
2015-2016 Principles of Database Management Ysaline de Wouters

1

KUL

Principles of Database Management

PART II : Prof Dr. Wilfried Lemahieu

Ysaline de Wouters

2015 - 2016

2015-2016 Principles of Database Management Ysaline de Wouters

2

Table of Contents
1. Universal interfaces to relational database systems... 4

1.1 Embedded database API versus call-level database API ... 4

1.1.1 Client/Server interaction ... 4

1.1.2 2 Tiers versus 3 Tiers ... 4

1.1.3 Database API.. 5

1.1.4 SQL binding time ... 5

1.1.5 Stored procedure... 6

1.2 The Open Database Connectivity (ODBC) call-level API .. 7

1.2.1 ODBC architecture ... 7

1.2.2 Typical ODBC functions ... 8

1.3 The Java Database Connectivity (JDBC) call-level API ... 8

1.3.1 JDBC ... 8

1.3.2 JDBC architecture .. 8

1.3.3 JDBC overview ... 9

1.3.4 JDBC examples ... 11

1.4 The SQLJ embedded API .. 12

2. Transactions, recovery and concurrency control .. 14

2.1 Introduction ... 14

2.2 Transactions and transaction management .. 16

2.2.1 Registration on the logfile ... 16

2.2.2 Transaction properties .. 17

2.3 Recovery .. 17

2.3.1 Types of failures .. 19

2.3.2 System recovery .. 19

2.3.3 Medium recovery .. 20

2.4 Concurrency control .. 21

2.4.1 Serial and serializable schedules ... 23

2.4.2 Equivalent schedules ... 24

2.4.3 Checking for serializability ... 24

2.4.4 Concurrency control solutions in practice ... 25

2.4.5 Locking and locking protocols ... 26

2.4.6 Variation points ... 30

2.4.7 Cascading rollback ... 31

2015-2016 Principles of Database Management Ysaline de Wouters

3

3. Web-database connectivity and database systems in an n-tier environment 32

3.1 The Web as client/server medium .. 32

3.1.1 Architecture of the World Wide Web ... 32

3.1.2 HTML forms ... 33

3.1.3 The Web as platfomr for client/server computing .. 33

3.1.4 Shortcomings of the Web for client/server computing .. 33

3.1.5 General architecture for Web-based database access ... 33

3.2 Executable code in a web environement .. 34

3.2.1 The common Gateway Interface (CGI) .. 34

3.2.2 Java applets ... 35

3.2.3 Java Servlets .. 36

3.2.4 Client side and server side scripting .. 37

3.2.5 Distributed object architectures ... 38

3.3 Client/server interaction on the Web ... 39

3.3.1 Client/server interaction by means of servlets ... 39

3.3.2 Client/server interaction by means of server side scripts ... 40

3.3.3 Client/Server interaction by means of socket-to-socket communication 41

3.3.4 Client/Server interaction by means of a distributed object architecture 41

3.4 A global architecture for web-based database access .. 42

3.4.1 Java EE ... 42

3.4.2 .Net .. 43

3.4.3 From thin clients towards Rich Internet Applications ... 44

3.5 Conclusions .. 45

2015-2016 Principles of Database Management Ysaline de Wouters

4

1. Universal interfaces to relational database systems

1.1 Embedded database API versus call-level database API

1.1.1 Client/Server interaction

 Database server: it contains the
actual data and the database
system.

 Database client

An API is needed to interact with
the database system.

1.1.2 2 Tiers versus 3 Tiers

In a 2-tiers architecture, all the
information is on the client side, except
from the DBMS. That’s why it is called a
“fat” client. Two-tier architecture is a
client/server architecture, where a
request to do some task is sent to the
server and the server responds by
performing the task.
This architecture works if we don’t have
too many users and if the business logic
is not too complex.

2015-2016 Principles of Database Management Ysaline de Wouters

5

In 3 tier application, we have a middle tier between
the DBMS and the client. Here, the Clients are said
to be thin clients, which means that these clients
only contain presentation logic. Therefore, there is
no need for a “strong” computer. Apart from that
there are two more layers: application layer and
database layer. In three-tier architecture, the data
and applications are split onto separate servers,
with the server-side distributed between a database
server and an application server. The client is a front
end, simply requesting and displaying data. The
client request is sent to the server and the server in
turn sends the request to the database. The
database sends back the information/data required
to the server which in turn sends it to the client.
Thanks to this three-tiers architecture we do have
the World Wide Web and all kinds of applications.
Ex: KuLoket.

1.1.3 Database API

The database API acts as a mediator between application and database. The application

talks to the DBMS through the API. The “conversation language” used by both is SQL.

Two types of database API can be discerned:

 Embedded API: the SQL instructions are embedded in a host

language: a general –purpose programming language such as C, Java

or COBOL. There are two separated compilation phases. You

translate the text into executing code. We hereby have two

languages: SQL code and the host language. The SQL code is

processed separately during a pre-compilation phase.

 Call-level API: it provides methods that can be called to perform the

desired database operations: establishing a database connection,

buffering and execution SQL instructions, processing query results

and returning status information. Here, there is only one language

compiled.

1.1.4 SQL binding time

SQL is a declarative language and is not a programming language!

 Declarative: you tell the system what you want. For instance, I want to know

how many products there are.

 Programming: tell the system step by step what it should do. It is a

procedural language.

The term SQL binding pertains to the conversion of SQL code to an internal format that can be

executed by the database engine. The binding time is the moment at which the SQL code is

2015-2016 Principles of Database Management Ysaline de Wouters

6

compiled. At the beginning SQL is just a statement and then it is interpreted by the system. The

following tasks are performed:

o Validation of table and column names: do these columns exist?

o Authorization checks: do I have the required authorization to do this?

o Generation and optimization of an access path: the optimizer will receive the query,

what is the most optimal way to solve it?

o Generation of machine code: executable code, stoered in the database catalog to be

executed later.

o Binding of the access path to the database.

Timing of this conversion

 Static SQL: early binding. There is a pre-compilation phase.

 Dynamic SSQL: late binding: you bind your query at execution time; the

compilation of the programming code invokes a method.

 Early: pre-compilation phase. The
program contains some SSQL statements
and will store it in the catalog. In early
binding we have all the steps of binding
and after that everything is executed,
the access path is used in the execution
phase.

 Late: bind your query ate execution
time. There is no pre-compilation phase.
The compilation of the program invokes
a method.

What are the advantages and disadvantages of both binding times?

 Early binding (+): if something is wrong in the query, it is detected before whereas, in late

binding, it is discovered at execution time.

 Early binding (+): it makes the code more efficient as we have more time to find an optimal

path.

 Late binding (+): the SQL code only needs to be known at execution time (dynamic). With

early binding, you cannot change the code (static).

 For embedded API, at the pre-compilation phase, the SQL statement has to be known: static.

 Call-level API: we mostly have dynamic compilation.

1.1.5 Stored procedure

2015-2016 Principles of Database Management Ysaline de Wouters

7

A stored procedure is a piece of precompiled executable code, which may consist of both SQL and

program language instructions, and which is stored in the DBMSs catalog. The code is activated by an

explicit call from an application program.

Advantages:

 Ability to store behavioral specifications into the database. You write it once and can then

call it several times.

 Grouping of logically related operations

 Host language independence

 Increased data independence since you don’t have to know about table and columns

involved to calculate something. The stored procedure stays the same so you can simply call

them.

1.2 The Open Database Connectivity (ODBC) call-level API

1.2.1 ODBC architecture

ODBC stands for Open Database Connectivity. It was developed by Microsoft as an open standard to
provide applications with a uniform interface to relation DBMSs. In this way, the ODBC API hides the
underlying DBMS specific API of a particular DBMS vendor. It was the first database independent API.

The ODBC architecture has four components:
 ODBC Application: this is a call-level interface, with support for both early binding and late

binding. It performs processing and calls ODBC functions to submit SQL statements and
retrieve results. It allows opening a database, executing a query, etc.

 Driver Manager: he is responsible for selecting the appropriate drive to access a particular
DBMS type. He loads and unloads drivers on behalf of an application.

 The database Driver: these are routine libraries that are tailored to interact with a particular
DBMS type. It processes ODBC function calls, submits SQL requests to a specific data source,
and returns results to the application. If necessary, the driver modifies an application's
request so that the request conforms to syntax supported by the associated DBMS.

 The Service Provide Interface (SPI): this is the interface between the driver manager and the
database drivers.

RMQ:

2015-2016 Principles of Database Management Ysaline de Wouters

8

 Multiple drivers and data sources can exist, which allows the application to simultaneously
access data from more than one data source.

 The ODBC API is used in two places: between the application and the Driver Manager, and
between the Driver Manager and each driver. The interface between the Driver Manager and
the drivers is sometimes referred to as the service provider interface, or SPI. For ODBC, the
application programming interface (API) and the service provider interface (SPI) are the
same; that is, the Driver Manager and each driver have the same interface to the same
functions.

1.2.2 Typical ODBC functions

 Connect to a data source

 Prepare (bind) an SQL statement, without executing it

 Execute an SQL statement

 Call a stored procedure: if you have pre-compiled statements

 Retrieve query result and status

 Retrieve information form the catalog

 Retrieve information about a drive or data source

 Close a statement

 Close the connection

1.3 The Java Database Connectivity (JDBC) call-level API

1.3.1 JDBC

JDBC is not meant for a Microsoft environment but for a Java language. Just like ODBC, JDBC

implements a call-level database API that is independent of the underlying DBMS. JDBC’s structure

strongly resembles to an ODBC structure. However in contrast to IDBC, JDBC is Java based and

exclusively targeted at providing database access to Java applications.

JDBC features typical Java advantages such as entirely object-oriented constructs, platform

independence, dynamic code loading, etc.

1.3.2 JDBC architecture

2015-2016 Principles of Database Management Ysaline de Wouters

9

1.3.3 JDBC overview

 The curved arrows are the invoke methods

 The normal arrows are the “results”

In this JDBC overview we observe 4 objects type:

 DriverManager: he provides a uniform interface to establish a database connection. It

manages the installed database drivers and provides transparent access to a wide range of

database products. 2 functionalities:

o Register an appropriate driver (if this has not been done already) for the database

system that will be accessed.

o A call to the GetConnection method then results in the database being connected by

means of the corresponding driver. The database is identified by means of a

parameter (e.g. its URL). Other optional parameters are a user ID and password.

The driver interface: a driver object is never accessed directly by an application:

theoretically, it is of no concern to an application. The Driver mediates between

DriverManager and database.

Driver types:

 Driver to access a DBMS through its native interface: uses the Java Native

Interface to make calls to a local database library API.

 DBMS-neutral ‘net protocol’ driver: database driver implementation which

makes use of middle-tier between the calling program and the database.

 JDBC-ODBC bridge driver: database driver that uses the ODBC driver to

connect the database. This driver translates JDBC method calls into ODBC

function call. The bridge implements JDBC for any database for which an

ODBC driver is available.

2015-2016 Principles of Database Management Ysaline de Wouters

10

 The connection interface: A connection object represents an individual database session. It

encompasses the functionality required to maintain a database connection. Also, it generates

statements to execute SQL queries. As long as the connection object exists, we are

connected to that objects.

Another important function of a connection object is transaction control. For that purpose, it

defines commit and rollback methods and supports locking.

 The statement interface: a statement object is the Java abstraction of an SQL query. It

generates a ResultSet object that will contain the query result.

Separate methods are provided to execute SELECT queries, UPDATE queries and stored

procedures. Some subtypes of statement feature additional functionality.

 PreparedStatement: separates binding and execution of a query;

 CallableStatement: calls a stored procedure.

 The ResultSet interface: a ResultSet object contains the query result of a select query that

was executed through a statement object. Its structure is conceived as rows and columns.

Each ResultSet maintains a cursor, which indicates the current row in the result. The cursor

can be moved by calling the next() method.

The result’s current row can be read by means of getXXX() methods. The XXX refers to the

data type of the desired column: string, integer, Boolean, etc.

It is also possible to inquire for metadata. Ex: regarding the data types and column names of

the ResultSet (see how many columns and rows there are).

 There are other classes and interfaces:

o The ResultSetMetaData interface: used to retrieve metadata regarding the query

result

o The DatabaseMetaData interface: used to retrieve metadata regarding the database.

Ex: information about the number of users or number of tables.

o The SQLException class: used for error handling. Examine what would happen if

there was a mistake or an error.

2015-2016 Principles of Database Management Ysaline de Wouters

11

1.3.4 JDBC examples

JDBC example

Transaction management in JDBC

Prepared statements and parameters in JDBC

2015-2016 Principles of Database Management Ysaline de Wouters

12

Invocation of stored procedures in JDBC

ResultSet manipulation in JDBC

1.4 The SQLJ embedded API

SQLJ implements the embedded SQK standard for JAVA. Only static SQL is supported. Dynamic SQL

was already established with JDBC. The static code is precompiled into standard Java instructions,

which access the database through an underlying call-level interface. The Java code is then compiled

in its entirety.

At compile time, the SQL code can be checked for syntactical correctness, type compatibility and

conformance to the corresponding database schema.

2015-2016 Principles of Database Management Ysaline de Wouters

13

SQLJ concepts

 SQLJ-clauses delimit the SQLJ code, i.e. the code that is to be subject to precompilation. SQL

statements are preceded by " #sql ". Everything that is after this is SQL code.

 Each SQLJ clause also defines a connection-context, as specified by means of JDBC. It is also

possible to specify a default context.

 Host variables: Java objects can be used as parameters in SQLJ instructions, so as to be able

to pass information between Java and SQL.

 Iterator: this is an object that contains the result rows of an SQL query, which can be

accessed one by one (cf. cursor).

 CALL statement: used to invoke a stored procedure.

2015-2016 Principles of Database Management Ysaline de Wouters

14

2. Transactions, recovery and concurrency control

2.1 Introduction

A transaction represents series of database operations that are to be executed as one, undividable

whole because, on the one hand, users should never be able to see inconsistent data and, on the

other hand, it should be impossible to complete a set of operations in such a way that the database is

left in an inconsistent state.

In other words, a transaction consists of a set of database operations that are guaranteed to bring

the database from one consistent state into a new consistent state. Ex: when we want to transfer

money. Money is withdrawn from one account but it should also be added to the other account. If

one transaction fails cancel rolled back. All the effects should then be wiped from the database.

Transaction processing systems are systems with large databases and hundreds of concurrent users

executing database transactions.

Ex: airline reservations, banking, credit card processing, online retail purchasing, stock markets,

supermarket checkouts, etc.

 These systems require high availability and fast response time for hundreds of concurrent

users.

Delimiting a transaction

 Beginning of a transaction

o Implicit or through BEGIN TRANSACTION instruction

o The transaction is fed to a transaction manager

o The transaction, together with other transactions, is put into a schedule. The

schedule consists of SQL statements to be done in the database environment. It

contains a planning of which database instructions should be executed and in which

order they should be.

o The transaction is started.

 End of a transaction:

o Implicit or through END TRANSACTION instruction

o There are two possibilities

 Successful end: COMMIT. All changes made by the transaction are made

persistent, definitive, stored in the database. We have to find out a way that

data will remain persistent even if the system crashes.

 No successful end: ABORT or ROLLBACK. If it made some partial change, it

needs to roll back if it didn’t succeed as an whole

2015-2016 Principles of Database Management Ysaline de Wouters

15

Example: transaction management in JDBC

 Serializable: my transaction
won’t interfere with your
transaction

 SetAutoCommit true: all
transactions are single SQL
transactions. If it is false, we
combine multiple transactions
into one transaction

 No safe point: atomic. if you
don’t give safe point as a
parameter you may lose all
previous data.

If there is a safe point, in case there is a crash or any other problem, we can roll back to a certain
point within the transaction. So we won’t lose all changes made since we will be able to retrieve data
until the save point.

Overview
Step 1: input transaction
Step 2: The Recovery manager is notified. He
should be able to recover from mistakes, if a
transaction fails, the manager will clean up
the mess, undo what shouldn’t have been
done and redo other stuff. He will also keep a
diary up to date.
The scheduler will then say when it is time for
a transaction to be started.
Step 3: transaction is active and will be
executing statements interacting with the
database file. Stored datamanager:
responsible for the physical interaction with
the database files, writes changes to the
buffer The buffer writes. The buffer
manager is in charge of buffering some date.
Write to the buffer and read what is in the
buffer. Updates are buffered and flushed
from time to time.

Step 4: Pass on new SQL statements. Different statements are executed together.

Step 5:

 The transaction is cancelled, not completed. This means that something went wrong during
the transaction. For instance, we did not receive input from the user. In this case, the
transaction is aborted. The recovery manager will keep track of what happened.

 The transaction is finished: successfully or not
o Finished but rejected: transaction conflicted with another transaction or not and it

has to be aborted.
o Finished and successful, the transaction is committed.

 Whatever what happens, changes needs to be stored in the database

myConnection.setTransactionIsolation(

 Connection.TRANSACTION_SERIALIZABLE);

myConnection.setAutoCommit(false);

Statement myStatement1 = myConnection.createStatement();

Statement myStatement2 = myConnection.createStatement();

Statement myStatement3 = myConnection.createStatement();

Statement myStatement4 = myConnection.createStatement();

myStatement1.executeUpdate(myQuery1);

myStatement2.executeUpdate(myQuery2);

Savepoint mySavepoint = myConnection.setSavepoint();

myStatement3.executeUpdate(myQuery3);

myConnection.rollback(mySavepoint);

myStatement4.executeUpdate(myQuery4);

myConnection.commit();

2015-2016 Principles of Database Management Ysaline de Wouters

16

Locking

A lock is an access privilege that can be granted over an object, so as to ensure that the
object is manipulated by only one operation at a time, in case where multiple operations
simultaneously try to access the same object.
A locking protocol specifies the rules that determine when transactions can obtain locks,
respectively release locks.

2.2 Transactions and transaction management

2.2.1 Registration on the logfile

A logfile is a file with redundant information that is necessary to recuperate or restore the data, after

some data have been lost or damaged. It is the diary of the log manager. A logfile is said to contain

redundant information since all the data is also written to the database.

For each transaction, several pieces or data are registered on the logfile in so-called logrecords. The

most important ones are:

o ID of the transaction, a mark that denotes the beginning of the transaction, the exact

time at which the transaction was started and the type of the transaction (read-only

or read-write transaction);

o ID of the records that are used in the transaction and the type of operations

executed on these records (select, update, insert, delete);

o Before images: undo part of the logfile

o After images: redo part of the logfile

o The current state of the transaction: active, commited or aborted

o Checkpoint records: synchronisation points

 Write ahead log strategy: updates to the logfile should always precede the corresponding

updates in the database

2015-2016 Principles of Database Management Ysaline de Wouters

17

 A transaction can only execute a database operation if the before images are already

registered on the logfile.

 It can only be committed if the after images of the corresponding data (as well as the

commit sign) are registered on the logfile.

 Force writing the logfile strategy: the logfile should be written to disk before a transaction

can be committed

A transaction table contains one row for each active transaction. Such row contains:

 Transaction identifier

 Current state of the transaction

 Log sequence number of the most recent log record for this transaction

2.2.2 Transaction properties

Memo : « ACID » properties

 Atomicity: all operations, considered as multiple transactions, should be treated as one

operation. In other words, it is everything or nothing.

 Consistency: the transaction should bring the database from one consistency to another. This

is the responsibility of the programmer.

 Isolation : (concurrency control) : if the transaction by itself is correct, it should be the same

result as the one of executing several transactions (= executing them in isolation). We have

to make sure the transactions don’t interfere.

 Durability : the database system should make sure the changes end up in the physical file of a

database

2.3 Recovery

Whenever a transaction is submitted to a DBMS for execution, the system is responsible for making

sure that either all the operations in the transaction are completed successfully and their effect is

recorded permanently in the database or that the transaction does not have any effect on the

database or any other transactions.

 Several kinds of errors or calamities may occur during the execution of a transaction:

 A head crash of a harddisk: Some disk blocks may lose their data because of a read or write

malfunction or because of a disk read/write head crash. This may happen during a read or a

write operation of the transaction.

 A computer failure: A hardware, software, or network error occurs in the computer system

during transaction execution. Hardware crashes are usually media failures. For instance,

main memory failure.

2015-2016 Principles of Database Management Ysaline de Wouters

18

 A system fault due to the operating system;

 Physical problems and catastrophes: this refers to an endless list of problems that includes

power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes by mistakes.

 A system fault due to the database management system;

 A program fault (Ex: a syntax error);

 Concurrency control enforcement: the concurrency control method may decide to abort a

transaction because it violates serializability or it may abort one or more transactions to

resolve a state of deadlock among several transactions. Transactions aborted because of

serializability violations or deadlocks are typically restarted automatically at a later time.

 As a consequence, the transaction won’t be executed properly and therefore we have to deal

with such problems.

The DBMS uses a recovery manager to coordinate recovery. The latter ensures that only effects of

successful transactions are persisted into the database and that all (partial) effects of unsuccessful

transactions are undone.

Recovery is the activity of ensuring that data can

always be recuperated, regardless of the kind of

error or calamity that causes the data to be lost or

damaged

2015-2016 Principles of Database Management Ysaline de Wouters

19

2.3.1 Types of failures

First we have to find out which type of failure cause the transaction to crash.

 Transaction failure: a transaction ‘aborts’. This decision can be made by the application or by

the database system.

 System failure: the content of the main memory is lost. In particular, this means that the

content of the database buffer is lost.

 Medium failure: some data in the database and/or the logfile are damaged or destroyed.

 Techniques for system recovery: applied in the case of system failure and (sometimes)

transaction failure.

 Techniques for medium recovery: applied in the case of medium failure.

2.3.2 System recovery

2015-2016 Principles of Database Management Ysaline de Wouters

20

A system fault has occurred and as a consequence, the content of the database buffer is lost. The

transactions that have written data to this buffer belong to either of two categories:

 Transactions that had reached a ‘committed’ state at the moment of the fault.

 Transactions those were still active at the moment of the fault.

Whether UNDO and REDO operations are necessary, depends on whether the changes induced by

the transactions up to that moment were already persisted into the database at the moment of the

fault. The latter depends on how the recovery manager controls the buffer manager in writing the

database buff to disk.

Assumption: the recovery manager periodically commands the buffer manager to empty the

database buffer (i.e. write its content to disk). A ‘checkpoint’ is registered on the logfile and a list of

transactions is created, which denotes which transactions where finished and which ones where still

active at the same time when the checkpoint was registered.

RMQ: checkpoint= database buffer was written to the disk. System fault = database buffer is

emptied.

T1: transaction 1 is completely saved.

T2: some changes of T2 are saved on the logfile but not all of them. After the system fault, some

changes can be recovered since these are written on the disk, these are the changes made before the

checkpoint. However, the part after the checkpoint has to be redone starting from the flushing point.

T3: some changes are written into the disk (changes until the checkpoint). Since the transaction was

not committed, it cannot be completed. It has to be undone, as if T3 never happened.

T4: everything has disappeared use after images to write all the changes to the database

T5: changes written to database buffer, system fault buffer is empty no changes of T5 disappear

 Once a transaction is committed, you cannot change things of the transaction

2.3.3 Medium recovery

2015-2016 Principles of Database Management Ysaline de Wouters

21

Medium recovery is applicable when the database and/or logfile is damaged because of medium

failure.

Solution: redundancy. Two approaches:

 Disk mirrorring: data are written in real-time to two or more disks. Updates should be

applied on every mirror disk in the same sequence. Upon medium failure, the mirror version

of the data can be used.

 Archiving: the database (and the logfile) is duplicated periodically.

o When a medium failure occurs, the most recent backup is restored. If the log is not

damaged, the effects of committed transactions can be reconstructed by means of a

rollforward utility that uses the REDO part of the logfile. Effects of transactions that

were still active at the time of the failure don't have to be cleaned up, because (by

definition) they have disappeared as a consequence of the failure.

o Full back up versus incremental backup

With archiving, we are likely to lose a part of the data if the system crashes. Indeed, if we did

the last back-up two hours ago, we won’t be able to retrieve data collected between the

back up and the crash.

 It is saver to combine both approaches.

2.4 Concurrency control

When multiple transactions are executed simultaneously, and no preventive measures are taken, the

following problems may occur because of interference between the transactions’ actions. In other

words, in a multiuser environment, transactions may interfere, causing some unwanted side effects.

 Lost update problem

 The uncommitted dependency problem

 The inconsistent analysis problem

 If we don’t take it into account, the scheduler will schedule statements in such a way it is the

more efficient.

So as to avoid such inconsistencies, the scheduling of the transactions as planned by the scheduler,

should be serializable.

LOST UPDATE PROBLEM

Concurrency control is the activity of coordinating

the operations of simultaneous transactions, which

affect the same data, in such a way that the data

cannot become inconsistent.

2015-2016 Principles of Database Management Ysaline de Wouters

22

In this lost update example transactions only interacts with one data element. We have 2

transactions, which each execute multiple statements. The final value is wrong. It should indeed be

equal to 170. What goes wrong?

In t1, transaction 2 begins. It then read account. Next, the value of account is changed and 120€ are

added to the initial value. The new value is then written and the transaction is committed in t5.

Regarding transaction 1, it starts in t2. It then read account. In t4, transaction 1 substracts 50€ to the

initial account. The new amount is then written and the transaction is committed in t6. The problem

is that we should end with a total amount of 170. Here, transaction 1 doesn’t know that transaction 2

has written a new value to the account, so it calculates with the original number.

The read and write operations are not scheduled properly so we end up with an incorrect state.

If T1 is first executed and then T2, we won’t have any problems.

UNCOMMITTED DEPENDENCY PROBLEM

This is also called the “dirty read problem”.

T1 reads the changes done by T2 and calculates the amount based on the 220€ amount calculated by

T2. So T2 has still some effect on the database. But it was rolled back so it shouldn’t have any effects.

We should end up with a final amount of 50€.

In this example, two properties are violated:

 Isolation

2015-2016 Principles of Database Management Ysaline de Wouters

23

 Atomicity: the outside world doesn’t need to see the calculations.

INCONSISTENT ANALYSIS PROBLEM

Here we have three values being manipulated. The 4th column is the calculation made. There is no

problem in terms of values being overwritten. The final values are all correct. However, there

appears an inconsistency in the sum. Account x is read before the 50 is subtracted. Account z is read

after the 50 added.

 This problem is less severe because the final values are correct.

2.4.1 Serial and serializable schedules

A schedule S consisting of n transactions is defined as a sequential ordering of the operations of

these n transactions, in such a way that for each transaction T in S the following holds: if operation i

precedes operation j in T, the operation i precedes operation j in the schedule S. The schedule must

always respect the order of the operations, but there is no ordering enforced on operations

belonging to different transactions. The ordering of operations between the respective transactions

can be scheduled randomly.

 Each alternative ordering results in a different schedule.

The problem is that the throughput will be very low and operations will have to wait a long time.

Therefore, we have to schedule operations from different transactions in an interleafed way.

If we assume that a transaction is correct if it is executed in isolation and if the transactions in

the schedule are independent from one another then we can conclude that a serial schedule is

A schedule S is serial if for each

transaction T of the schedule holds that all

operations of the transaction are

processed consecutively. For a set of n

transactions, there exist n! serial

schedules.

2015-2016 Principles of Database Management Ysaline de Wouters

24

always correct. Such a schedule guarantees that database consistency is not affected by

interference between transactions, since the transactions are executed one by one.

But serial schedules put a heavy burden on transaction throughput. We need non-serial

schedules that are still correct. Non-serial schedules are correct if they are serializable, i.e. if they

are equivalent to a serial schedule.

 A schedule is serializable if it produces the same output and effects on the database as a

fully serial execution of the same transactions. It is better to have concurrent executions but

we have to make sure they do not interfere.

Techniques for serializability: a.o. locking.

2.4.2 Equivalent schedules

Two schedules S1 and S2 with the same transactions T1, T2, ..., Tn are equivalent if the following

two conditions are satisfied:

o For each operation readx of Ti in S1, the following should hold: if the value x that is

read by this operation was last updated by an operation writex, executed by a

transaction Tj in S1, then the same operation readx of Ti in S2 should read the value x

as written by the same operation writex of Tj in S2.

o For each value x for which the schedules contain an update operation, the following

should hold: the last operation writex as induced by Ti in S1, should also be the last

update operation of Ti on x in S2.

The scheduler could check for each non-serial schedule whether it is serializable.

Alternatively, we could apply transaction scheduling methods that guarantee serializability:

locking protocols. These protocols make sure that we cannot have non-serializable schedules. So,

for each schedule, it verifies if it is serializable.

2.4.3 Checking for serializability

To check a schedule for serializability, a so called precedence graph can be created. A

precedence graph consists of a node for each transaction and a directed edge Ti Tj if Tj reads a

value that was last written by Ti or Tj writes a value after it was read by Ti. The schedule is

serializable if and only if the precedence graph has no cycles.

 The problem of this method is that it would slow down the system and it causes loads of

overheads.

2015-2016 Principles of Database Management Ysaline de Wouters

25

Serial and (non-) serializable schedules: example

2.4.4 Concurrency control solutions in practice

Theoretically, each non-serial schedule could be checked for serializability. However, this would

cause a lot of overhead for the DBMS. Instead, protocols will be used that guarantee serializability.

Generally, we can distinguish between

 Optimistic protocols (cf. optimistic schedulers): chances that there are problems are

very low. I will schedule everything right away and I won’t test all the time. Only test

if the transaction tries to commit then I perform a test. If there are interferences, I

abort the transaction, rollback, and start again.

 The optimistic scheduler assumes that conflicts between simultaneous

transactions occur rarely. Each operation for each transaction is scheduled

without delay. At the moment when a transaction is completed, and is about to

be committed, the scheduler checks whether conflicts have occurred between

this transaction and other transactions. If there were conflicts, all changes

induced by this transaction have to be undone by means of a rollback.

 Pessimistic protocols (cf. pessimistic schedulers): high risk of interferences. So we

won’t just schedule everything at the same time. We will postpone the schedule until

we can make sure the transactions won’t interfere. It is better to avoid interferences.

 Pessimistic scheduler assumes that it is rather likely that transactions will

interfere and cause conflicts. Therefore, the execution of the operations is

delayed a bit, until the scheduler can 'overview' the situation so as to enforce a

schedule that minimises the risk for conflicts. Extreme case: serial scheduler.

2015-2016 Principles of Database Management Ysaline de Wouters

26

2.4.5 Locking and locking protocols

As a reminder, a lock is a piece of information about who is accessing the data.

Two operations from different transactions conflict if:

 They are to be executed on the same database object

 (at least) One of them is a 'write' operation. Nevertheless, if they are all reading, we

won’t have conflicts since no data is changed.

 Such database objects can (a.o.) be a row in a table or a record in a file.

A Locking protocol is a set of rules enforcing that, in case where two conflicting operations try to

access the same object, the access to this object is granted to only a single operation at a time. For

that purpose, a lock is placed on the object. A lock is a variable associated with a database object, for

which the value determines which operations are allowed (at this time) on the object.

 Locking: Locks are granted, depending on the types of the operations that are to be

executed on the data.

 Unlocking: existing locks are released

 Locking manager: grants and releases locks. These decisions are based on a ‘lock

table’ and a locking protocol.

Types of locks:

 Exclusive lock (write lock): a transaction obtains the exclusive right to access an

object. No other transactions can read from or write to this object until the lock is

released.

 Shared lock (read lock): a transaction obtains the guarantee that, as long as it holds

the lock, no other transactions can write to that object. The lock is granted to one or

more transactions. It can be shared by multiple transactions.

COMPATIBILITY MATRIX

SCHEDULING STRATEGY

When an exclusive lock is released, any of the waiting transactions is a candidate to acquire a lock on

the object at hand. The lock manager applies a scheduling strategy to determine which transaction

gets the lock.

2015-2016 Principles of Database Management Ysaline de Wouters

27

When a shared lock is released, it is possible that (shared) locks from other transaction remain on

the same object. The lock manager will use a priority schema to determine whether...

 New shared locks are granted to other transactions

 Or the shared locks are gradually removed in favour of a transaction that waits to

acquire an exclusive lock on this object

 An ‘unfair’ priority schema may result in livelocks, with some transactions remaining

in an ‘endless’ waiting state.

Locking can be done explicitely and implicitely. Ifyou don’t do it explicitely, it will be done implicitely

at the moment we read the data.

 Lock requests

o s-lock instruction

o x-lock instruction

 Releasing locks

o Unlock instruction

 Implicit locking

o Read operation s-lock

o Write operation x-lock

 Implicit release of locks

o Commit or abort instruction unlock

THE TWO-PHASE LOCKING PROTOCOL

Application of the compatibility matrix still does not guarantee serializable schedules. To guarantee

serializability in all circumstances, a protocol is needed that enforces rules about the moment(s) on

which lock and unlock instructions are allowed in a transaction. Such a protocol is the Two-Phase

Locking Protocol.

The 2PL-Protocol applies the following rules:

 When a transaction wants to ‘’read’ resp. ‘write’ from/to an object, it will first have

to request and acquire a read lock resp. write lock with the lock manager.

 The lock manager determines, based on the compatibility matrix, whether some

operations are conflicting or not and grants the lock right away or determines to

postpone it.

 Requesting and releasing locks occurs in two phases:

o A growth phase in which the transactions acquires new locks without

releasing any locks. If the number of locks held by a single transaction

increases.

o A shrink phase in which the transaction releases locks without acquiring new

ones. The total number of locks decreases.

 A transaction satisfies the latter rule if all of its locking instructions preceede the first unlock

instruction.

2015-2016 Principles of Database Management Ysaline de Wouters

28

We acquire more and more
locks. Then we have a stable
phase. Then we have the first
unnlock phase and the locks
start decreasign until we reach
the last one.

Here, we acquire all locks
since the beginning. Iknow
which data I will be
interacting with.

We first have a growth face.
We start acquiring locks and
we keep all of them until
the moment we commit.
Then we relase all of them.

 Which one is the best? It depends on what we call the best. If the best is to have the most

throughput, then (a) is the best because we hold locks for a shorter time. Holding a lock

means transactions will have to wait. It will reduce the throughput.

For case (b), you have to know which data you have to be accessing, lock all the employees

up front even though you don’t change all the employees, you lock more data then you

actually need, you can’t lock data later on.

Solution to the lost update problem

 Compare with other lost update problem. Account x is locked exclusive

change is made and written and the transaction is committed and unlocked. T1

has to wait until the lock on account x is released and it can read the correct

value. They have acknowledged each other’s updates.

2015-2016 Principles of Database Management Ysaline de Wouters

29

Solution to the uncommitted dependency problem

 Exclusive lock on account x. Roll back the original value and then T1 can work

with the original value after waiting and unlocking

Consequences of applying the 2PL-protocol

New problem

T1 has locked account x but waits for the unlocking of account y and T2 has locked account y but wait

for the unlocking of account x.

T1 waits for T2 and T2 waits for T1 unsolved

 Static 2PL protocol will solve this problem

 But you hold the locks for a long time and you only need the locks at the dashed line.

 You hold more data then you need severe impact on the throughput

 Deadlock prevention: this is a.o. realised by static 2PL. With this protocol, each transaction

should acquire all of its locks from the start. If a transaction fails in acquiring all necessary

locks at that time, it is put in a wait state. As a result, deadlocks are avoided. The downside

is a (possibly severe) decrease of the throughput.

2015-2016 Principles of Database Management Ysaline de Wouters

30

 As a consequence, it seems to be better not to take measures to avoid deadlocks, but to

detect and resolve them (deadlock detection and resolution).

In order to detect a deadlock situation, a wait-for-graph can be used. A wait-for-graph consist of a

node for each (active) transaction and a directed edge Ti Tj if transaction Ti waits for a lock on an

object that is currently locked by transaction Tj. A deadlock exists iff there exists a cycle in the wait-

for-graph.

Because the presence of a cycle is a necessary and sufficient condition for a deadlock situation, a

deadlock detection algorithm will have to investigate the wait-for-graph at regular intervals. The

choice of an appropriate interval is important. If it is too short, the algorithm will cause much

unnecessary overhead. If it is too long, deadlock situations may exist for a long time without being

detected.

Once a deadlock is detected, it should be resolved. Victim selection is the activity of selecting one or

more transactions involved in a deadlock, and consequently aborting them. As a result, changes

made to the database data by these transactions should be rolled back. So as to minimise the

amount of overhead, it is (given equal priorities) better to avoid aborting transactions that made a lot

of changes to the database.

2.4.6 Variation points

 Transaction isolation levels

o In practice, multiple isolation levels are applied, so as to increase the

throughput

o A short-term lock on an object is a lock that is only held during the execution

of the operation associated with the lock. If short term locks are used, rule 3

of the 2PL-protocol is violated, i.e. serializability can no longer be guaranteed

o Depending on the requirements of the transaction, several isolation levels

can be distinguished:

 Uncommitted Read (UC): no concurrency control

 Committed Read (CR): long-term write locks + short-term read locks

(problem: inconsistent analysis)

 Serializable: cf. 2PL

 Locking granularity levels

o The ‘object’ of a lock can be a row, a table, a physical block, a tablespace, ...

o Tradeoff:

 Lock on fine grained objects: more throughput

 Lock on coarse grained objects: less overhead

o Multiple-Granularity Locking- Protocol (MGL-protocol): extends 2PL to allow

for locking at multiple granularity levels (row, table, ...)

 consistency required between different levels of hierarchy, e.g. a

lock on a table and a lock on a row in that table

 More complex compatibility matrix

2015-2016 Principles of Database Management Ysaline de Wouters

31

2.4.7 Cascading rollback

The rollback of a transaction may cause a cascade of rollbacks of transactions that used the data that

were updated by the initial transaction that was rolled back. This phenomenon can only be avoided if

a transaction holds all its locks until it commits. If that is not the case, there is the chance that a

cascading rollback is required if two or more transactions interfere.

2015-2016 Principles of Database Management Ysaline de Wouters

32

3. Web-database connectivity and database systems in an n-tier

environment

3.1 The Web as client/server medium

3.1.1 Architecture of the World Wide Web

The World Wide Web was developed by chemist. They wanted to be able to share their

researches.

The WWW contains 3 elements.

 HTML (HyperText Markup Language): specifies the document format used to

write Web documents. A web document consists of a tagged text document, with

the tags denoting the document's layout. HTML also features limited constructs

for user input, e.g. buttons, checkboxes, input fields … in so-called HTML forms. A

HTML form is a subset that allows entering data.

Actually, HTML specifies how documents should be visualized. In other words, it

expresses the mark up of a document, what should be italic, left, etc. It is all

about the layout.

 URL (Uniform Resource Locator): The URL uniquely and unambiguously

identifies all Web documents. The general format is: protocol://hostname/path

Ex: or example: http://www.kuleuven.be/info/mydocument.html

It is a uniform way to identify documents and specify their address. It is used to

refer to other documents.

 HTTP (HyperText Transfer Protocol): this is the high-level protocol that is used for

requesting and fetching Web documents, given their URL. HTTP builds upon (and

hides the details of) the underlying TCP/IP network protocol stack.

o TCP/IP: Low level set of protocols. It thinks in terms of bits

and bytes.

Ex: streaming data from a webcast, email

o HTTP: High level protocol.

 The (web) browser is a tool that is able to
visualize HTML documents, according to
its specifications and it knows about HTML
text.

 TCP/IP: low level protocol to exchange
bits and bytes. This is what we call the
internet.

 HTTP: high level protocol that thinks in terms of webpages. It transforms hypertext into the

web.

 URL: unique identifier. It serves as indication where the document is positioned.

 The web server contains the HTML documents.

http://www.kuleuven.be/info/mydocument.html

2015-2016 Principles of Database Management Ysaline de Wouters

33

3.1.2 HTML forms

Begin tag: <>
End tag: </p>
Everything surrounded by <h1> should
be visualized as header of type 1.
Visual aspects of the webpage
You can add inputs

3.1.3 The Web as platfomr for client/server computing

The goal is to define an architecture where end users with a webbrowser can transparently

access database data, without worrying about underlying connection details and without having

to install specific client software.

The above corresponds to the “thin client” principle, with client functionality being limited to

accepting user input, possibly validating this input and presenting query results on screen. What

you have on the client is nothing more than just a webbrowser. All core "business logic" is

implemented server-side.

 It can exist on tablets, smartphones or computers with a webbrowser.

3.1.4 Shortcomings of the Web for client/server computing

 HTML pages are static text pages. We need something dynamic and executable. HTML is not

meant for database interaction.

 Limited GUI capabilities of HTML. If we want interactive web application, we might come up

with some better capabilities. It is not possible to execute SQL queries. we want to get input

from the user HTML is very basic, not user friendly

Ex: we need user interface capabilities this is not offered by HTML. We don’t have out of

the box capabilities to execute executable code.

 The HTTP protocol is not connection oriented and stateless. HTTP is connectionless, we just

send a request and get a result and that’s it, no memory of what happens between different

requests

3.1.5 General architecture for Web-based database access

2015-2016 Principles of Database Management Ysaline de Wouters

34

 We have to find a way to position executable code
that interacts with the database (= application).

 The result of the query has to be transformed to a
HTML page. It has to be a package in such a way
that it can be visualized in between: we have a
server and www. We will need an application that
is able to query the database.

3.2 Executable code in a web environement

3.2.1 The common Gateway Interface (CGI)

CGI is an API that allows for executable code stored at a webserver to be activated from a web

browser. The request is similar to a call to a static HTML page.

The CGI API provides a mechanism to pass parameter values, e.g. input by the user by means of

an HTML form to the application. CGI provides a mechanism to pass parameters to a program.

We can put a “?” with a set of parameters. The application can query the database, after which

the query results are to be "packaged" as a standard HTML page, which is then returned for

visualization in the browser.

Execution of a CGI program
CGI is low level programming, prone to
errors. The web browser can send a request
to the webserver with HTML forms being
showed.
HTML form can have input fields behind the
input, is a URL reference.
The webserver knows if the URL reference
goes in the right directory. The CGI program
is responsible for generating HTML that can
be visualize by the web browser. It then
returns a HTML page with query results. The,
the output of the code (should be HTML) is
returned by the web server to the web
browser.

2015-2016 Principles of Database Management Ysaline de Wouters

35

This is an example of a CGI program, written in
C. This is a program to write “Hello world”. This
page will be reported by the webserver to the
web browser.

"The" advantage of CGI is that it was the first, universal, technology for accessing executable

code from a web browser. However, it has some shortcomings:

 Complex parameter binding: it is not easy to program. It is easy to make mistakes

and it would cause the program to crash.

 Each request requires an entirely new server process

 Performance & scalability

 Security

 CGI is available to most programming languages.

3.2.2 Java applets

Java is an object-oriented programming language and real computing platform:

• Portability: "write once, run anywhere": Java source code is compiled into platform-

independent byte code. This code can be run on any platform where a Java Virtual

Machine (JVM) is installed. Virtual machine, principle that makes that JAVA can be

executed in any platform.

• Dynamic code loading: "mobile code"

• Security: "untrusted" code is run in a ‘sandbox’

• Database access: JDBC, SQLJ, ...

• Web integration: applets, servlets, ...

• Distributed object computing & components: RMI and Enterprise JavaBeans (EJB)

• World wide deployment: a JVM exists in any web browser, webserver, database

server or application server

Applets are pieces of Java byte code that can be downloaded and executed in JVM of a web browser,

hence at the client side. Applet invocations are embedded in a page’s HTML code. The applet runs in

the web page. A designated portion of the page is reserved for the applet’s user interface. Applets

can use the entire set of Java GUI objects. They are not limited to HTML forms.

 A Java applet is a small application which is written in Java and delivered to users in the form

of byte code. The user launches the Java applet from a web page, and the applet is then

executed within a Java Virtual Machine (JVM) in a process separate from the web browser

itself.

2015-2016 Principles of Database Management Ysaline de Wouters

36

Example of an applet
The Java applet is executed on the web
browser. It will also contain a Java Machine.
WIDTH = 150 – HEIGHT = 50 refers to the
part of the screen reserved for the applet.

Theoretically, it would be possible to directly access a DBMS from a Java applet. However, this would

go straight against the “thin client” approach. On the other hand, although applet technology will not

be applied for direct database access, applets will prove very useful to improve client functionality.

 To provide better GUI features in comparison to HTML forms;

 To receive and validate user input;

 To communicate with server side applications by means of a non-HTTP based

interaction mechanism, cutting short the webserver.

3.2.3 Java Servlets

Java servlets are Java code that is run in the webserver and that we don’t download into the web

browser. For that purpose, the webserver should encompass a particular kind of JVM, called a servlet

engine. It doesn’t make the client becoming fat.

 A Java servlet is a Java program that extends the capabilities of a server. Although servlets

can respond to any types of requests, they most commonly implement applications hosted

on Web servers. Such Web servlets are the Java counterpart to other dynamic Web content

technologies such as PHP and ASP.NET.

The interaction mechanism strongly resembles the CGI based approach. Just like CGI programs,

servlets should generate a standard HTML page in response to a request. In contrast to applets,

servlets do not have a GUI.

 The web browser may contain
HTML forms so that we can enter data
that will be passed to the Java Servlet.

 Java servlet: files position on the
web server. It is written in Java and can
access the database. It has to make sure
that it generates HTML.

2015-2016 Principles of Database Management Ysaline de Wouters

37

Evaluation of servlets

 Servlets are platform-independent server-side programs, accessible through a

universal API.

 Servlets remain active after handling a request; hence they are able to contain

session information. It can keep an open database connection. It keeps on

running. More efficient.

 Multiple requests can be dealt with by the same servlet instance. These requests

can be handled in isolation, i.e. in separate threads.

 Good performance in comparison to CGI programs.

 Excellent security: it is far more efficient in terms of security and errors. It is a

good way to write simple programs.

Servlets Applets

 Run on a webserver, so it
can be used to write
database programs.

 Allows for only an HTML
based GUI.

 Can handle very complex
tasks.

 Don’t provide user interface since they
don’t run on the client.

 Run on web browser

 Can offer a very rich GUI

 Can only handle fairly simple
tasks. But they do it in a very
nice looking way.

3.2.4 Client side and server side scripting

A script is a piece of code that is not compiled but that is interpreting. Scripting code is typically

code that is interpreted rather than compiled. It can be embedded in a static HTML page, i.e.

intertwined with the static HTML code. In that way, it can provide dynamic features to the HTML

page.

Server-side scripts are pieces of code that are executed when the document is accessed on the

server, i.e. before it is sent back to the client. In this way, certain page fragments can be defined

as the result of a query, which is executed by the server side script. A static page is then returned

to the browser. In terms of behavior, a server side script is comparable to a servlet.

2015-2016 Principles of Database Management Ysaline de Wouters

38

Client-side scripts are executed when the document is received by the browser, hence on the

client. This allows for a certain degree of dynamism at the client side. Client side scripts, although

not as powerful, more or less behave like applets.

Here, we don’t want to write an entire database application, otherwise, the client would be fat.

The webserver will do nothing. The browser will discover that there is executable code and will

execute it.

 JSP (‘Java Server Pages’): descriptive language used in the Java environment.

o To be used if server side system is Java based

o Compiled transparently into servlet for better performance

 ASP (‘Active Server Pages’)

o To be used if server side system is based on Microsoft platform

o Embedded in HTML or separate file

o More recent: ASP.NET (For Microsoft’s .NET framework)

 PHP (‘PHP Hypertext Preprocessor’)

o Strong integration with open source technologies such as the mySQL

DBMS and the Apache webserver

3.2.5 Distributed object architectures

 This is not typical for the web. It is always used in the network environment.

The distributed object architectures supports method based interaction between objects on different

hosts: the objects interact by remotely calling one another's methods. It only works if they are on the

same machine. But if we install middleware then we can invoke methods over 2 different machines.

Underlying connection details such as network "plumbing" are hidden from the application

programmer; it appears as if they all run on the same host. It is not necessarily web based !

 Java environment: RMI (Remote Method Invocation)

o Part of Java EE (Java Platform, Enterprise Edition), the Java component

framework

o Interaction between Java components (called “enterprise Beans”)

Compile: translate into executable

code (bits and bytes)

≠
Interpretable: only have a source code

and you don’t compile it but when it is

executed, it is done line by line.

2015-2016 Principles of Database Management Ysaline de Wouters

39

 Microsoft environment:

o DCOM (Distributed Common Object Model), earlier pre-Web approach

o WCF (Windows Communication Foundation): more recent, part of

Microsoft’s .NET component framework

Distribute object architectures: principle

The client method can invoke a
method on the server object.
With a middleware, a method
can be invoked from one
machine to another.
Middleware = RMI, DCOM, WCF
Response: the return value is
passed on the same trajectory
to the client.

3.3 Client/server interaction on the Web

 There are a lot of possibilities and combination of technologies

 Only executable code on the server

o Through servlets and HTTP

o Through server side scripts and HTTP

 Executable code in the browser and on the server

o Through socket-to-socket communication and TCP/IP

o Through distributed object interaction (Ex: RMI)

3.3.1 Client/server interaction by means of servlets

As a reminder, a Servlet is the special type of java class that produces dynamic web contents and

develops web application. The Java Servlet API defines a standard interface for handling request and

response messages between the client and server.

 Servlets have access to the entire family of Java APIs, including the JDBC API to access

enterprise databases.

Applications, those are accessed by a web browser using HTTP protocol are called Web Applications.

Servlets and JSPs are used to development a web application.

2015-2016 Principles of Database Management Ysaline de Wouters

40

The client, located in the web browser, sends a request to the web server, through

HTTP. The user can only request static webpage from the server. The web server receives

the HTTP request and forwards it to the respective Servlet. A Servlet is nothing but a Java

class that processes business operations, builds a response and sends back to the web

server. That response is dynamically built, and the content of the response usually

depends on the client’s request. Then, the web server sends the response back to the

client. JDBC is used to interact with the database.

 The basic idea of Servlet container is using Java to dynamically generate the web page on the

server side.

EVALUATION

 The servlet is invoked just like a static page. It performs database access and

generates a static HTML page with the query results. The interaction is entirely

HTTP based.

 The client requirements are minimal. Indeed, you don’t have to execute anything

in the web browser.

Only a browser is needed. No applets are used.

 No client side “intelligence”: input validation is to be performed server-side.

 The GUI is entirely HTML based

 Very simple, no firewall problems.

 A firewall is a wall around my own local network or computer that screens for

values. It controls the traffic between my computer and the internet. It is a way

to block viruses!

3.3.2 Client/server interaction by means of server side scripts

The client is the system on which the Web browser is running. JavaScript is the main client-side

scripting language for the Web. Client-side scripts are interpreted by the browser.

The user requests a Web page from the server. The server finds the page and sends it to the user.

The page is displayed on the browser with any scripts running during or after display.

JSP contains method calls to a java application.

2015-2016 Principles of Database Management Ysaline de Wouters

41

Normally, the server side script won’t contain the Business logic. It will contain other applications

which contain the actual business logic.

 We don’t install anything on the browser.

EVALUATION

 It is very similar to servlet based interaction: the communication between

browser and script is still HTTP based.

 The server side code consists of a script, embedded in an HTML page. This script

is responsible for calling upon distributed objects that implement the actual

business logic and execute database queries. The query result is incorporated in

the HTML page by the script.

 (+): separation of business logic and HTML layout.

3.3.3 Client/Server interaction by means of socket-to-socket communication

 EVALUATION

 Sockets define low-level TCP/IP connections. The client side and server side code

interact trough these sockets, i.e. directly in TCP/IP instead of the much slower HTTP.

 The webserver is only used to download an initial HTML page with an applet. After

that, the applet directly interacts with the server side application, without the

webserver as intermediary.

 Interaction by means of variables, instead of entire HTML pages.

 (+) much faster than HTTP and session based.

 (-) very low-level, considerate amount of "plumbing" code required.

3.3.4 Client/Server interaction by means of a distributed object architecture

2015-2016 Principles of Database Management Ysaline de Wouters

42

EVALUATION

 Objects in the applet and on the application server interact by remotely calling

one another's methods by means of RMI.

 The webserver is only used to download an initial HTML page with an applet.

After that, the applet directly interacts with the server side application, without

the webserver as intermediary.

 Much higher level and less "plumbing" than socket-to-socket communication.

 RMI is used as high-level protocol instead of HTTP. Underneath, there is still

TCP/IP based interaction going on, but these details are hidden from the

application developer.

 Possible firewall problems with RMI, therefore only suitable on an intranet.

3.4 A global architecture for web-based database access

3.4.1 Java EE

 Java Platform, Enterprise Edition or Java EE is a widely used enterprise computing platform

developed under the Java Community Process. The platform provides an API and runtime

environment for developing and running enterprise software, including network and web

services and other large-scale, multi-tiered, scalable, reliable, and secure network

applications.

Distributed

objects
Database

server
Database

Web-

server

HTTP

HTTP

RMI

Browser

Applet

Browser

Applet

RMI

2015-2016 Principles of Database Management Ysaline de Wouters

43

 Either client tier that contains
a java application which
contains user interface
objects.
Objects access database
through JDBC.

 Web browser may contain an
applet or not.

 The applet talks to the server application through RMI. Inputs are used by EJB to

query queries in the database. Then, the result is retrieved.

 More efficient

 Either we have just a browser with nothing else. The browser will talk to the

server side script in HTTP. If no business logic is involved then it will direct access

the database. If it contains a business lgic, it will first access the EJB server

through RMI, retrieve, then database.

 More suitable

3.4.2 .Net

2 possibilities

 Standalone program that contains
windows forms.

 Web browser, accesses the server
side script. Accesses business logic
or info business logic, direct
accesses the database.

 Microsoft .NET provides web
forms, nice than HTML web forms.
Data tier: it contains relation and
non-relational data so we need
more

2015-2016 Principles of Database Management Ysaline de Wouters

44

 Either we have a normal browser that accesses the WCF and directly accesses the

database.

 Either we have a browser with Windows form. It accesses .Net over the .Net

middleware. The business logic will access the database through ADO.NET.

3.4.3 From thin clients towards Rich Internet Applications

 Rich Internet Applications (RIA): web based applications with “rich” look and feel, similar to

desktop applications

Two lines of technologies:

o Browser based (AJAX; ‘Asynchronous JavaScript and XML’):

 GUI functionality is split over browser and (web) server

 No “refresh” of entire HTML pages, but rather of individual page

fragments

 Client side scripting combined with server side technology

 XML based data exchange

 Often used by GUI technologies that allow for handling GUI

events server side (a.o. JavaServer Faces, Microsoft Web Forms)

o Plugin based: You won’t extend functionality of the browser but just

download piece of executable code.

 Executable code downloaded and run in web browser

 Rich, non HTML based GUI objects

 Communication with server side business logic

 Examples: Flash, Java applets, Microsoft Silverlight

Ex: email package such as Outlook. Part of Microsoft Office applications. You install but

you can also run it on a web browser. This is a functionality that makes the user

experience in web browser even as good as if you would run in on an application.

2015-2016 Principles of Database Management Ysaline de Wouters

45

Goal: enhance the user interface

 With the browser based approach, we have a library based on scripting

language. You enter data and click button. Then, the data is passed over HTTP as

a fragment. The query result is then sent to the browser to be visualized on the

browser.

 With the applet approach: full user interface object, if you click the button, it will

be handled directly in the browser.

 In both cases we have thin clients interfaces. However, the browser approach is thinner than

the plug in approach.

3.5 Conclusions

 Access database data through web browser without installation of client side

software

 Possibly transparent downloading of plugins into browser

 Different technologies with different distribution of GUI functionality over

browser and server: not all thin client are equally ‘thin’

 Business logic remains server side; different technologies for server side

executable code

 Importance of separating page layout and GUI design from developing business

logic

