Capital investment policy

Part 1: Investment analysis – investing or not?

1.1 CIP definition

A "Capital Investment Policy" specifies criteria to compare investment alternatives and rules to select those that serve the financial objectives of the corporation.

1.2 Financial goal of a corporation

Assumption: all shareholders have equal access to well-functioning, competitive financial markets Goal = to maximize the current market value of shareholders' investments in the firm

1.3 NPV rule

Assumption: perfect capital markets

Invest if NPV = $PV - C_0 > 0$

→ Firm value increases by NPV

	Perpetuities	Annuities		
Level	$PV = \frac{C}{r}$	$PV = \frac{C}{r} \left[1 - \left(\frac{1}{1+r} \right)^{T} \right]$		
Growing	$PV = \frac{C}{r - g}$	$PV = \frac{C}{r - g} \left[1 - \left(\frac{1 + g}{1 + r} \right)^{T} \right]$		

- Equal to: invest if return > r = discount rate = **opportunity cost of capital/**hurdle rate
- Choosing among projects: choose highest NPV

1.4 Alternative decision rules

IRR rule: invest if IRR > r

- $0 = C_0 + \frac{C_1}{(1+IRR)} + \frac{C_2}{(1+IRR)^2} + \cdots$
- (IRR r) gives an indication of how sensitive the investment is to uncertainty in estimated r
- Pitfalls:
 - Lending or borrowing
 - Multiple IRR values if signs of cash flows change
 - Ignores scale of projects when comparing
 - Time varying interest rates
 - No real solutions might exist

Payback Period

1.5 Interest rates

Effective Annual Rate EAR ↔ Annual Percentage Rate APR

- 1 + EAR = $(1 + \frac{APR}{k})^k$
- Effective rate for the horizon $\frac{1}{k}$: $\frac{APR}{k}$

Nominal cash flow (what you actually pay/receive) ↔ Real cash flow (adjusted for inflation)

- Real cash flow = $\frac{\text{Nominal cash flow}}{(1+\text{inflation rate})^t}$
- $(1+r_{real})(1+i) = 1+r$
- Rule: discount real cash flows with r_{real} and nominal cash flows with r_{nominal}

2.1 Capital rationing

Assumption: informational frictions (i.e. imperfect capital markets)

- → Agency problems: outside **financing constraints** under moral hazard
- \rightarrow Use **Profitability Index** = $\frac{NPV}{Resources consumed}$ instead of NPV for choosing among projects

2.2 Capital budgeting

Interest expenses are NOT included (captured through discounting)

2.3 Perfect capital markets

- No taxes/transaction costs
- Perfect information
- Perfect competition
- Investors can borrow and lend at the same (risk adjusted) rate
 - → Unlimited short selling possible with full access to proceeds

Result: Law of One Price

If equivalent investment opportunities trade simultaneously in different efficient markets, then they must trade for the same price in both markets. Else, arbitrage opportunities would exist.

No Arbitrage Price of any security = PV (all cash flows paid by the security)

→ NPV of buying/selling a security is 0!

<u>Note</u>: financial investment (NPV=0) \neq real investment (NPV can be > 0)

3.1 Pricing bonds

Assumption: default-free bonds

Zero-coupon bond

• Price = PV (face value) = $\frac{FV}{(1+YTM_n)^n}$ where **YTM** = Yield to Maturity = IRR of the bond

Coupon bond

Price = PV (interest payments) + PV (face value)

If price > face value → bond trades at a **premium** → coupon rate > YTM

If price < face value → bond trades at a **discount** → coupon rate < YTM

Effect of time on prices:

Effect of interest rates on prices:

- Interest rates and bond yields rise (fall) → prices fall (rise)
- Sensitivity to changes in interest rates measured by duration
- Yield curve plots yield as a function of maturity
 - Normally upward sloping (higher yields for longer horizons)
 - Inverted yield curve usually precedes recessions
- Discount each coupon payment at spot rate rn
 - YTM is a complicated weighted average r_n
 (zero-coupon bonds: YTM_n = r_n)
 - Spot rate $r_n \neq$ **forward rate** f_n $(1+f_1)(1+f_2)...(1+f_n) = (1+r_n)^n$

Assumption: risky bonds

$$\begin{aligned} & \text{Price} = \frac{\text{expected CF}}{(1 + E(r_n))^n} \\ & \text{YTM} = \frac{\text{promised CF}}{P} - 1 > \text{expected return!!} \end{aligned}$$

Default spread = yield on corporate (risky) bonds – treasury (risk-free)bonds

3.2 Pricing stocks

Dividend discount model

$$\bullet \quad P_0 = \sum_{t=1}^{\infty} \frac{\text{Div}_t}{(1+r)^t}$$

• Dividend growth g = retention rate * ROI

O Constant growth:
$$P_0 = \frac{\text{Div}_1}{\text{r-g}}$$
O Changing growth: $P_0 = \sum_{i=1}^{N} \frac{\text{Div}_i}{(1+r)^i} + \frac{P_N}{(1+r)^N}$

Discounted FCF model

$$\begin{split} \bullet & \quad P_0 = \frac{V_0 + cash_0 - debt_0}{shares\ outstanding_0} \\ & \quad \text{where}\ V_0 = enterprise\ value} = \sum_{N=1}^{\infty} \frac{FCF_N}{(1 + r_{WACC})^N} + \frac{V_N}{(1 + r_{WACC})^N} \end{split}$$

• Note: enterprise value = NPV (continuing existing projects) + NPV (new projects)

Valuation based on multiples

4.1 Portfolio and CAPM theory

Portfolio theory

Assumptions:

- Mean variance preferences
- Means and variances of each stock are known

Volatility & expected return

- Correlation impacts volatility:
 - Lower correlation → lower volatility can be obtained (= diversification)
 - Perfect correlation $(\rho_{ab} = 1)$ → no benefits of diversification
- Efficient frontier of risky investments = set of efficient (risky) portfolios = portfolios where no higher expected return can be obtained without increasing volatility
- Efficient frontier including risk-free investment
- Tangent portfolio earns highest **Sharpe Ratio** = $\frac{E(r_p)-r_f}{SD(r_p)}$

CAPM theory

Assumptions:

- Efficient capital markets
- Mean variance preferences
- Homogeneous expectations

Tangent portfolio = efficient portfolio

⇒ Expected return of a stock i E(r_i) = $r_f + \frac{\sigma_{iT}}{\sigma_T^2}$ (E(r_T) - r_f) = $r_f + \beta_i$ (E(r_T) - r_f) where β_i = systematic/undiversifiable risk = $\frac{\text{cov}(\mathbf{r}_i, \mathbf{r}_T)}{\text{var}(\mathbf{r}_T)}$

<u>Everyone</u> holds tangent portfolio, independent of risk preferences → demand = tangent portfolio Supply = market portfolio

→ Tangent portfolio = market portfolio

Efficient frontier incl. risk-free investment = capital market line

Security market line = expected return as a function of β (linear): all stocks fall along the SML

What if

- No efficient capital markets: borrowing and saving rates differ
 - → Demand = T_{Saving} + T_{Borrowing}
- No mean variance preferences
 If willing to hold inefficient portfolios \rightarrow someone can earn $\alpha_i = E(r_i) (r_f + \beta_i (E(r_{Mkt}) r_f) > 0$
- No homogenous expectations
 - \rightarrow Rational expectations are sufficient: holding market portfolio guarantees $\alpha_i = 0$

4.2 Factor models

CAPM problems:

In practice, some portfolios earn $\alpha_i > 0$

How to identify the market portfolio?

→ Arbitrage Pricing Theory

- Well-diversified factor portfolios combined to form the tangent portfolio
- $E(r_i) = r_f + \sum_{n=1}^{N} \beta_i^{Fn} (E(r_{Fn}) r_f)$
- Rewriting: E(r_{Fn}) r_f = return of **self-financing portfolio**
 - o = portfolio weights sum to 0
 - $\circ \quad \mathsf{E}(\mathsf{r_i}) = \mathsf{r_f} + \sum_{n=1}^N \beta_i^{Fn} \mathsf{E}(\mathsf{r_{Fn}})$
 - Selecting factor portfolios by holding short and long positions in stocks only
 E.g. Fama-French-Carhart Specification

4.3 CAPM in practice

Estimating beta

• Using historical data and linear regression

$$(r_i - r_f) = \alpha_i + \beta_i (r_{Mkt} - r_f) + \varepsilon_i$$

$$E(r_i) = r_f + \beta_i (r_{Mkt} - r_f) + \alpha_i$$

- o If $\alpha_i > 0 \rightarrow$ stock performed better than predicted by CAPM
- If α_i < 0 \rightarrow stock lies below SML
- Market proxy: use value-weighted portfolio
- Using average industry beta

Risk-free rate

Market risk premium

- Historical average excess return of the market
- Valuation model: $r_{Mkt} = \frac{Div_1}{P_0} + g = dividend yield + expected dividend growth$

5.1 Capital structure in perfect markets

Assumption: perfect markets

Unlevered firm $E(r_U) = r_f + \beta (r_M - r_f)$

Levered firm

MM Proposition I

- Total firm value is independent of its capital structure
- · Allocation of cash flows changes, not total cash flow

MM Proposition II

- Leverage increases the risk/cost of equity!!
- Total cost of capital remains unchanged: $r_U = r_{WACC} = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D$
- Unlevered beta $\beta_U = \frac{E}{E+D} \beta_E + \frac{D}{E+D} \beta_D$

Difficulties

- Net debt = debt cash
- Leverage can increase EPS ≠ increase in stock price
- Issuing new shares does not dilute value of existing shareholders

5.2 Trade-off theory and optimal leverage

Taxes

Increasing debt → increases interest tax shield = corporate tax rate * interest payments MM Proposition I with taxes

•
$$r_{WACC} = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D (1 - \tau_C)$$

Bankruptcy & distress costs

Increasing debt → increases risk of bankruptcy

! Risk of bankruptcy itself does not affect the firm's value

Costs associated with bankruptcy incur a deviation from MM

- Direct costs
- Indirect costs of financial distress

Agency costs

Increasing debt → agency costs

- Asset substitution problem: excessive risk taking due to financial distress
- **Debt overhang problem**: underinvestment or cashing out due to financial distress Increasing debt → agency benefits

Less cash on hand for manager to overspend on private perks

Conclusion: $V_L = V_U$

- + PV (interest tax shield)
- PV (financial distress costs)
- PV (agency costs of debt)
- + PV (agency benefits of debt)

6. Capital budgeting and valuation with leverage

Assumptions:

- Perfect markets with corporate taxes as only imperfection
- Market risk of any project = average market risk of the firm
- Debt-equity ratio d remains constant
 Implementation: debt capacity D_t = d * V_t^L

6.1 WACC method

- 1. Calculate unlevered FCF
- 2. Compute after-tax WACC: $r_{WACC} = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D (1-\tau_C)$
- 3. Discount FCF at rwacc

6.2 APV method

- 1. Determine unlevered value
 - a. Calculate unlevered FCF
 - b. Compute pre-tax WACC: $r_{WACC} = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D$ Pre-tax $r_{WACC} = r_U$ if firm maintains target leverage ratio
 - c. Discount FCF at r_U
- 2. Determine PV (interest tax shield)
 - a. Interest paid in year $t = r_D * D_{t-1}$
 - b. Discount interests tax shield at r_U
- 3. $V_L = V_U + PV$ (interest tax shield)

6.3 FTE method

- 1. Calculate FCFE = unlevered FCF $(1 \tau_c)$ * interest + net borrowing
- 2. Compute equity cost of capital.
- 3. Discount FCFE at r_E

6.4 Project based cost of capital and other effects of financing

What if

- Market risk and leverage of the project ≠ average market risk and leverage of entire firm
 - → Estimate unlevered cost of capital via similar firms
 - \rightarrow Apply APV or calculate r_{WACC} for WACC or r_{E} for FTE
- Issuance and other financing costs
 - → Include fees in NPV
- Security mispricing
 - → Include NPV of the transaction = actual money raised true value of the securities sold
- Financial distress and agency costs
 - → Affect FCF and raises cost of capital
 - → Unlevered cost of capital no longer independent of the firm's leverage

Part 2: (Real) options – when to invest?

7.1 Option methods in valuation and capital budgeting

Standard DCF	Dynamic DCF/decision tree analysis
Low uncertainty/flexibility	High uncertainty/flexibility = real options
Expected cashflows	Contingent cashflows
→ Lower bound on project value	→ Financial options (8.1 – 8.3)
	→ Valuing a levered firm (8.4)
	→ Capital budgeting (9.1 – 9.5)

7.2 Financial options basics

Put-call parity

$$S_0 + P(K,T) = C(K,T) + PV_{0,T}(K)$$

- Intrinsic value >< time value
 - Non-dividend-paying call

C = S - K + dis(K) + P

= intrinsic value + time value

→ Exercising early never optimal: price European call = price American call

Non-dividend-paying put

P = K - S + C - dis(K)= intrinsic value + time value

→ Exercising early optimal when C < dis(K): price European put < price American put

Including dividends

$$S_0 + P(K,T) = C(K,T) + PV_{0,T}(K) + PV_{0,T}(Div)$$

Dividend-paying call

C = S - K + dis(K) + P - PV(Div)

= intrinsic value + time value

→ Exercising early can be optimal if PV(Div) large

Factors influencing option prices

ractors influencing option prices							
Greek	Variable	C_{Eur}	P_{Eur}	C_{Amer}	P _{Amer}		
Delta	S_0	+	-	+	-		
Vega	σ	+	+	+	+		
Theta	T	?	?	+	+		
Rho	r	+	-	+	-		
	K	-	+	-	+		
	Div	-	+	-	+		

8.1 Single-period binomial model

$$\beta_{option} = \frac{\Delta S}{\Delta S + B} \beta_S + \frac{B}{\Delta S + B} \beta_B = \frac{\Delta S}{\Delta S + B} \beta_S$$

Leverage ratio

- Call option:
 - o Buy \triangle stock and borrow \$B \rightarrow leveraged investment
 - Leverage ratio > 1 $\rightarrow \beta_{call} > \beta_S \rightarrow$ higher expected return than stock
- Put option:
 - Go \triangle short in stock and lend \$B \rightarrow hedged position
 - Leverage ratio $< 0 \rightarrow \beta_S > 0$ implies $\beta_{put} < 0 \rightarrow$ lower expected return than stock

Risk-neutral valuation

• p* = risk-neutral probability:
$$\frac{p^*S_u + (1-p^*)S_d}{S} = 1 + r_f \Leftrightarrow p^* = \frac{(1+r_f)S - S_d}{S_u - S_d}$$

- Used to discount risky cashflows:

Transform future payoff into certainty equivalent via
$$p^* \rightarrow \text{discount}$$
 at r_f

$$C = \frac{1}{1+r_f} \left(\frac{(1+r_f)S - S_d}{S_u - S_d} C_u + \left(1 - \frac{(1+r_f)S - S_d}{S_u - S_d}\right) C_d \right) = \frac{1}{1+r_f} (p^* C_u + (1-p^*) C_d)$$

- Equivalent to discounting expected cash flow at risk-adjusted discount rate
- Used in common simulation techniques for pricing derivative assets

8.2 Multiperiod binomial model

2-period binomial model

Replicating portfolio (Δ and B) changes every time stock price changes

- $\rightarrow \beta_{option}$ changes everytime
- → no fixed cost of capital!

n-period binomial model

- $S_{t+h,u} = uS_t$ and $S_{t+h,d} = dS_t$ where u and d capture key features of stock returns : lognormal distribution (variance $h\sigma^2$, mean $h\mu$)
- $n \uparrow \rightarrow$ more realistic (limit $n \rightarrow \infty$: Black-Scholes)

8.3 Black Scholes model

Assumptions:

- Continuously compounded returns are lognormally distributed (volatility σ , mean μ)
- Perfect capital markets

Non-dividend-paying stock

- Call C = $SN(d_1) e^{-rT}KN(d_2)$
- Put $P = C S + PV(K) = SN(d_1) e^{-rT}KN(d_2) S + e^{-rT}K$

Dividend-paying stock

Replace S by $S^X = S - PV_{[0,T]}(Div) = price$ excluding present value of any dividend prior to T

Replicating portfolio

- $C = S\Delta + B$
 - $\Delta = N(d_1) > 0 \rightarrow long position in stock$
 - B = $-e^{-rT}KN(d_2) < 0 \rightarrow$ short position in bond
- $P = S\Delta + B$
 - $\Delta = -(1-N(d_1)) < 0 \rightarrow$ short position in stock
 - B = $e^{-rT}K(1-N(d_2)) > 0$ long position in bond

Risk-neutral probabilities

$$C = e^{-rT} \left(N(d_2) \left(e^{rT} \frac{N(d_1)}{N(d_2)} S - K \right) + (1 - N(d_2)) * 0 \right)$$

8.4 Capital structure options

Equity = call option on firm value

- S = firm value
- σ = volatility of firm value
- K = face value of debt
- T = time to maturity of debt
- 0 **r**_f
 - If firm value < K → equity holders receive 0
 ! If debt doesn't mature now, equity still has value!
- o If firm value > K → equity holders receive firm value K
- Asset substitution problem: equity holders invest in (reject) NPV < 0 (> 0) project if $\sigma \uparrow (\downarrow)$
- Replicating portfolio: $E = A\Delta + B$

$$\beta_E = \beta_{option} = \frac{A\Delta}{A\Delta + B} \beta_A = \frac{A\Delta}{E} \beta_U = \frac{(E+D)\Delta}{E} \beta_U = \Delta(1 + \frac{D}{E}) \beta_U$$

→ Can be used to estimate cost of capital of firm with risky debt

Debt = owner of firm value – call option on firm value

- = risk-free bond put option on firm value
- ⇒ risk-free debt = risky debt + put option on firm value (=credit default swap)

- S = firm value
- σ = volatility of firm value
- K = face value of debt
- T = time to maturity of debt
- \circ r_1

 \bigcirc

- If firm value < K → debt holders receive firm value

9.1 Real options

Key: uncertainty & flexibility

Financial → real option

Many assumptions!!

- Underlying asset is traded (commodity investment)
 - → Use replicating portfolio
- Underlying asset is not traded
 - → Assume access to **twin security**
 - Start with standard DCF analysis: lower bound
 - Apply valuation technique for financial options

9.2 Option to defer and abandon

Option to defer

- ~ call option with PV(project) ~ S
- Higher value when
 - Lower lost cash flows ~ dividends
 - Higher irreversible investment costs ~ strike price
 - High uncertainty
- → Even if NPV > 0, deferring can be optimal!

Option to abandon

- ~ put option with PV(project) ~ S and salvage value ~ K
- → Even if NPV < 0, investing can be interesting!
- → Investing in flexibility is costly, but valuable

9.3 Growth options

~ call option with PV(cashflows from growth) ~ S and growth investment ~ K

- Compound option: $\beta_{\text{firm with growth option}} > \beta_{\text{firm with developed product}}$
- → Even if NPV < 0, investing can be interesting!

9.4 Choosing & staging projects with real options

- Choosing from independent projects (2.1: use Profitability Index)
- Choosing between mutually exclusive projects
 - Compare NPV over the same life span
 - → Short-term investments are costly, but offer flexibility!
- Choosing optimal order of dependent projects
 - Start with least expensive project: defer high investment
 - Start with <u>riskier</u> project: learn more
 - Start with <u>lengthier</u> project: defer investment further
 - \rightarrow Rank by Failure Cost Index = $\frac{1-PV(success)}{PV(investment)}$

9.5 Real options in a market setting

A real option must have substantial value \rightarrow exclusivity is required \rightarrow no risk of pre-emption

Information acquired via

- Observing state of the world after competitor's action
 - → Second-mover advantage
- Observing competitor's action
 - → Information cascade

Part 3: Special topics

10. Mergers & acquisitions

Acquisition

Merger

Horizontal merger (→ market power, economies of scale, ...)

- ↔ Vertical merger (→ coordination, reduction of bargaining costs, ...)
- ⇔ Conglomerate merger (→ diversification)

10.1 Stylized facts

- Large investments huge economic significance
- Mergers occur in waves
 - Dominated by specific type of merger
 - o Response to certain economic/technological development
 - Link with stock market (see
 - o Industry clusters
- Payment methods vary over time
- Acquisition premium
- Stock price acquirer upon announcement ↓
 Stock price target upon announcement ↑
 (see ♣)

10.2 Event studies

- 1. Choose estimation window
- 2. Define event window
- 3. Compute expected returns

Market model:
$$R_{it} = \alpha + \beta R_{mkt} + \varepsilon_{it}$$

 $\widehat{E(R_{tt})} = \hat{\alpha} + \hat{\beta} R_{mkt}$

4. Compute abnormal returns

$$\widehat{AR_{it}} = R_{it} - \widehat{E(R_{it})}$$

5. Test for statistical significance

10.3 Motives for mergers & acquisitions

```
 \begin{aligned} \text{NPV}_{\text{A}} &= \text{V}_{\text{T+A}} & -\text{V}_{\text{A}} & -\left(\text{P}_{\text{T}}+\text{C}\right) \\ &= \text{value of merged firm} & -\text{opportunity cost} & -\text{total cost of acquisition} \\ &= \text{V}_{\text{T+A}} - \left(\text{V}_{\text{T}} + \text{V}_{\text{A}}\right) - \text{C} & -\left(\text{P}_{\text{T}} - \text{V}_{\text{T}}\right) \\ &= \text{total NPV of acquisition} & -\text{premium to target (NPV}_{\text{T}}) \end{aligned}
```

If Net Economic Value (NPV_A + NPV_T) < NPV_T \rightarrow acquirer overpays, but Net Economic Value can > 0 If Economic Value large enough \rightarrow NPV_A can > 0

Motives (legitimate or not)

• Cost synergies (economies of scale/scope)

BUT

- Higher costs to manage
- Antitrust authorities
- Vertical integration: coordination

BUT

- Small focused supplier may have lower cost
- More power over small outside supplier than within firm
- Complementary resources
- Acquire market power

BUT

- o Effect on merged firms unclear
- o Antitrust authorities
- Also achievable via agreements
- Purchase of under-valued firm

```
Low Q-ratio (= market value of capital replacement costs of assets) → target

High Q-ratio → acquirer

BUT
```

- Misvaluation-driven mergers don't generate value
- Correcting managerial failures
 - Threat of takeover has disciplining effect
- Diversification → tax benefits: losses can offset profits

BUT

- Diversification can be achieved by shareholders themselves However,
 - Diversification → larger debt capacity → tax shield
 - Private firms
- EPS growth
- Managerial objectives
 - o Conflicts of interest
 - Overconfidence (11.1)

10.4 The takeover process (tender offer)

- 0. Formulate acquisition strategy + identify target
- 1. Valuation
 - a. Status quo valuation target = minimum price offer
 - Discount target's FCF at target's WACC
 - Use comparable firms and multiples
 - Higher debt capacity = cost synergy
 - Higher debt tax shield = control benefit
 - b. Valuation of control
 - = V_T if optimally run V_T with current management
 - c. Valuation of synergies

$$= V_{T+A} - (V_T + V_A)$$

 \sum = maximum price offer

2. Tender offer: price, expiry date, min./max. nr of shares, method of payment

$$\leftrightarrow P_{T+A} > P_A$$

$$\leftrightarrow x P_A < T + S$$

$$\leftrightarrow \text{Exchange ratio} = \frac{x}{N_T} < \frac{P_A}{P_T} \left(1 + \frac{S}{T}\right)$$

3. Bidding process: competition 👛

Hostile takeover (unsolicited tender offer and/or proxy fight) → takeover defences

- Poison pills
- Staggered/classified board
- White Knight
- Golden Parachute
- Recapitalization
- •
- → Deter hostile bidder and/or raise price
- 4. End of bidding: decide to tender or not
- 5. Majority → control: exchange management + propose merger

10.5 The free-rider problem

Assumumption: dispersed shareholders

If P_{old} < offer price B < $P_{new} \rightarrow$ shareholders don't tender

If $P_{old} < B = P_{new} \rightarrow$ shareholders tender, but raider gains nothing

Solutions:

- Toehold
- Leveraged buyout
 - \circ P_{new} = V_{new} x%B
 - \circ Profit of raider = x (P_{new} 0)

11. Overconfidence

Assumptions:

- Irrational managers
- Rational investors, but with limited governance mechanisms

Miscalibration or overprecision

= underestimate volatility/range of outcomes + overestimate precision of forecasts

Better than the average effect

- → optimism
- → illusion of control

11.1 Negative effects on corporate investment

Miscalibration

CFO survey on forecasting market returns and volatility shows:

- Confidence intervals too narrow
- Subjective volatility estimates too low

CFO's are highly miscalibrated! (underestimating risk)

Miscalibration also in forecasting firm-specific variables; Higher investment + higher leverage

Better-than-average effect

Measures of overconfidence based on underdiversified CEOs:

- Holder 67: postponed at least twice exercise of vested in-the-money options
- Longholder: held option until last year
- Net buyer: bought extra company equity

Alternative interpretations?

- Inside information, signalling, risk tolerance, taxes, procrastination
- → Don't hold!

Paper tests hypotheses and data provides support for:

- Overconfident CEOs → higher investment-cashflow sensitivity
- More investment-cashflow sensitivity in equity-dependent firms

Overinvest if sufficient cashflows Underinvest if insufficient cashflows (not issuing equity)

Overconfidence as a motive for mergers & acquisitions

Miscalibration:

- Overconfident in own estimate
 - → Winner's curse:
 - Takeover price > true target value
 - Takeover premium = valuation error

Better-than-average effect

- Overestimate ability to make merger work
 - → Engage in negative NPV merger & destroy value
 - → Market reaction is more negative for mergers announced by overconfident CEO

Solutions

- Stock-based incentives
- Restrict financing: debt overhang
- Involvement of independent directors

11.2 Positive effects on corporate investment

Overconfidence can balance out risk aversion:

• Overconfident managers are greater innovators