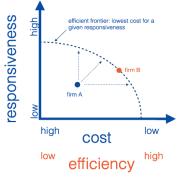


In the middle: assemble to order

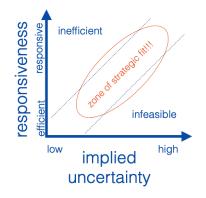
Strategic fit

Competitive strategy: price? Variety? Time? Quality? Functional strategy: supply chain, ... → ALLIGNEMENT!!

Achieving strategic fit:


- 1. Understand uncertainty
 - Actual demand uncertainty
 - + customer needs
 - \rightarrow implied demand uncertainty
 - Low 🔶
 - Easy to forecast
 - Low leftover risk
 - \circ $\;$ Low product margin $\;$
- High leftover risk
 High product marg
- High product margin

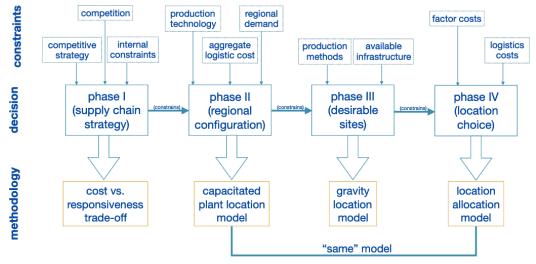
• Hard to forecast


- Supply uncertainty
- 2. Understand SC capabilities
 - Responsiveness ~ ability to react to uncertainty
 >< Efficiency: if uncertainty is low
 - Responsiveness \uparrow → CODP more downstream → lead time \downarrow <u>Careful</u>: capacity utilization

► High

• Trade-off:

• SC strategy (responsiveness) depends on competitive strategy!!!



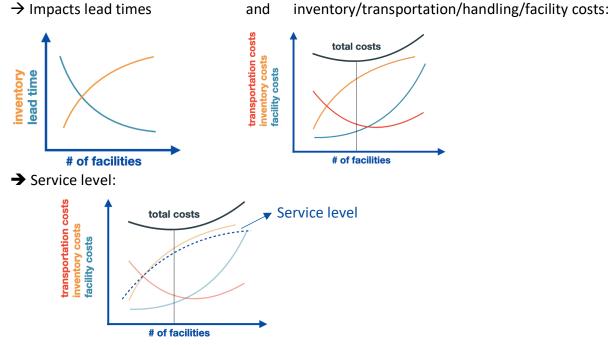
3. Redesign

Zara case) → very high responsiveness

Framework for network design:

Phase I: supply chain strategy

Main trade-off:

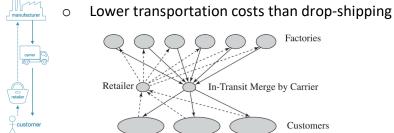

Customer service

- Lead time
- Product variety
- Product availability
- Time to market
- Order visibility
- After-sales

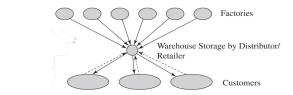
Depends on competitive strategy!

- Supply chain costs
 - Inventory
 - Transportation
 - Handling
 - Facilities
 - Information

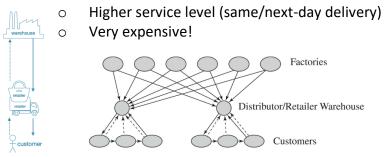
Number of facilities:

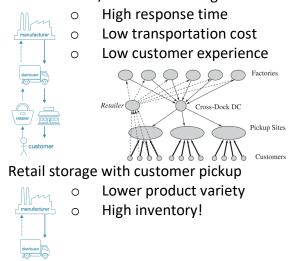


Role of intermediaries:


Storage downstream Storage upstream Reduce inventory Reduce lead time • Greater variety Easier returnability • High availability Lower IT infrastructure • High customization Low customization • High value Low value • Shipping by firm Shipping by carrier Customer pickup

Design options:


- Manufacturer storage with direct shipping (drop-shipping)
 - Low response time
 High level of variety + high availability
 Low inventory costs + low handling cost
 Manufacturers
 Retailer
 Customers
- Manufacturer storage with direct shipping and in-transit merge (= cross dock)
 - Customer perspective: similar to drop-shipping


- Distributor storage with carrier delivery
 - Higher response time than manufacturer storage
 - Higher cost to provide same availability as manufacturer storage
 - Higher inventory costs than manufacturer storage

• Distributor storage with last-mile delivery

Manufacturer/distributor storage with customer pickup

+ internet

- Online sales
- Omnichannel logistics

Phase II: regional configuration

 \rightarrow allocate capacity and demand

Linear programming:

- 1. Define variables
- 2. Define objective function (minimize total relevant costs)
- 3. Constraints
- 4. Solution
 - If $\sum K = \sum D$ (**balanced** transportation problem) \rightarrow all constraints binding
 - If $\sum K > \sum D$ (**unbalanced** transportation problem) \rightarrow unused supply
 - If $\sum K < \sum D$ (unbalanced and infeasible problem) \rightarrow unmet demand

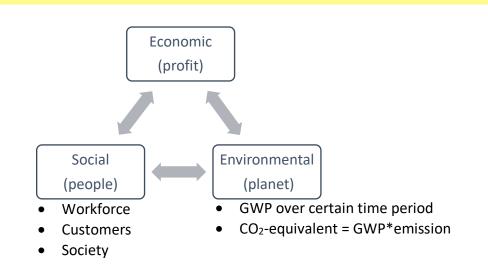
Phase III: desirable sites

Load-distance model

- Finite alternatives: supply, demand and potential locations as points in a plane
- Minimize load x distance

Gravity model

- Supply and demand as points in a plane
- Optimal location <u>anywhere</u> in the plane
- Minimize $\sum d_n D_n F_n$

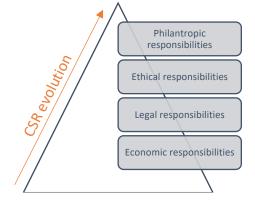

Factor-rating

- Finite alternatives to compare via relevant factors
- Assign weight to each factor

Phase IV: location choice

Same model as phase II

Sustainability



Sourcing

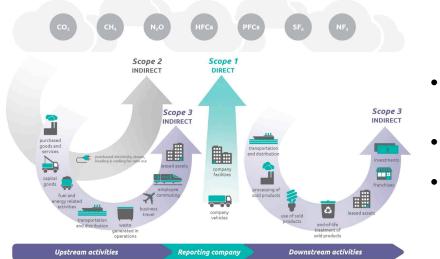
Trends:

- Globalization: few hubs
- Specialization: multiple tiny nodes
- Complex, long supply chains
- Lean processes
- \rightarrow High risk!

Corporate Social Responsibility:

Socially Responsible Purchasing:

- Goods, services, capabilities and knowledge
- Sustainable purchasing: procedures and guidelines
 >< Responsible purchasing: personal responsibility



Measuring carbon footprint...

- Cradle-to-grave
- Well to tank (for transport)
- Tank to wheels (for transport)

Greenhouse Gases Protocol scopes

- Scope 1
 - Direct emissions
 - Own company
- Scope 2
 - Indirect emissions
- Scope 3
 - All other emissions

→ ASSUMPTIONS have a HUGE impact on results!!!

Estimating emissions: e.g. Network for Transport Measures

Inventory control: deterministic demand

Joint replenishment

- Full aggregation
 = order everything together
- Power-of-two policy
 - = all items ordered in intervals of $2^{k}T_{L}$
 - 1. Define baseline interval T_L
 - 2. Find smallest k so that $TC(2^{k+1}T_L) \ge TC(2^kT_L)$

• Tailored aggregation

- = optimize frequency
 - 1. Determine the fast mover: for all products optimal $\bar{n}_i \rightarrow$ choose maximum \bar{n}
 - 2. Determine multiplier of slow movers, without S: $\overline{\bar{n}}_i \rightarrow \overline{m}_i \rightarrow m_i$
 - 3. Adjustment for fixed cost: new $n \rightarrow n_i$

Inventory control: stochastic demand

Forecasting

= finding <u>underlying structure</u> in demand based on past information!

- Basis for planning
- Relevant for both push and pull processes
- Always wrong!!
 - More accurate if ...
 - ... aggregated
 - o ... short term
 - o ... less demand uncertainty

Time-series methods: observed demand = <u>systematic component</u> + random component

└→Underlying structure in demand:

this is what we want to forecast

= <u>Level + Trend + Seasonality</u> + ε

- Multiplicative methods
 Forecast = L * T * S
- Additive methods
 Forecast = L + T + S
- Mixed methods Forecast = (L + T) * S

Static methods

→ **Parameters** are fixed (forecast itself ≠ static!!)

Mixed model: $F_t = (L + Tt)S_i$

- 1. Collect data
- 2. De-seasonalize historical demand
 - a. Determine periodicity

Period	Demand	Lag 1	Lag 2	Lag 3	
1	D_1				
2	D ₂	D_1			
3	D ₃	D ₂	D_1		
4	D ₄	D ₃	D_2	D_1	
5	D ₅	D ₄	D ₃	D_2	
Correlation		Corr(D,L ₁)	Corr(D,L ₂)	Corr(D,L ₃)	

If correlation is high \rightarrow periodicity p = lag value

- b. Determine average demand \overline{D}_t over p periods
- 3. Estimate L and T

E.g. via linear regression: $\overline{D}_t = L + Tt + \varepsilon_t \rightarrow E[\overline{D}_t] = L + Tt$

- 4. Estimate S_i
 - a. For every period: $\overline{S}_t = \frac{D_t}{E[\overline{D}_t]}$
 - b. S_i = average over each season
- 5. Calculate F_t

Adaptive methods

→ Parameters are updated in time: forecast changes in time!!

- 1. (Initialise)
- 2. Compute forecast
- 3. Observe demand
- 4. Recompute parameters

Moving average: $F_{t+x} = L_t$

- Average over past N periods
- Throws away all data from before t-N

Simple exponential smoothing: $F_{t+x} = L_t$

- Updates forecast based on previous forecast +/- previous error
- Sum of previous demands, where past demand becomes less and less relevant
- Initialize L₀
- Smoothing parameter $\alpha \rightarrow 1$: more importance to recent observations
 - ightarrow 0: more importance to past data

Without new information, all future forecasts are the same !!

Holt's model/double exponential smoothing: F_{t+x} = L_t + xT_t

- Initialize L₀ and T₀
- Smoothing parameters α and β
- Winter's model/triple exponential smoothing: $F_{t+x} = (L_t + xT_t)S_{t+x}$
 - Initialize L₀, T₀ and S_i
 - Smoothing parameters α , β and γ

Future forecasts no longer constant!!

Measuring forecast error:

- Forecast error ε_t = F_t D_t
- Absolute deviation $A_t = |\varepsilon_t|$
- Mean squared error MSE = $\frac{1}{n} \sum_{t=1}^{n} \varepsilon_t^2$
- Mean absolute deviation MAD = = $\frac{1}{n} \sum_{t=1}^{n} A_t$ \rightarrow if errors are normally distributed: $\sigma_F = 1.25 MAD$
- Mean absolute percentage error MAPE = $\frac{1}{n}\sum_{t=1}^{n} \left| \frac{\varepsilon_t}{D_t} \right| 100$ ٠
- Systematic over/under estimations BIAS = $\sum_{t=1}^{n} \varepsilon_t$ •
- Tracking signal TS = BIAS/MAD \rightarrow can compare different forecasts; between -6 and 6 OK

Aggregate production planning

Assumption: forecast = true (~ deterministic demand) Include uncertainty via e.g. scenario analysis

Aggregate decisions necessary because they take time!

→ Aggregate unit

Additional constraints = boundary conditions

 \rightarrow Net Demand = demand incl. beginning and end inventory

Chase strategy

= production follows demand: Pt = Dt Evaluation:

- + Minimise inventory/backlog: $I_t = I_{t-1} + P_t D_t = I_{t-1} \approx 0$
- Difficult/expensive in practice

 \rightarrow Useful when inventory/backlog costs are high

Level strategy

= maintain constant output rate: P = $\frac{\sum_{t} \text{Net Demand}}{\text{nr of periods}}$

If no backorders allowed:

- Determine "worst" period, i.e. period with highest average cumulative net demand
- P = average cumulative N.D. of "worst" period = Cumulative Net Demand "worst" period •

Evaluation:

- + Stability of capacity/workforce
- Service level (= how much fulfilled without backlog) may suffer
- Difficult to estimate true cost of inventory/backlog

 \rightarrow Useful when capacity changes are expensive

Mixed strategy

= tailored: use combination of capacity, inventory and backlog

- + Only strategy that **minimises costs**!
- Difficult to calculate: linear programming
- Not very intuitive

"worst" period

Supply Chain Coordination: deterministic demand

No coordination: **double marginalization** \rightarrow sub-optimal profits

 \rightarrow Local optimisation \neq global optimisation

→ Coordination: all firms happy + global optimum!

Discounts

- Volume based discount
 - Set C_r such that
 - Retailer buys $D_{SC}^* \rightarrow \text{discount if } D_r \geq D_{SC}^*$
 - $\circ \quad \text{Profit retailer} \geq \text{profit of individual optimum}$
 - $\rightarrow \pi_r = (p discounted C_r) \bullet D_{SC}^* \ge profit of individual optimum$
- Two-part tariff
 - Franchise fee & C_r = C_m
 - $\circ \quad \text{Profit manufacturer = franchise fee} \geq \text{profit of individual optimum}$
 - Profit retailer = profit SC* franchise fee \geq profit of individual optimum

• Lot-size based quantity discount

If price cannot be set by retailer (e.g. commodity market)

- Retailer must buy $Q_{SC}^* \rightarrow discount if Q_r = xQ_{SC}^*$
- o Cost retailer \leq cost of individual optimum

→ TC_r = D•discounted C_r + $\frac{D}{Q_{SC}^*}$ •S_r + $\frac{Q_{SC}^*}{2}$ •h•discounted C_r ≤ cost of individual optimum

Supply Chain Coordination: stochastic demand

Coordination: all firms happy + global optimum!

The newsvendor model

- If CR < 0,5 \rightarrow rather have underage \rightarrow Q* < μ
- If CR = 0,5 \rightarrow Pr[overage] = Pr[underage] = 0,5 \rightarrow Q* = μ
- If CR > 0,5 \rightarrow rather have overage \rightarrow Q* > μ

Contracts

- Increase S_r to increase Q_r: **buyback contract**
 - Set C_r and buyback price b such that
 - Retailer buys Q_{SC}^* : $Pr(D \le Q_{SC}^*) = CR_{SC}^* \rightarrow b = function of C_r$
 - $\circ \quad \pi_r \geq \pi_r^* \twoheadrightarrow C_r = \text{function of } b$
 - $\circ \quad \pi_m \geq \pi_m^* \xrightarrow{\bullet} \pi_r \leq \pi_{r2} \xrightarrow{\bullet} C_r = \text{function of } b$

→ A sustainable contract will have $C_{r1} \le C_r \le C_{r2}$ and $b_1 \le b \le b_2$

!!! There exists a b for every C_r that maximises π_{SC} ,

BUT this does NOT necessarily make manufacturer AND retailer happy !!!

• Decrease Cr to increase Qr: revenue sharing contract

 \rightarrow C_m = C_r = 0

- \rightarrow Lower C_r AND require percentage (1-r) of revenue
 - CR = CR_{SC}* ⇔ Q_r* = Q_{SC}* → r* = linearly increasing in C_r → $π_r$ = function of C_r
 - $\circ \quad \pi_r \geq {\pi_r}^* \xrightarrow{} C_{r1} \leq C_r$
 - $\circ \quad \pi_{\mathsf{m}} \geq \pi_{\mathsf{m}}^* \rightarrow \pi_{\mathsf{r}} \leq \pi_{\mathsf{r}2} \rightarrow \mathsf{C}_{\mathsf{r}} \leq \mathsf{C}_{\mathsf{r}2}$

Note: buyback contract \approx revenue sharing contract

• Real options contract

- 1. Retailer buys Q call options at price Cr
- 2. Each option can be exercised at price E
- → Retailer has no physical inventory left! (E[OH] = unexercised options)
- → Manufacturer is left with excess inventory/capacity
 - CR = CR_{SC}* ⇔ Q_r* = Q_{SC}* → E* → π_r = function of C_r
 - $\circ \quad \pi_r \geq \pi_r^* \xrightarrow{} C_{r1} \leq C_r$
 - $\circ \quad \pi_m \geq \pi_m^* \xrightarrow{\bullet} \pi_r \leq \pi_{r2} \xrightarrow{\bullet} C_r \leq C_{r2}$