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Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching
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� Network reliability.
� Security of statistical data.
� Distributed computing.
� Egalitarian stable matching.
� Distributed computing.
� Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
� Two very rich algorithmic problems.
� Cornerstone problems in combinatorial optimization.
� Beautiful mathematical duality.

Nontrivial applications / reductions.
� Network connectivity.
� Bipartite matching.
� Data mining.
� Open-pit mining. 
� Airline scheduling.
� Image processing.
� Project selection.
� Baseball elimination.

3

Soviet Rail Network, 1955

Source:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Network:  abstraction for material FLOWING through the edges.
� Directed graph.
� Capacities on edges.
� Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem
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A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T)  = sum of weights of edges leaving S.

Cuts
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A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T)  = sum of weights of edges leaving S.

Cuts
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A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T)  = sum of weights of edges leaving S.

Min cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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Capacity = 28
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Network:  abstraction for material FLOWING through the edges.
� Directed graph.
� Capacities on edges.
� Source node s,  sink node t.

Max flow problem. Assign flow to edges so as to:
� Equalize inflow and outflow at every intermediate vertex.
� Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem
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A flow f is an assignment of weights to edges so that:
� Capacity:  0 � f(e)  � u(e). 
� Flow conservation:  flow leaving v = flow entering v.

Flows
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A flow f is an assignment of weights to edges so that:
� Capacity:  0 � f(e)  � u(e). 
� Flow conservation:  flow leaving v = flow entering v.

Flows
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Max flow problem:  find flow that maximizes net flow into sink.

Maximum Flow Problem
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Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts
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Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts
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Observation 1. Let f be a flow, and let (S, T) be any s-t cut.  Then, the 
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts
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Observation 2. Let f be a flow, and let (S, T) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Flows and Cuts
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Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity 
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28   � Flow value � 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15



17

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem.  (Ford-Fulkerson, 1956): In any network, 
the value of max flow equals capacity of min cut.

� Proof IOU:  we find flow and cut such that Observation 3 applies.

Min cut capacity = 28    � Max flow value = 28
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Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
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Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
� Greedy algorithm:  repeat until you get stuck.
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Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
� Greedy algorithm:  repeat until you get stuck.
� Fails:  need to be able to "backtrack."
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Residual Graph

Original graph.
� Flow f(e).
� Edge e = v-w

Residual edge.
� Edge e = v-w or w-v.
� "Undo" flow sent.

Residual graph.
� All the edges that have

strictly positive residual capacity.

v w17
6

capacity = u(e)

v w11
6

residual capacity = u(e) – f(e)

residual capacity = f(e)

flow = f(e)
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Augmenting Paths

Augmenting path = path in residual graph.
� Increase flow along forward edges.
� Decrease flow along backward edges.
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Augmenting Paths

Observation 4. If augmenting path, then not yet a max flow.
Q. If no augmenting path, is it a max flow?

Flow value = 14
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Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson algorithm.  Generic method for solving max flow.

Questions.
� Does this lead to a maximum flow? yes 
� How do we find an augmenting path? s-t path in residual graph
� How many augmenting paths does it take?
� How much effort do we spending finding a path?

while (there exists an augmenting path) {
Find augmenting path P
Compute bottleneck capacity of P
Augment flow along P

}
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Max-Flow Min-Cut Theorem

Augmenting path theorem. A flow f is a max flow if and only if there 
are no augmenting paths. 

We prove both simultaneously by showing the following are equivalent:
(i) f is a max flow.

(ii) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f. 

(i)    � (ii) equivalent to not (ii) � not (i), which was Observation 4
(ii)   � (iii) next slide
(iii)  � (i) this was Observation 3

Max-flow min-cut theorem. The value of the max 
flow is equal to the capacity of the min cut.
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Proof of Max-Flow Min-Cut Theorem

(ii)  � (iii). If there is no augmenting path relative to f, then there
exists a cut whose capacity equals the value of f. 

Proof.
� Let f be a flow with no augmenting paths.
� Let S be set of vertices reachable from s in residual graph.

– S contains s;  since no augmenting paths, S does not contain t
– all edges e leaving S in original network have f(e) = u(e)
– all edges e entering S in original network have f(e) = 0
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Max Flow Network Implementation

Edge in original graph may correspond to 1 or 2 residual edges.
� May need to traverse edge e = v-w in forward or reverse direction.
� Flow = f(e), capacity = u(e).
� Insert two copies of each edge, one in adjacency list of v and one in w.

public class Edge {
private int v, w; // from, to
private int cap; // capacity from v to w
private int flow; // flow from v to w

public Edge(int v, int w, int cap) { ... }
public int cap() { return cap; }
public int flow() { return flow; }
public boolean from(int v) { return this.v == v; }
public int other(int v) { return from(v) ? this.w : this.v; }
public int capRto(int v) { return from(v) ? flow : cap - flow; }
public void addflowRto(int v, int d) { flow += from(v) ? -d : d; }

}
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Ford-Fulkerson Algorithm:  Implementation

Ford-Fulkerson main loop.

// while there exists an augmenting path, use it
while (augpath()) {

// compute bottleneck capacity
int bottle = INFINITY;
for (int v = t; v != s; v = ST(v)) 

bottle = Math.min(bottle, pred[v].capRto(v));
// augment flow
for (int v = t; v != s; v = ST(v))

pred[v].addflowRto(v, bottle);
// keep track of total flow sent from s to t
value += bottle;

}
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Ford-Fulkerson Algorithm:  Analysis

Assumption: all capacities are integers between 1 and U.

Invariant: every flow value and every residual capacities remain an 
integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | � V U iterations.

Corollary: if U = 1, then algorithm runs in  � V iterations.

Integrality theorem: if all arc capacities are integers, then there 
exists a max flow f for which every flow value is an integer.

not polynomial 
in input size!
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
� Some choices lead to exponential algorithms.
� Clever choices lead to polynomial algorithms.
� Optimal choices for real world problems ???

Design goal is to choose augmenting paths so that:
� Can find augmenting paths efficiently.
� Few iterations.

Choose augmenting path with: Edmonds-Karp (1972)
� Fewest number of arcs. (shortest path)
� Max bottleneck capacity. (fattest path)
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Shortest Augmenting Path

Shortest augmenting path.
� Easy to implement with BFS.
� Finds augmenting path with fewest number of arcs. 

while (!q.isEmpty()) {
int v = q.dequeue();
IntIterator i = G.neighbors(v);
while(i.hasNext()) {

Edge e = i.next();
int w = e.other(v);
if (e.capRto(w) > 0) {  // is v-w a residual edge?

if (wt[w] > wt[v] + 1) {
wt[w] = wt[v] + 1;
pred[w] = e;      // keep track of shortest path
q.enqueue(w);

}
}

}
}
return (wt[t] < INFINITY);    // is there an augmenting path?
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Shortest Augmenting Path Analysis

Length of shortest augmenting path increases monotonically.
� Strictly increases after at most E augmentations.
� At most E V total augmenting paths.
� O(E2 V) running time.
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Fattest Augmenting Path

Fattest augmenting path.
� Finds augmenting path whose bottleneck capacity is maximum.
� Delivers most amount of flow to sink.
� Solve using Dijkstra-style (PFS) algorithm.

Finding a fattest path.  O(E log V) per augmentation with binary heap.
Fact.  O(E log U) augmentations if capacities are between 1 and U.

v w10
residual capacity

12 9X 10

if (wt[w] < Math.min(wt[v], e.capRto(w)) {
wt[w] = Math.min(wt[v], e.capRto(w));
pred[w] = v;

}
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Choosing an Augmenting Path

Choosing an augmenting path.
� Any path will do  � wide latitude in implementing Ford-Fulkerson.
� Generic priority first search.
� Some choices lead to good worst-case performance.

– shortest augmenting path
– fattest augmenting path
– variation on a theme:  PFS

� Average case not well understood.

Research challenges.
� Practice:  solve max flow problems on real networks in linear time.
� Theory:  prove it for worst-case networks.
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History of Worst-Case Running Times

Dantzig

Discoverer

Simplex

Method Asymptotic Time

E V2 U †1951

Year

Ford, Fulkerson Augmenting path E V U †1955

Edmonds-Karp Shortest path E2 V1970

Dinitz Improved shortest path E V21970

Edmonds-Karp, Dinitz Capacity scaling E2 log U †1972

Dinitz-Gabow Improved capacity scaling E V log U †1973

Karzanov Preflow-push V31974

Sleator-Tarjan Dynamic trees E V log V1983

Goldberg-Tarjan FIFO preflow-push E V log (V2 / E)1986

. . . . . . . . .. . .

Goldberg-Rao Length function E3/2 log (V2 / E) log U †
EV2/3 log (V2 / E) log U †1997

Edmonds-Karp Max capacity E log U (E + V log V) †1970

† Arc capacities are between 1 and U.
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An Application

Jon placement.
� Companies make job offers.
� Students have job choices.

Can we fill every job?

Can we employ every student?

Alice-Adobe
Bob-Yahoo
Carol-HP
Dave-Apple
Eliza-IBM
Frank-Sun
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Bipartite Matching

Bipartite matching.
� Input:  undirected and bipartite graph G.
� Set of edges M is a matching if each vertex appears at most once.
� Max matching:  find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
� Input:  undirected and bipartite graph G.
� Set of edges M is a matching if each vertex appears at most once.
� Max matching:  find a max cardinality matching.
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Reduces to max flow.
� Create a directed graph G'.
� Direct all arcs from L to R, and give infinite (or unit) capacity.
� Add source s, and unit capacity arcs from s to each node in L.
� Add sink t, and unit capacity arcs from each node in R to t.

Bipartite Matching
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Claim. Matching in G of cardinality k induces flow in G' of value k.
� Given matching M = { 1-B, 3-A, 4-E } of cardinality 3.
� Consider flow f that sends 1 unit along each of 3 paths:
s-1-B-t  s-3-A-t  s-4-E-t.

� f is a flow, and has cardinality 3.

Bipartite Matching:  Proof of Correctness
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Claim. Flow f of value k in G' induces matching of cardinality k in G.
� By integrality theorem, there exists 0/1 valued flow f of value k.
� Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R incident to at most one edge in M
– |M| = k

Bipartite Matching:  Proof of Correctness
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Reduction.
� Given an instance of bipartite matching.
� Transform it to a max flow problem.
� Solve max flow problem.
� Transform max flow solution to bipartite matching solution.

Issues.
� How expensive is transformation? O(E + V)
� Is it better to solve problem directly? O(E V1/2) bipartite matching

Bottom line:  max flow is an extremely rich problem-solving model.
� Many important practical problems reduce to max flow.
� We know good algorithms for solving max flow problems.

Reduction


