R

R

:
  :  :

:
§ ·
¨ ¸
© ¹

  

 

72. From the solution to problem 71, the unknown resistance is given by 
2 3 1

.xR R R R   We use that 

with Eq. 25-3 to find the length of the wire. 

  
� �

� � � � � �
� � � �

3
2 2 2

1

232

2 3

8

1

4
  

2

29.2 3.48 1.22 10 m
29.5m

4 4 38.0 10.6 10 m

x

R L L L
R R

R A dd

R R d
L

R

U U U
SS

SS
U

�

�

    o

: : u
   

: u :<

 

 
73. Divide the power by the required voltage to determine the current drawn by the hearing aid. 

2.5 W
0.625 A

4.0 V

P
I

V
    

Use Eq. 26-1 to calculate the terminal voltage across the three batteries for mercury and dry cells. 

� � � �� �
� � � �� �

Hg

D

3 3 1.35 V 0.625 A 0.030 3.99 V

3 3 1.50 V 0.625 A 0.35 3.84 V

V Ir

V Ir

 �  � :  ª º¬ ¼
 �  � :  ª º¬ ¼

e

e
 

The terminal voltage of the mercury cell batteries is closer to the required 4.0 V than the voltage 
from the dry cell. 
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74. One way is to connect N resistors in series.  If each resistor can dissipate 0.5 W, then it will take 7 
resistors in series to dissipate 3.5 W.  Since the resistors are in series, each resistor will be 1/7 of the 
total resistance. 

eq 3200
457 460

7 7

R
R

:
   : | :  

So connect  7 resistors of 460:  each, rated at ½ W, in series. 

Or, the resistors could be connected in parallel.  Again, if each resistor watt can dissipate 0.5 W, then 
it will take 7 resistors in parallel to dissipate 3.5 W.  Since the resistors are in parallel, the equivalent 
resistance will be 1/7 of each individual resistance. 

 � �eq

eq

1 1
7     7 7 3200 22.4 kR R

R R
 o   :  :§ ·

¨ ¸
© ¹

 

So connect  7 resistors of 22.4 k:  each, rated at ½ W, in parallel. 

 
75. To build up a high voltage, the cells will have to be put in series.  120 V is needed from a series of 

0.80 V cells.  Thus 
120V

150 cells
0.80V cell

  are needed to provide the desired voltage.  Since these 

cells are all in series, their current will all be the same at 350 mA.  To achieve the higher current 
desired, banks made of 150 cells each can be connected in parallel.  Then their voltage will still be at 

120 V, but the currents would add making a total of 
3

1.3A
3.71 banks 4 banks

350 10 A bank�
 |

u
.  So 

the total number of cells is 600 cells .   The panel area is � �4 2 2600 cells 9.0 10 m cell 0.54m�u  .  

The cells should be wired in  4 banks of 150 cells in series per bank, with the banks in parallel  .  
This will produce 1.4 A at 120 V.  To optimize the output,  always have the panel pointed directly at 
the sun  . 

 

76. (a) If the terminal voltage is to be 3.0 V, then the voltage across 1
R  will be 9.0 V.  This can be used  

to find the current, which then can be used to find the value of 2
R . 

   

� �

1
1 1 2 2

1

2 2
2 1

1

             

3.0 V
14.5 4.833 4.8

9.0 V

V
V IR I V IR

R

V V
R R

I V

 o   o

   :  : | :
 

 (b) If the load has a resistance of 7.0: , then the parallel combination of 2R  and the load must be  

used to analyze the circuit.  The equivalent resistance of the circuit can be found and used to 
calculate the current in the circuit.  Then the terminal voltage can be found from Ohm’s law, 
using the parallel combination resistance. 

   

� � � �

� � � �

2 load
2+load

2 load

T 2+load

eq

4.833 7.0
2.859      2.859 14.5 17.359

11.833

12.0V
0.6913A          0.6913A 2.859 1.976V 2.0V

17.359

eq

R R
R R

R R

V
I V IR

R

: :
   :  :� :  :

� :

     :  |
:

 

  The presence of the load has affected the terminal voltage significantly. 
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77. There are two answers because it is not known which direction the given current is flowing through 
the 4.0 k:  resistor.  Assume the current is to the right.  The voltage across the 4.0 k:  resistor is 

given by Ohm’s law as � � � �33.10 10 A 4000 12.4 V.V IR �  u :    The voltage drop across the 

8.0 k:  must be the same, and the current through it is 312.4 V
1.55 10 A.

8000

V
I

R
�   u

:
  The total 

current in the circuit is the sum of the two currents, and so 3

tot
4.65 10 A.I � u   That current can be 

used to find the terminal voltage of the battery.  Write a loop equation, starting at the negative 
terminal of the unknown battery and going clockwise. 

  
� � � �

� � � �
ab tot tot

3

ab

5000 12.4 V 12.0 V 1.0     

24.4V 5001 4.65 10 A 47.65V 48V

V

V

I I

�

� : � � � : o

 � : u  |
 

 If the current is to the left, then the voltage drop across the parallel combination of resistors is still 
12.4 V, but with the opposite orientation.  Again write a loop equation, starting at the negative 
terminal of the unknown battery and going clockwise.  The current is now to the left. 

  
� � � �

� � � �
ab tot tot

3

ab

5000 12.4 V 12.0 V+ 1.0     

0.4V 5001 4.65 10 A 23.65V 24 V

V

V

I I

�

� : � � : o

 � � : u  � | �
 

 
78. The terminal voltage and current are given for two situations.  Apply Eq. 26-1 to both of these  

situations, and solve the resulting two equations for the two unknowns. 

  

� � � �

1 1 2 2 1 1 2 2

2 1

1 2

1 1

  ;        

47.3V 40.8V
1.413 1.4

7.40A 2.80A

40.8V 7.40A 1.413 51.3V

V I r V I r V I r V I r

V V
r

I I

V I r

 �  � o  �  � o

� �
   : | :

� �

 �  � :  

e e e

e

 

 
79. The current in the circuit can be found from the resistance and the power dissipated.  Then the 

product of that current and the equivalent resistance is equal to the battery voltage. 

  

� � � �

2 33

33

1

eq eq

0.80W
    0.1557 A

33

1 1
33 68.66      0.1557 A 68.66 10.69 V 11V

68 75

P
P I R I

R

R V IR

�

 o    
:

 :� �  :   :  |
: :

§ ·
¨ ¸
© ¹

 

 
80. If the switches are both open, then the circuit is a simple series circuit.  Use Kirchhoff’s loop rule to  

find the current in that case. 
  � �6.0V 50 20 10 0    6.0V 80 0.075AI I� :� :� :  o  :   

 If the switches are both closed, the 20-: resistor is in parallel with R.  Apply Kirchhoff’s loop rule to  
the outer loop of the circuit, with the 20-: resistor having the current found previously. 

 � � � �� � � �� �6.0V 0.075A 20
6.0V 50 0.075A 20 0    0.090A

50
I I

� :
� : � :  o   

:
 

This is the current in the parallel combination.  Since 0.075 A is in the 20-: resistor, 0.015 A must 
be in R.  The voltage drops across R and the 20-: resistor are the same since they are in parallel. 

  � �20
20 20 20 20

0.075A
        20 100

0.015A
R R

R

I
V V I R I R R R

I
 o  o   :  :  
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81. (a) We assume that the ammeter is ideal and so has 0 resistance, but that the voltmeter has  

resistance V
R .  Then apply Ohm’s law, using the equivalent resistance.  We also assume the 

voltmeter is accurate, and so it is reading the voltage across the battery. 

 eq

V V V

V

1 1 1 1 1 1 1
           

1 1

I I
V IR I V I

R R R R V R V R
R R

  o �  o �  o  �
�

§ ·
¨ ¸
© ¹

  

 (b) We now assume the voltmeter is ideal, and so has an infinite resistance, but that the ammeter  

has resistance A
R .  We also assume that the voltmeter is accurate and so is reading the voltage 

across the battery. 

     � �eq A A A
        

V V
V IR I R R R R R R

I I
  � o �  o  �  

 

82. (a) The 12-: and the 25-: resistors are in parallel, with a net resistance 1-2R  as follows. 

   

1

1-2

1 1
8.108

12 25
R

�

 �  :
: :

§ ·
¨ ¸
© ¹

 

1-2R is in series with the 4.5-: resistor, for a net resistance 
1-2-3

R  as follows. 

1-2-3 4.5 8.108 12.608R  :� :  :  

That net resistance is in parallel with the 18-: resistor, for a final equivalent resistance as 
follows. 

   

1

eq

1 1
7.415 7.4

12.608 18
R

�

 �  : | :
: :

§ ·
¨ ¸
© ¹

 

 (b) Find the current in the 18-: resistor by using Kirchhoff’s loop rule for the loop containing the  
battery and the 18-: resistor. 

 
18 18 18

18

6.0V
0    0.33A

18
I R I

R
�  o    

:
e

e  

 (c) Find the current in 
1-2R  and the 4.5-: resistor by using Kirchhoff’s loop rule for the outer loop  

containing the battery and the resistors 
1-2R  and the 4.5-: resistor. 

1-2 1-2 1-2 4.5 1-2

1-2 4.5

6.0V
0    0.4759 A

12.608
I R I R I

R R
� �  o    

� :
E

e  

This current divides to go through the 12-: and 25-: resistors in such a way that the voltage 
drop across each of them is the same.  Use that to find the current in the 12-: resistor. 

 � �

� �
� �

12 25

1-2 12 25 25 1-2 12

12 12 25 25 1-2 12 25

25
12 1-2

12 25

    

      

25
0.4759 A 0.32 A

37

R R

I I I I I I

V V I R I R I I R

R
I I

R R

 � o  �

 o   � o

:
   

� :

 

 (d) The current in the 4.5-: resistor was found above to be 
1-2 0.4759AI  .  Find the power  

accordingly. 

 � � � �22

4.5 1-2 4.5 0.4759 A 4.5 1.019 W 1.0WP I R  :  |  
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83. Write Kirchhoff’s loop rule for the circuit, and substitute for the current and the bulb resistance 
based on the bulb ratings. 

  

� � � �

2 2

bulb bulb bulb
bulb bulb bulb bulb bulb bulb

bulb bulb bulb

bulb bulb bulb

2

bulb bulb
bulb bulb

bulb bulb bulb bulb bulb

                  

0  

3.0V
9.0V 3.0V 9.0

2.0W

V V P
P R P I V I

R P V

I R I R

V V
R R V

I P V P P

 o   o  

� �  o

 �  �  �  �  :

e

e e
e

 

 
84. The equivalent resistance of the circuit is the parallel combination of the bulb and the lower portion 

of the potentiometer, in series with the upper portion of the potentiometer.  With the slide at position 

x, the resistance of the lower portion is var ,xR and the resistance of the upper portion is � � var
1 .x R�   

From that equivalent resistance, we find the current in the loop, the voltage across the bulb, and then 
the power expended in the bulb. 

  

� �

1

lower bulb var bulb
parallel

lower bulb lower bulb var bulb

2

bulb
eq var parallel loop bulb loop parallel bulb

eq bulb

1 1

1   ;    ;    ;  

R R xR R
R

R R R R xR R

V
R x R R I V I R P

R R

�

 �   
� �

 � �    

§ ·
¨ ¸
© ¹

e
 

(a) Consider the case in which 1.00.x    In this case, the full battery potential is across the bulb, 

and so it is obvious that 
bulb

120V.V    Thus 
� �22

bulb
bulb

bulb

120V
60W .

240

V
P

R
   

:
 

 (b) Consider the case in which 0.65.x   

   

� � � � � �
� � � �

� � � � � �

� � � �

� �

var bulb
parallel

var bulb

eq var parallel

loop bulb

eq

2

bulb

0.65 150 240
69.33

0.65 150 240

1 0.35 150 69.33 121.83

120V
0.9850A  ;  0.9850A 69.33 68.29 V

121.83

68.29 V
19.43W 19 W

240

xR R
R

xR R

R x R R

I V
R

P

: :
   :

� : � :

 � �  : � :  :

    :  
:

  |
:

e  

 (c) Consider the case in which 0.35.x   

   

� � � � � �
� � � �

� � � � � �

� � � �

� �

var bulb
parallel

var bulb

eq var parallel

loop bulb

eq

2

bulb

0.35 150 240
43.08

0.35 150 240

1 0.65 150 69.33 140.58

120V
0.8536A  ;  0.8536A 43.08 36.77 V

140.58

36.77 V
5.63W 5.6W

240

xR R
R

xR R

R x R R

I V
R

P

: :
   :

� : � :

 � �  : � :  :

    :  
:

  |
:

e  
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85. (a) When the galvanometer gives a null reading, no current is passing through the galvanometer or  
the emf that is being measured.  All of the current is flowing through the slide wire resistance.  
Application of the loop rule to the lower loop gives 0,IR�  e  since there is no current through 
the emf to cause voltage drop across any internal resistance.  The amount of current flowing 
through the slide wire resistor will be the same no matter what emf is used since no current is 
flowing through the lower loop.  Apply this relationship to the two emf’s. 

   s
s s s

s s

0  ;  0    ;      x x
x x x

x

R
IR IR I

R R R
�  �  o   o  

§ ·
¨ ¸
© ¹

e e
e e e e  

(b) Use the equation derived above.  We use the fact that the resistance is proportional to the length  

of the wire, by Eq. 25-3, .R AU l  

   � �s s s
ss s

45.8cm
1.0182 V 1.39 V

33.6cm

x

x x
x

R A
R

A

U

U
     

§ ·
¨ ¸§ · § · § ·

¨ ¸ ¨ ¸¨ ¸ ¨ ¸
© ¹© ¹ © ¹¨ ¸

© ¹

l

l

l l
e e e e  

(c) If there is current in the galvanometer, then the voltage between points A and C is uncertainty  

by the voltage drop across the galvanometer, which is � � � �3

G G G 0.012 10 A 35V I R �  u :  

44.2 10 V .� u  The uncertainty might of course be more than this, due to uncertainties 

compounding from having to measure distance for both the standard emf and the unknown emf.  
Measuring the distances also has some uncertainty associated with it. 

 (d) Using this null method means that the (unknown) internal resistance of the unknown emf does  
not enter into the calculation.  No current passes through the unknown emf, and so there is no 
voltage drop across that internal resistance. 

 
86. (a) In normal operation, the capacitor is fully charged by the power supply, and so the capacitor  

voltage is the same as the power supply voltage, and there will be no current through the 
resistor.  If there is an interruption, the capacitor voltage will decrease exponentially – it will 
discharge.  We want the voltage across the capacitor to be at 75% of the full voltage after 0.20 s.  
Use Eq. 26-9b for the discharging capacitor. 

   

� � � �

� �
� �

� �
� � � �

0.20s / 0.20s //

0 0 0

6

  ;  0.75     0.75   

0.20s 0.20s
81790 82 k

ln 0.75 8.5 10 F ln 0.75

RC RCt RCV V e V V e e

R
C

� ��

�

  o  o

� �
   : | :

u

 

 (b) When the power supply is functioning normally, there is no voltage across the resistor, so the  
device should NOT be connected between terminals a and b.  If the power supply is not 
functioning normally, there will be a larger voltage across the capacitor than across the 
capacitor–resistor combination, since some current might be present.  This current would result 
in a voltage drop across the resistor.  To have the highest voltage in case of a power supply 
failure, the device should be connected between terminals  b and c . 

 
87. Note that, based on the significant figures of the resistors, that the 1.0-:  resistor will not change the 

equivalent resistance of the circuit as determined by the resistors in the switch bank. 
  

Case 1: n = 0 switch closed.  The effective resistance of the circuit is 16.0k .:   The current in the  

circuit is 
16V

1.0mA.
16.0k

I   
:

  The voltage across the 1.0-:  resistor is V IR  

� � � �1.0mA 1.0 1.0mV . :   



Chapter 26   DC Circuits 

  

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

193 

 Case 2: n = 1 switch closed.  The effective resistance of the circuit is 8.0k .:   The current in the  

circuit is 
16V

2.0mA.
8.0k

I   
:

  The voltage across the 1.0-:  resistor is V IR  

� � � �2.0mA 1.0 2.0mV . :   

 Case 3: n = 2 switch closed.  The effective resistance of the circuit is 4.0k .:   The current in the  

circuit is 
16V

4.0mA.
4.0k

I   
:

  The voltage across the 1.0-:  resistor is V IR  

� � � �4.0mA 1.0 4.0mV . :   

Case 4: n = 3 and n = 1 switches closed.  The effective resistance of the circuit is found by the 
parallel combination of the 2.0-k:  and 8.0-k: resistors. 

  

1

eq

1 1
1.6k

2.0k 8.0k
R

�

 �  :
: :

§ ·
¨ ¸
© ¹

 

The current in the circuit is 
16V

10mA.
1.6k

I   
:

  The voltage across the 1.0-:  resistor is 

� � � �10mA 1.0 10mV .V IR  :   

So in each case, the voltage across the 1.0-:  resistor, if taken in mV, is the expected analog value 
corresponding to the digital number set by the switches. 

 
88. We have labeled the resistors and the currents through the 

resistors with the value of the specific resistance, and the emf’s 
with the appropriate voltage value.  We apply the junction rule to 
points a and b, and then apply the loop rule to loops 1, 2, and 3.  
This enables us to solve for all of the currents. 

  � �
� �

5 6 top top 6.8 12 5 6 12 6.8

5 6.8 12 6

5 10 5 5 6 6

4 8 12 12 6.8 6.8

12 12 6 6

  ;        

                     [1]

0         [2]  loop 1

0     [3]  loop 2

0                      

I I I I I I I I I I

I I I I

I R I R

I R I R

I R I R

 � �  o �  � o

�  �

� � �  

� � �  

�  

e e

e e

� � [4]  loop 3

 

 Use Eq. 4 to substitute 
6 6 12 12

I R I R  and 12
6 12 12

6

2 .
R

I I I
R

    Also combine the emf’s by adding the 

voltages. 

  
5 6.8 12 15 5 5 12 12 12 12 12 6.8 6.8

3   [1]  ;  0  [2]  ;  0  [3]I I I I R I R I R I R�  � �  � �  e e  

 Use Eq. 1 to eliminate 
6.8

I  by 
6.8 12 5

3 .I I I �  

  
� � � �

15 5 5 12 12

12 12 12 12 5 6.8 12 12 12 6.8 5 6.8

0       [2]

3 0    3 0     [3]

I R I R

I R I I R I R R I R

� �  

� � �  o � � �  

e

e e
 

 Use Eq. 2 to eliminate 
5

I  by 15 12 12
5

5

,
I R

I
R

�
 
e

 and then solve for 
12

.I  

  � � 15 12 12
12 12 12 6.8 6.8

5

3 0  
I R

I R R R
R

�
� � �  o

ª º
« »
¬ ¼

e
e  

I12 

1
2

3 
10e

5e

4e

8e5R

12R6R

6.8R
5I

6I

6.8I

topIa b
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� � � � � � � �
� � � � � � � � � � � �

� � � � � �
� �

12 5 15 6.8
12

12 5 6.8 5 12 6.8

12

15 12 12
5 5

5

6.8 12 5

12.00V 5.00 15.00V 6.800

3 12.00 5.00 3 6.800 5.00 12.00 6.800

    0.66502A 0.665A

15.00V 0.66502A 12.00
1.40395A 1.40A

5.00

3 3 0.

R R
I

R R R R R R

I

I R
I I

R

I I I

: � :�
  

� � : : � : : � : :

 |  

� :�
   |  

:

 �  

e e

e

� �

� �
6.8

6 12 6

66502A 1.40395A 0.59111A 0.591A

2 2 0.66502 A 1.33A

I

I I I

�  |  

  |  

 

 
89. (a) After the capacitor is fully charged, there is no current  

through it, and so it behaves like an “open” in the circuit.  In 
the circuit diagram, this means that I5 = 0, I1 = I3, and I2 = I4.  
Write loop equations for the leftmost loop and the outer loop 
in order to solve for the currents. 

� �

� �

2 2 4 2

2 4

1 1 3 1

1 3

12.0V
    1.20A

10.0

12.0V
    0.800A

15.0

0

0

I R R I
R R

I R R I
R R

� � o    
� :

� � o    
� :

 

 

e
e

e
e

 Use these currents to find the voltage at points c and d, which will give the voltage across the 
 capacitor.    

   

� � � �
� � � �

� � � �

c 2 2

d 1 1

cd

12.0V 1.20A 1.0 10.8V

12.0V 0.800A 10.0 4.00V

10.8V 4.00V 6.8V   ;  2.2 F 6.8V 14.96 C 15 C

V I R

V I R

V Q CV P P P

 �  � :  

 �  � :  

 �     |

e

e    

 (b) When the switch is opened, the emf is taken out of the circuit.  Then we have the capacitor  
discharging through an equivalent resistance.  That equivalent resistance is the series 
combination of R1 and R2, in parallel with the series combination of R3 and R4.  Use the 
expression for discharging a capacitor, Eq. 26-9a.  

   

� � � � � � � �

eq

1 1

eq

1 2 3 4

/

0 0

6 5

eq

1 1 1 1
6.16

11.0 14.0

0.030   

ln 0.030 6.16 2.2 10 F ln 0.030 4.8 10 s

t R C

R
R R R R

Q Q e Q

t R C

� �

�

� �

 �  �  :
� � : :

  o

 �  � : u  u

§ · § ·
¨ ¸ ¨ ¸

© ¹© ¹

 

 
90. (a) The time constant of the RC circuit is given by Eq. 26-7. 

   � �� �33.0 k 4.00 F 132 msRCW P  :   

During the charging cycle, the charge and the voltage on the capacitor increases exponentially 
as in Eq. 26-6b.  We solve this equation for the time it takes the circuit to reach 90.0 V. 

� � � �/ 90.0 V
1 ln 1 132 ms ln 1 304 ms

100.0 V
t V

V e tW W� § · § · � o  � �  � �  ¨ ¸ ¨ ¸
© ¹ © ¹

e
e

 

 (b) When the neon bulb starts conducting, the voltage on the capacitor drops quickly to 65.0 V and  
then starts charging.  We can find the recharging time by first finding the time for the capacitor 
to reach 65.0 V, and then subtract that time from the time required to reach 90.0 V. 

C
+
–

R2

b

R1

R3R4

a

c d

I1

I3I4

I2
I I5

å

S
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� �

2

65.0 V
ln 1 132 ms ln 1 139 ms

100.0 V

304 ms 139 ms 165 ms  ;  304ms 165ms 469ms

V
t

t t

W § · § · � �  � �  ¨ ¸ ¨ ¸
© ¹ © ¹

'  �   �  

e  

 (c) The spreadsheet used for this  
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH26.XLS,” on 
tab “Problem 26.90c.” 

 
 
 
 
 
 
 
 
 
 
91. We represent the 10.00-M:  resistor by 10 ,R and the resistance of the voltmeter as V.R   In the first 

configuration, we find the equivalent resistance eqA ,R  the current in the circuit A ,I  and the voltage 

drop across .R  

  10 V
eqA R A A A

10 V eqA eqA

  ;    ;      A

R R R
R R I V I R V V

R R R R
 �    � o  �

�
e

e e e  

In the second configuration, we find the equivalent resistance eqB,R  the current in the circuit B,I  and 

the voltage drop across 10.R  

  
10

V 10
eqB 10 R B 10 B B

V eqB eqB

  ;    ;      B

RR R
R R I V I R V V

R R R R
 �    � o  �

�
e

e e e  

We now have two equations in the two unknowns of R  and V.R   We solve the second equation for 

VR and substitute that into the first equation.  We are leaving out much of the algebra in this solution. 

  
� �

� �

� �

A
10 VeqA

10 V

10 10 B 10
B V

VeqB B 10 B
10

V

A
10 V

B 10
10

10 V
B 10 B

B 10
10

B 10 B

  ;

    

 

R R
V

R RR R
R R

R R V R R
V R

RRR R V R V RR
R R

R R
V

R R V R RR RR R R V R V R
R

V R R
R

R V R V R

  �
�

�

  � o  
� ��

�

�   o
ª º� « »� � �¬ ¼�
ª º

� « »� �¬ ¼

e e e

e e e
e

e e e

e

e

 

  � � � �B
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92. Let the internal resistance of the voltmeter be indicated by V ,R  and let the 15-M:  resistance be 

indicated by 15.R   We calculate the current through the probe and voltmeter as the voltage across the 

probe divided by the equivalent resistance of the problem and the voltmeter.  We then set the voltage 
drop across the voltmeter equal to the product of the current and the parallel combination of VR  and 

15.R   This can be solved for the unknown resistance. 

� �

� � � �
� �� �

� �

15 V 15 V 15 V
V

15 V 15 V15 V 15 V 15 V 15 V

15 V 15 V

15 V 15 V

15 VV

15 V 15 V V

  ;    

15M 10M 50,000V
1 1

25M 50V

   5994 M 6000M 6G

V R R V R R VR R
I V I

R R R RR R R R R R R R RR R
R R R R

V
R R R R

R R VV
R

R R R R V

    o
� � � �� �

� �

�
: :§ · § ·

  �  �¨ ¸ ¨ ¸� � : © ¹© ¹

 : | :  :

 

 
93. The charge and current are given by Eq. 26-6a and Eq. 26-8, respectively.   

  

� � � �� �
� �� �

/ / 4 7 3

7 6
final

4
initial 4

1   ;    ;  1.5 10 3.0 10 F 4.5 10 s

0.63 0.63 0.63 3.0 10 F 9.0V 1.70 10 C

9.0V
0.37 0.37 0.37 2.22 10 A

1.5 10

t RC t RCQ C e I e RC
R

Q C

I
R

W� � � �

� �

�

 �    u : u  u

  u  u

§ ·   u¨ ¸u :© ¹

e
e

e

e

 

The graphs are shown.  The times 
for the requested values are about 
4.4 or 4.5 ms, about one time 
constant, within the accuracy of 
estimation on the graphs. 
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename  
“PSE4_ISM_CH26.XLS,” on tab 
“Problem 26.93.” 
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