
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Max Flow, Min Cut

Minimum cut
Maximum flow
Max-flow min-cut theorem
Ford-Fulkerson augmenting path algorithm
Edmonds-Karp heuristics
Bipartite matching

2

� Network reliability.
� Security of statistical data.
� Distributed computing.
� Egalitarian stable matching.
� Distributed computing.
� Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.
� Two very rich algorithmic problems.
� Cornerstone problems in combinatorial optimization.
� Beautiful mathematical duality.

Nontrivial applications / reductions.
� Network connectivity.
� Bipartite matching.
� Data mining.
� Open-pit mining.
� Airline scheduling.
� Image processing.
� Project selection.
� Baseball elimination.

3

Soviet Rail Network, 1955

Source: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

4

Network: abstraction for material FLOWING through the edges.
� Directed graph.
� Capacities on edges.
� Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

Minimum Cut Problem

capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

sinksource

5

A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T) = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

S

6

A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T) = sum of weights of edges leaving S.

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 62

7

A cut is a node partition (S, T) such that s is in S and t is in T.
� capacity(S, T) = sum of weights of edges leaving S.

Min cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4S

Capacity = 28

8

Network: abstraction for material FLOWING through the edges.
� Directed graph.
� Capacities on edges.
� Source node s, sink node t.

Max flow problem. Assign flow to edges so as to:
� Equalize inflow and outflow at every intermediate vertex.
� Maximize flow sent from s to t.

Maximum Flow Problem

same input as min cut problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4capacity

sinksource

9

A flow f is an assignment of weights to edges so that:
� Capacity: 0 � f(e) � u(e).
� Flow conservation: flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0

0

0 0

0 4 4

0
4 0

00

Value = 4

except at s or t

0

capacity
flow

10

A flow f is an assignment of weights to edges so that:
� Capacity: 0 � f(e) � u(e).
� Flow conservation: flow leaving v = flow entering v.

Flows

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

11

1 10

3 8 8

0
4 0

00

Value = 2411

capacity
flow

except at s or t

11

Max flow problem: find flow that maximizes net flow into sink.

Maximum Flow Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

14

4 10

4 8 9

1
0 0

00

Value = 2814

capacity
flow

12

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

6

6

0 10

4 8 8

0
4 0

00
S

10

10 Value = 24

13

10

6

6

10 0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

0

10 Value = 24

14

10

6

6

10

0 10

4 8 8

0
4 0

0

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal to the amount reaching t.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0
S

10

Value = 24

15

Observation 2. Let f be a flow, and let (S, T) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Flows and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Cut capacity = 30 � Flow value � 30

16

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity = 28 � Flow value � 28

Flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15

17

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. (Ford-Fulkerson, 1956): In any network,
the value of max flow equals capacity of min cut.

� Proof IOU: we find flow and cut such that Observation 3 applies.

Min cut capacity = 28 � Max flow value = 28

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

10

9

9

15

4 10

4 8 9

1
0 0

00
S 15

18

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10

Flow value = 0flow

capacity

19

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
� Greedy algorithm: repeat until you get stuck.

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10
10 10 10X X X

Flow value = 10

Bottleneck capacity of path = 10

flow

capacity

20

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
� Greedy algorithm: repeat until you get stuck.
� Fails: need to be able to "backtrack."

s

4

2

5

3 t10 13 10

4

4 4

10 6 10

4

4
4

4
4

Flow value = 10

Flow value = 14

s

4

2

5

3 t

4

0 0

0 0 0

0

4
0

4
4

10 13 10
10 10 10X X X

flow

capacity

21

Residual Graph

Original graph.
� Flow f(e).
� Edge e = v-w

Residual edge.
� Edge e = v-w or w-v.
� "Undo" flow sent.

Residual graph.
� All the edges that have

strictly positive residual capacity.

v w17
6

capacity = u(e)

v w11
6

residual capacity = u(e) – f(e)

residual capacity = f(e)

flow = f(e)

22

Augmenting Paths

Augmenting path = path in residual graph.
� Increase flow along forward edges.
� Decrease flow along backward edges.

s

4

2

5

3 t10 13 10

4

0 0

10 10 10

0

4
0
4

4

s

4

2

5

3 t10 10 10

4
4

4
4

3

4 4

6

4

4

X

X

X

X

X
original

residual

23

Augmenting Paths

Observation 4. If augmenting path, then not yet a max flow.
Q. If no augmenting path, is it a max flow?

Flow value = 14

s

4

2

5

3 t10 6 10

4
4

4
4

7

residual

s

4

2

5

3 t10 13 10

4

0 0

10 10 10

0

4
0
4

4original

4 4

6

4

4

X

X

X

X

X

24

Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson algorithm. Generic method for solving max flow.

Questions.
� Does this lead to a maximum flow? yes
� How do we find an augmenting path? s-t path in residual graph
� How many augmenting paths does it take?
� How much effort do we spending finding a path?

while (there exists an augmenting path) {
Find augmenting path P
Compute bottleneck capacity of P
Augment flow along P

}

25

Max-Flow Min-Cut Theorem

Augmenting path theorem. A flow f is a max flow if and only if there
are no augmenting paths.

We prove both simultaneously by showing the following are equivalent:
(i) f is a max flow.

(ii) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f.

(i) � (ii) equivalent to not (ii) � not (i), which was Observation 4
(ii) � (iii) next slide
(iii) � (i) this was Observation 3

Max-flow min-cut theorem. The value of the max
flow is equal to the capacity of the min cut.

26

Proof of Max-Flow Min-Cut Theorem

(ii) � (iii). If there is no augmenting path relative to f, then there
exists a cut whose capacity equals the value of f.

Proof.
� Let f be a flow with no augmenting paths.
� Let S be set of vertices reachable from s in residual graph.

– S contains s; since no augmenting paths, S does not contain t
– all edges e leaving S in original network have f(e) = u(e)
– all edges e entering S in original network have f(e) = 0

T)(S,

)(

)()(

 of out

 to in of out

capacity

eu

efeff

Se

SeSe

�

�

��

�

��

s

t

residual network

S T

27

Max Flow Network Implementation

Edge in original graph may correspond to 1 or 2 residual edges.
� May need to traverse edge e = v-w in forward or reverse direction.
� Flow = f(e), capacity = u(e).
� Insert two copies of each edge, one in adjacency list of v and one in w.

public class Edge {
private int v, w; // from, to
private int cap; // capacity from v to w
private int flow; // flow from v to w

public Edge(int v, int w, int cap) { ... }
public int cap() { return cap; }
public int flow() { return flow; }
public boolean from(int v) { return this.v == v; }
public int other(int v) { return from(v) ? this.w : this.v; }
public int capRto(int v) { return from(v) ? flow : cap - flow; }
public void addflowRto(int v, int d) { flow += from(v) ? -d : d; }

}

28

Ford-Fulkerson Algorithm: Implementation

Ford-Fulkerson main loop.

// while there exists an augmenting path, use it
while (augpath()) {

// compute bottleneck capacity
int bottle = INFINITY;
for (int v = t; v != s; v = ST(v))

bottle = Math.min(bottle, pred[v].capRto(v));
// augment flow
for (int v = t; v != s; v = ST(v))

pred[v].addflowRto(v, bottle);
// keep track of total flow sent from s to t
value += bottle;

}

29

Ford-Fulkerson Algorithm: Analysis

Assumption: all capacities are integers between 1 and U.

Invariant: every flow value and every residual capacities remain an
integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | � V U iterations.

Corollary: if U = 1, then algorithm runs in � V iterations.

Integrality theorem: if all arc capacities are integers, then there
exists a max flow f for which every flow value is an integer.

not polynomial
in input size!

30

100
0

0
1

100

100

0
0

0

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

Original Network

s

4

2

t

31

100
0

0
s

4

2

t1

100

100

0
0

0

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

1

1

1

X

X
X

Original Network

32

100
1

100

1

0

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

100

1

10

Original Network

s

4

2

t

33

100
1

s

4

2

t1

100

100

1

0

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

100

1

0

1

X

X
X

10

Original Network

34

s

4

2

t1

100

100 100

100

0

1

1 1

1

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

200 iterations possible!

Original Network

35

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
� Some choices lead to exponential algorithms.
� Clever choices lead to polynomial algorithms.
� Optimal choices for real world problems ???

Design goal is to choose augmenting paths so that:
� Can find augmenting paths efficiently.
� Few iterations.

Choose augmenting path with: Edmonds-Karp (1972)
� Fewest number of arcs. (shortest path)
� Max bottleneck capacity. (fattest path)

36

Shortest Augmenting Path

Shortest augmenting path.
� Easy to implement with BFS.
� Finds augmenting path with fewest number of arcs.

while (!q.isEmpty()) {
int v = q.dequeue();
IntIterator i = G.neighbors(v);
while(i.hasNext()) {

Edge e = i.next();
int w = e.other(v);
if (e.capRto(w) > 0) { // is v-w a residual edge?

if (wt[w] > wt[v] + 1) {
wt[w] = wt[v] + 1;
pred[w] = e; // keep track of shortest path
q.enqueue(w);

}
}

}
}
return (wt[t] < INFINITY); // is there an augmenting path?

37

Shortest Augmenting Path Analysis

Length of shortest augmenting path increases monotonically.
� Strictly increases after at most E augmentations.
� At most E V total augmenting paths.
� O(E2 V) running time.

38

Fattest Augmenting Path

Fattest augmenting path.
� Finds augmenting path whose bottleneck capacity is maximum.
� Delivers most amount of flow to sink.
� Solve using Dijkstra-style (PFS) algorithm.

Finding a fattest path. O(E log V) per augmentation with binary heap.
Fact. O(E log U) augmentations if capacities are between 1 and U.

v w10
residual capacity

12 9X 10

if (wt[w] < Math.min(wt[v], e.capRto(w)) {
wt[w] = Math.min(wt[v], e.capRto(w));
pred[w] = v;

}

39

Choosing an Augmenting Path

Choosing an augmenting path.
� Any path will do � wide latitude in implementing Ford-Fulkerson.
� Generic priority first search.
� Some choices lead to good worst-case performance.

– shortest augmenting path
– fattest augmenting path
– variation on a theme: PFS

� Average case not well understood.

Research challenges.
� Practice: solve max flow problems on real networks in linear time.
� Theory: prove it for worst-case networks.

40

History of Worst-Case Running Times

Dantzig

Discoverer

Simplex

Method Asymptotic Time

E V2 U †1951

Year

Ford, Fulkerson Augmenting path E V U †1955

Edmonds-Karp Shortest path E2 V1970

Dinitz Improved shortest path E V21970

Edmonds-Karp, Dinitz Capacity scaling E2 log U †1972

Dinitz-Gabow Improved capacity scaling E V log U †1973

Karzanov Preflow-push V31974

Sleator-Tarjan Dynamic trees E V log V1983

Goldberg-Tarjan FIFO preflow-push E V log (V2 / E)1986

.

Goldberg-Rao Length function E3/2 log (V2 / E) log U †
EV2/3 log (V2 / E) log U †1997

Edmonds-Karp Max capacity E log U (E + V log V) †1970

† Arc capacities are between 1 and U.

41

An Application

Jon placement.
� Companies make job offers.
� Students have job choices.

Can we fill every job?

Can we employ every student?

Alice-Adobe
Bob-Yahoo
Carol-HP
Dave-Apple
Eliza-IBM
Frank-Sun

42

Bipartite Matching

Bipartite matching.
� Input: undirected and bipartite graph G.
� Set of edges M is a matching if each vertex appears at most once.
� Max matching: find a max cardinality matching.

1

3

5

A

C

E

2

4

B

D

Matching M

1-B, 3-A, 4-E

RL

43

Bipartite Matching

Bipartite matching.
� Input: undirected and bipartite graph G.
� Set of edges M is a matching if each vertex appears at most once.
� Max matching: find a max cardinality matching.

1

3

5

A

C

E

2

4

B

D

Matching M

1-A, 2-B, 3-C, 4-D

RL
44

Reduces to max flow.
� Create a directed graph G'.
� Direct all arcs from L to R, and give infinite (or unit) capacity.
� Add source s, and unit capacity arcs from s to each node in L.
� Add sink t, and unit capacity arcs from each node in R to t.

Bipartite Matching

RL

s

1

3

5

A

C

E

t

2

4

B

D

1 1

�1

3

5

A

C

E

2

4

B

D

G'G

45

Claim. Matching in G of cardinality k induces flow in G' of value k.
� Given matching M = { 1-B, 3-A, 4-E } of cardinality 3.
� Consider flow f that sends 1 unit along each of 3 paths:
s-1-B-t s-3-A-t s-4-E-t.

� f is a flow, and has cardinality 3.

Bipartite Matching: Proof of Correctness

RL

s

1

3

5

A

C

E

t

2

4

B

D

1 1

�1

3

5

A

C

E

2

4

B

D

G'G
46

Claim. Flow f of value k in G' induces matching of cardinality k in G.
� By integrality theorem, there exists 0/1 valued flow f of value k.
� Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R incident to at most one edge in M
– |M| = k

Bipartite Matching: Proof of Correctness

RL

s

1

3

5

A

C

E

t

2

4

B

D

1 1

�1

3

5

A

C

E

2

4

B

D

G'G

47

Reduction.
� Given an instance of bipartite matching.
� Transform it to a max flow problem.
� Solve max flow problem.
� Transform max flow solution to bipartite matching solution.

Issues.
� How expensive is transformation? O(E + V)
� Is it better to solve problem directly? O(E V1/2) bipartite matching

Bottom line: max flow is an extremely rich problem-solving model.
� Many important practical problems reduce to max flow.
� We know good algorithms for solving max flow problems.

Reduction

