
	

DATA	MINING	
Course	notes	

	
	 	

KUL	
YSALINE	DE	WOUTERS	

2016-2017	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 2	

Table	of	content	

CHAPTER	1:	INTRODUCTION	TO	DATA	MINING	 7	

1.	 BACKGROUND	ON	DATA	MINING	 7	
1.1	 TECHNOLOGICAL	ADVANCES	 8	
1.2	 DATA	MINING	VS.	MACHINE	LEARNING	 10	
2.	 DATA	MINING	TASKS	 11	
3.	 THE	DATA	MINING	PROCESS	 13	
3.1	 COMPONENTS	OF	A	DATA	MINING	SYSTEM	 13	
4.	 STATISTICAL	LIMITS	ON	DATA	MINING	 14	
5.	 THINGS	USEFUL	TO	KNOW	 14	
5.1	 IMPORTANCE	OF	WORDS	IN	DOCUMENTS	 14	
5.2	 HASH	FUNCTIONS	 15	
5.3	 INDEXES	 15	

CHAPTER	2:	GET	TO	KNOW	YOUR	DATA	 16	

1.	 RETROSPECTIVE	VS.	PROSPECTIVE	DATA	 16	
2.	 TYPES	OF	DATA	 19	
3.	 SIMPLE	DESCRIPTIVE	STATISTICS	 20	
4.	 VISUALIZATION	 21	

CHAPTER	3:	INTRODUCTION	TO	PREDICTIVE	MODELING	IN	DATA	MINING	 23	

1.	 INDUCTIVE	LEARNING	 23	
1.1	 SCORING	PROBLEMS	 23	
2.	 FEATURES	 24	
3.	 CALIBRATION	CHECK	 25	
4.	 BAYES	RULE	&	NAÏVE	BAYES	CLASSIFIERS	 25	
5.	 LOGISTIC	REGRESSION,	TRAINING	TASK	 26	
6.	 CHALLENGE	PROBLEM	 27	

CHAPTER	4:	RECOMMENDING	PRODUCTS	 30	

1.	 PROBLEM	OVERVIEW	 30	
1.1	 RECOMMENDATION	TYPES	 31	
1.2	 CHALLENGES	 32	
2.	 CONTENT	BASED	FILTERING	 33	
3.	 COLLABORATIVE	FILTERING	 34	
4.	 EVALUATION	 37	
5.	 CASE	STUDY:	NETFLIX	CHALLENGE	 38	
5.1	 MODELLING	GLOBAL	AND	LOCAL	BIASES	 40	
5.2	 LATENT	FACTOR	MODELS	 43	
5.3	 MODELLING	TEMPORAL	DYNAMICS	 44	
5.4	 TRY	LOTS	AND	LOTS	OF	DIFFERENT	MODELS	AND	COMBINE	THE	OUTPUT	 44	

CHAPTER	5:	MODEL	ENSEMBLES	 47	

1.	 MOTIVATION	AND	OVERVIEW	 47	
2.	 SAMPLING-BASED	APPROACHES	 48	
2.1	 BAGGING:	BOOTSTRAM	AGGREGATING	 48	
2.2	 ADABOOST	(ADDAPTED	BOOSTING)	 49	
2.3	 CROSS-VALIDATION	 51	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 3	

2.4	 GRADIENT	TREE	BOOSTING	 51	
3.	 MANIPULATE	FEATURES	 54	
4.	 ADD	RANDOMNESS	 55	
5.	 STACKING	 56	
6.	 WHY	DO	ENSEMBLE	METHODS	WORK?	 57	
6.1	 EXPECTED	ERROR	 57	
6.2	 BIAS/VARIANCE	EXPLANATION	 58	
6.3	 STATISTICAL	EXPLANATION	 59	
6.4	 REPRESENTATIONAL	EXPLANATION	 61	
6.5	 COMPUTATIONAL	EXPLANATION	 61	
7.	 SOME	APPLICATIONS	 62	

INTERLUDE:	ACTIONABLE	DATA	MINING	 64	

INTERLUDE:	LARGE	SCALE	DECISION	TREE	LEARNING	 65	

1.	 DECISION	TREE	OVERVIEW	 65	
2.	 RAINFOREST	 65	
3.	 BOAT	 66	

CHAPTER	6:	ASSOCIATION	RULE	MINING	 68	

1.	 INTRODUCTION	AND	DEFINITIONS	 68	
2.	 NAÏVE	ALGORITHM	 71	
3.	 APRIORI	 74	
4.	 PCY	 76	
5.	 LIMITING	DISK	I/O	 78	
5.1	 SIMPLE	ALGORITHM:	SAMPLE	 79	
5.2	 THE	SON	ALGORITHM	 80	
5.3	 TOIVONEN’S	ALGORITHM	 80	
6.	 FP	GROWTH	 82	
7.	 INCORPORATING	CONSTRAINTS	INTO	MINING	 84	
8.	 PRESENTING	RESULTS,	OTHER	METRICS	 85	

CHAPTER	7:	MINING	SEQUENCES	 89	

1.	 MOTIVATION	 89	
2.	 BACKGROUND	AND	DEFINITIONS	 89	
3.	 FREESPAN	 93	
4.	 PREFIXSPAN	 94	

CHAPTER	8:	CLUSTERING	 99	
1.	 UNSUPERVISED	LEARNING,	CLUSTERING	INTRO	 99	
2.	 HIERARCHICAL	CLUSTERING	 101	
2.1	 THE	ALGORITHM	 101	
2.2	 DISTANCE	MEASURES	 102	
2.3	 EVALUATION	OF	THE	ALGORITHM	 104	
2.4	 CLUSTER	FEATURE	VECTOR	 105	
2.5	 CLUSTER	FEATURE	TREE	 105	
3.	 PARTITIONAL	CLUSTERING	 108	
3.1	 PARTITIONING	ALGORITHMS	 108	
3.2	 K-MEANS	ALGORITHM	 109	
3.3	 BRADLY-FAYYAD-REINA	(BFR)	 111	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 4	

4.	 MODEL-BASED	CLUSTERING	 114	
5.	 APPLICATIONS	 117	
5.1	 LOW	QUALITY	OF	WEB	SEARCHES	 117	
5.2	 DOCUMENT	CLUSTERING	 117	
5.3	 BIOINFORMATICS	 120	

CHAPTER	9:	USING	UNLABELED	DATA	 123	

1.	 INTRODUCTION	 123	
2.	 SEMI-SUPERVISED	LEARNING	 123	
3.	 ACTIVE	LEARNING	 125	
3.1	 THE	CONCEPT	 125	
3.2	 HOW	TO	SELECT	QUERIES?	 127	
3.3	 QUERY-BY-COMMITTEE	(CBC)	 128	
3.4	 ALTERNATIVE	QUERY	TYPES	 129	
4.	 SUMMARY	 129	

CHAPTER	10:	TIME	SERIES	 131	

1.	 TIME	SERIES	INTRO	 131	
2.	 TIME	SERIES	CLASSIFICATION	 131	
3.	 SYMBOLIC	REPRESENTATIONS	 136	
4.	 APPLICATIONS	TO	SPORTS	 137	
5.	 TO	CONCLUDE	 139	
	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 5	

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 6	

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 7	

CHAPTER	1:	INTRODUCTION	TO	DATA	MINING	
	
Data	mining	 refers	 to	 the	discovery	of	models	 for	 data.	However,	 a	model	 can	be	one	of	
several	things.	Originally,	data	minor	was	a	derogatory	term	referring	to	attempts	to	extract	
information	that	was	not	supported	by	the	data.	Today,	 it	 is	 seen	as	 the	construction	of	a	
statistical	model,	that	is,	an	underlying	distribution	from	which	the	visible	data	is	drawn.		
	
Some	people	regard	data	mining	as	synonymous	with	machine	learning.	There	is	no	question	
that	 some	 data	 mining	 appropriately	 uses	 algorithms	 from	 machine	 learning.	 Machine	
learning	practitioners	use	the	data	as	a	training	set,	to	train	an	algorithm	of	one	of	the	many	
types	used	by	machine-learning	practitioners,	such	as	Bayes	net,	support	vector	machines,	
decision	trees,	…		
	
More	recently,	computer	scientists	have	 looked	at	data	mining	as	an	algorithmic	problem.	
There	are	many	different	approaches	to	modelling	data.	We	could	for	 instance	construct	a	
statistical	process	whereby	the	data	could	have	been	generated.		

• Summarizing	the	data	succinctly	and	approximately;	
Ex:	 page	 rank	 idea.	 The	 entire	 complex	 structure	 of	 the	 Web	 is	
summarized	by	a	single	number	for	each	page.	This	number	is	the	
probability	that	a	random	walker	on	the	graph	would	be	at	that	page	
at	any	given	time.	It	reflects	the	importance	of	the	pages.	

• Extracting	the	most	prominent	features	of	the	data	and	ignoring	the	
rest.	It	represents	the	data	by	these	examples.		

o Frequent	 item	sets:	Makes	 sense	 for	data	 that	 consists	of	
“baskets”	of	small	sets	of	items.	Look	for	small	sets	of	items	
that	 appear	 together	 in	 may	 baskets,	 these	 frequent	
itemsets	are	the	characterization	of	the	data	that	we	seek.	

o Similar	items:	find	pairs	of	sets	that	have	a	relatively	 large	
fraction	of	their	elements	in	common.		
Ex:	treating	customers	at	an	online	store	like	amazon	as	the	
set	of	items	they	have	bought.	Amazon	can	look	for	similar	
customers	 and	 recommend	 something	 many	 of	 these	
customers	have	bought.	This	is	called	collaborative	filtering.		

	
1. Background	on	data	mining	

	
This	course	provides	a	broad	survey	of	several	important	and	well-known	subfields.	The	main	
goal	is	to	develop	an	overall	sense	of	how	to	extract	information	from	data	in	a	systematic	
way.		

• The	 How:	 Gain	 insight	 into	 the	 working	 of	 specific	 algorithms.	 How	 to	 extract	
information	from	data.	We	want	to	understand	typical	questions	underlying	the	how.	
How	do	algorithms	work,	what	do	they	try	to	do,	how	do	they	extract	information?	

• The	Why:	Understand	the	“big	picture”	of	data	mining	
			
Goals:	understand	the	challenges	in	data	mining.		
	
	Many	definitions	are	possible:	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 8	

• Phrase	to	put	on	CV	to	get	hired	
• Non-trivial	extraction	of	implicit,	previously	unknown	and	useful	information	from	

data	
• Buzzword	used	to	get	money	from	funding	agencies	and	venture	capital	firms	
• (Semi-)automated	exploration	and	analysis	of	large	dataset	to	discover	meaningful	

patterns	
	
Data	 mining	 can	 be	 interpreted	 as	 the	 process	 of	 automatically	 identifying	 models	 and	
patterns	from	massive	observational	databases	that	are	

• Valid:	hold	on	new	data	with	some	certainty		
• Novel:	non-obvious	to	the	system.		
• Useful:	should	be	possible	to	act	on	the	item.	Should	allow	us	to	have	a	look	inside	the	

problem	for	instance	in	order	to	allow	us	decision	making.		
• Understandable:	 humans	 should	 be	 able	 to	 interpret	 the	 pattern.	 Often	 we	 are	

working	with	expert	and	we	don’t	even	understand	what	he	is	talking	about.		
	
Data	mining	can	either	be	data	driven	or	 learning	driven.	You	will	have	data	and	use	 it	 to	
make	inferences,	strategies	about	fact,	draw	models	and	patterns.		
	
The	process	of	automatically	identifying	models	and	patterns	from	massive	observational	
databases.	
	

• Models	and	patterns	can	be	decision	trees	for	instance.	These	
are	a	kind	of	representation	of	the	knowledge.		

• Massive,	we	are	talking	about	database	systems	and	scalability.		
• Observational	

	
ð Observe	data		

	
There	are	three	goals	to	data	mining	

• Understand	the	data,	representation,	what	is	in	the	data,	…	
• Extract	the	knowledge	of	the	data	
• Make	 predictions	 about	 the	 future,	 what	 can	 happen	

tomorrow,	next	week	of	year,	et.		
	

1.1 Technological	advances	
	
25-30	years	ago	there	was	essentially	no	data	mining,	and	 in	the	 last	years,	 it	 is	becoming	
extremely	popular	and	successful.	It	is	usually	popular,	many	companies	apply	data	mining,	
the	same	goes	for	universities,	sports	teams,	etc.	It	is	also	taught	in	academia.	There	are	two	
reasons	for	this	popularity.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 9	

• Technology	has	greatly	improved.		
• Databases	and	the	web	means	everyone	has	data,	everyone	collects	data.		

	
Storage	is	larger	and	cheaper	

ð Moore’s	law	for	magnetic	disk	density:	“capacity	doubles	every	18	months”.		
Storage	cost	per	byte	is	falling	rapidly.	Things	like	storage	has	becoming	larger	and	cheaper	
over	the	years.	There	is	more	offer	regarding	storage	capacity.		
Next,	we	also	observe	improvements	in	computing	power.	The	super	computer	of	15	years	
ago	is	equivalently	powerful	as	modern	desktops.	Many	large	datasets	are	available	today.		
	

Online	text	sources	
• MEDLINE	has	19	million	published	articles.		
• Wikipedia	has	huge	number	of	articles.	People	try	to	analyse	Wikipedia.		
• Web	search	engines	which	can	index	billions	of	webpages	every	day.	100’s	of	

millions	of	site	visitors	per	day	
• Retail	transaction	data	
• Ebay,	Amazon,	Walmart:	>100	million	transactions	per	day	
• Visa,	Mastercard:	similar	or	larger	numbers	

	
Scientific	uses	

• Data	collected	and	stored	at	GB/hour	
• Remote	sensors	on	a	satellite	
• Microarrays	generating	gene	expression	data		
• Scientific	simulations	
• Traditional	techniques	infeasible	for	raw	data		
• Data	mining	helps	scientists	to	
• Classifying	and	segmenting	data	
• Form	hypotheses	
• Find	hidden	patterns	and	correlations	

	
Furthermore,	 data	 mining	 appears	 as	 commercially	 useful.	 Indeed,	 data	 analysis	 helps	
companies,	stores,	to	develop	and	to	know	how	they	should	display	the	shelves,	what	and	
how	much	they	should	sell.	Many	companies	collect	and	store	data	Search-engines:	click	data,	
advertising,	automating	the	search.		

• Stores:	purchases	records	
• Banks:	credit	card	transactions,	want	to	be	able	to	catch	fraud.	

Competition	is	strong	and	data	mining	can	help	
• Marketing	and	advertising		
• Search	
• Inventory.	Inventory	remains	expensive,	you	don’t	want	to	have	to	much	stock	so	you	

should	be	sure	to	optimize	the	inventory	level.		
	
Data	mining	crosses	many	different	disciplines.		

• Databases:	large	data	sets	are	stored	
• Machine	learning	
• Statistics	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 10	

• Visualization	of	the	data	
• Information	retrieval,	good	retrieval	to	allow	an	efficient	search	of	the	data	
• High-performance	computing	to	ensure	the	analysis	goes	fast.	

	

	
	
The	 two	 most	 similar	 things	 are	 Machine	 Learning	 and	 statistics.	 What	 is	 statistics?	
Statisticians	think	in	terms	of	models.	There	are	lot	of	people,	called	population	and	we	take	
some	sample	of	that	population.	The	first	thing	you	can	do	is	to	write	a	distribution,	describing	
the	 sample.	 Another	 thing	 is	 to	make	 statistical	 inference,	 I	 have	 a	 sample	 and	 I	 try	 the	
hypothesis,	I	apply	it	to	the	mode	and	then	see	if	it	fits	the	data.		
There	is	always	a	relationship	between	some	target	variable	and	interpretable	variable.		
	
There	is	usually	no	hypothesis.	Statistics	is	often	more	used	when	we	have	this	prospective	
data.	 Data	mining	 focuses	 on	 analysis	 of	 existing	 data.	 It	 is	more	 algorithmic	 based;	 data	
mining	defines	algorithms	that	encompass	the	data.	
	
Machine	 learning	 is	 interested	 in	 designing	 algorithms	 that	 are	 able	 to	 improve	 the	
performances	or	experience	of	a	task.	Performances	could	relate	to	some	metrics	we	want	to	
optimize	(accuracy,	ROC	curve,	…)	whereas	a	task	refers	to	a	certain	problem,	and	experience	
is	often	data.		
	

1.2 Data	mining	vs.	Machine	Learning	
	

Data	mining	
• Data	mining	focuses	more	on	scalability.		
• Data	mining	is	much	more	application	focused.		
• Data	mining	is	more	often	used	in	industrial	setting.	

Machine	Learning	
• More	theoretical	emphasis	
• Term	more	used	in	research/academia	then	data	mining.		

	
In	terms	of	scaling	up.	As	we	see	on	the	picture,	we	have	both	a	database	stored	on	disk	and	
a	main	memory.	 It	 is	 very	 slow	 to	 access	 data	 that	 is	 stored	 on	 a	 disk	whereas	 the	main	
memory	is	relatively	fast	to	access.	Only	a	small	subset	of	the	data	can	be	stored	at	the	main	
memory.	Often	data	mining	tries	to	limits	the	number	of	types	that	it	has	to	retain	on	the	disk.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 11	

	
2. Data	mining	tasks	

	
ð There	are	four	tasks	included.		

	
	

• EXPLORE:	try	to	understand	and	get	to	know	the	data.	Therefore,	we	do	several	tasks	
related	to	statistics	that	is	to	say,	define	relevant	and	meaningful	summary	statistics	
of	the	data:	number	of	variables,	averages,	means,	modes,	etc.	You	also	try	to	identify	
flaws	 or	 problems	 in	 the	 data:	 skew,	 missing	 values,	 visually	 inspect	 the	 data,	
classification	problems,	…		
Exploration	is	the	first	thing	you	will	do	when	you	receive	data.		

	
ð What	is	wrong	with	this	picture?	The	data	exceeds	the	maximum	range.	Whatever	

the	range	is,	 it	 is	exceeded,	this	tends	to	be	a	problem.	Another	scale	would	be	
more	appropriate.		

	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 12	

Another	examples	relates	to	the	taxi	data,	from	2014.	Guesses	for	the	decline?	UBER	could	be	
a	 good	 reason,	 people	 using	 Uber	 instead	 of	 taxis.	 Again	 we	 cannot	 assume	 a	 causal	
relationship	here,	but	probably	it	is	one	reason	for	this	decline.		
	

• DESSCRIPTITVE	MODELING	
You	try	to	build	models	that	describe	and	summarize	the	data.	You	can	simulate	how	
the	data	was	generated,	modelling	the	process	that	generated	the	data.		
Techniques	

• Clustering	
• Density	estimation/probabilistic	models	

	
• PREDICTIVE	MODELING	

We	have	some	variables	X	and	we	want	to	predict	the	future	vale	of	another	variable,	
Y,	also	called	the	target	variable.		

• Classification:	Y	is	discrete	
• Regression:	Y	is	continuous	
• Probability	estimation:	Prob(Y=y)	

The	goal	is	to	explore	the	relationship	between	the	set	of	variables	X	and	the	single	
variable	Y.	You	try	to	approximate	a	function,	mapping	configurations	of	X	à	Y.	This	is	
what	 many	 machine	 learning	 and	 statistic	 algorithms	 do.	 Often	 the	 focus	 is	 on	
accuracy,	not	comprehensibility.	We	mainly	focus	on	getting	the	prediction	for	Y.			
One	big	application	is	 in	politics,	people	making	campaigns	make	lot	of	use	of	data.	
Which	 candidate	 do	 you	 prefer?	 Who	 will	 vote?	 Who	 will	 give	 money?	 Who	 can	
persuade?		
	
Another	good	application	of	this	is	web	search.	You	have	some	query,	and	you	want	to	
know	which	documents	are	related	to	the	query.	How	do	people	solve	this?	The	first	
attempt	is	to	manually	curate	directories.	The	problem	is	that	it	works	for	small	data	
sets	but	it	does	not	scale.	
Next,	another	natural	thing	to	do	is	try	to	match	words	in	query	to	words	in	document.	
This	is	rather	challenging	since	there	are	many	words	in	the	query.		
Google’s	idea	was	to	exploit	the	web	structure.	View	links	as	votes,	so	the	more	links	
means	the	more	important	web	pages	are.	The	intuition	behind	this	 is	that	you	can	
trust	what	other	people	say.		

	
• DISCOVERING	PATTERNS	

The	goal	is	to	discover	interesting	“local”	patterns	in	the	data,	not	to	characterize	the	
data	globally.	The	focus	is	to	find	human-interpretable	patterns	that	describe	the	data.		
Techniques	

• Item-set	mining	
• Pattern	mining	
• Sequence	mining	

One	 example	would	 be	 to	 find	 repeated	 DNA	 sequences.	 Another	 thing	would	 be	
product	recommendation,	finding	commonly	co-purchased	items.		
Again,	this	step	could	be	illustrated	by	sports.	NBA	logs	all	play	by	play	information:	
which	players	are	in	the	game?	Shots	attempts,	etc.	The	questions	are:	which	line-ups	
work	well?	Offensive	efficiency?	Defensive	efficiency?		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 13	

	
Machine	Learning	class	 Data	mining	class	

• ML	has	lots	and	lots	of	techniques	for	
predictive	 models:	 naïve	 Bayes,	
decision	trees,	rule	learning,	ILP,	…		

• Experimental	methodology	like	cross	
validation	

• Reinforcement	learning	

• Predictive	 modelling	 motivated	 by	
applications	

• Pattern	 mining	 (unsupervised	
learning)	

• Scalability		

	
	

3. The	data	mining	process	

	
First	select	data	to	get	the	target	data.	Look	for	outliers,	missing	values,	etc.	Then	you	do	some	
sort	 of	 pre-processing,	 a	 key	 step	 where	 you	 apply	 transformation	 to	 your	 data,	 feature	
transformation.	Then	you	have	data	mining	where	you	find	models	and	patterns.		
Ideally	you	have	knowledge	at	the	end.		
	
In	a	data	mining	system,	you	want	something	that	is	computationally	sound.	You	want	it	to	be	
scalable,	 without	 it	 taking	 too	 much	 time	 and	 space	 complexity.	 You	 want	 things	 to	 be	
parallelizable.	Next	you	want	things	to	be	statistically	sound,	finding	meaningful	patterns.	Do	
our	results	generalize	to	new	data?		
You	also	want	the	data	to	be	easy	to	used	and	comprehensible.		
	

3.1 Components	of	a	data	mining	system	
	

• Representation	 is	about	how	you	actually	represent	the	data.	
There	 are	 two	 aspects	 of	 representation.	 The	 way	 data	 is	
represented	and	the	way	models	are	represented.		

o Data	 is	 represented	 using	 feature	 vectors,	 relational	
database,	free	text,	images,	graphs,	etc.		

o Model:	 decision	 trees,	 graphical	 models,	 rule	 set,	
association	 rules,	 graph	 patterns,	 sequential	 patterns,	
etc.		

• Evaluation	can	either	subjective	or	objective	
o Objective:	 accuracy,	 precision	 and	 recall,	 cost,	 utility,	

fast,	etc.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 14	

o Subjective:	interesting,	novel,	actionable	
• Search		

o Combinatorial	optimization:	Greedy	search	
o Convex	 optimization:	Gradient	 descent,	with	 functions	

you	want	to	minimize,	maximize,	etc.		
o Constrained	search:	Constrained	search	

• Data	management	
• User	interface	

	
To	sum	up,	we	live	an	age	where	large	amounts	of	data	are	common	place.	Data	mining	is	
hugely	popular	and	hugely	successful	because	it	extracts	useful	information	from	this	data.	
Data	mining	is	able	to	help	people	solving	problems.	The	information	comes	in	many	forms	
like	models,	patterns,	etc.	Finally,	data	mining	is	challenging!		
	

4. Statistical	limits	on	Data	Mining	
	

ð A	common	data-mining	problem	involves	discovering	unusual	events	hidden	within	
massive	amounts	of	data.		
	

• Total	Information	Awareness:	the	results	you	obtain	all	depends	on	how	narrowly	
you	define	the	activities	that	you	look	for.		

• Bonferroni’s	Principle:	suppose	you	have	a	certain	amount	of	data,	and	you	look	
for	events	of	a	certain	type	within	that	data.	You	can	expect	events	of	this	type	to	
occur,	even	if	the	data	is	completely	random,	and	the	number	of	occurrences	of	
these	events	will	grow	as	the	size	of	the	data	grows.		
Calculate	the	expected	number	of	occurrences	of	the	events	you	are	looking	for,	
on	the	assumption	that	data	is	random.	If	this	number	is	significantly	larger	than	
the	 number	 of	 real	 instance	 you	 hope	 to	 find,	 then	 you	 must	 expect	 almost	
anything	you	find	to	be	bogus.	

	
5. Things	useful	to	know	

	
5.1 Importance	of	Words	in	Documents	

	
ð In	many	applications	we	shall	be	faced	with	the	problem	of	categorizing	documents	

(sequences	of	words),	by	their	topic.	Topics	are	typically	identified	by	finding	the	
special	words	that	characterize	documents	about	that	topic.		
	
Classification	often	sorts	by	looking	at	documents,	and	finding	the	significant	words	
in	 those	 documents.	 Our	 intuition	 might	 be	 that	 the	 words	 appearing	 most	
frequently	in	a	document	are	the	most	significant.	But	this	is	not	true.	I	fact,	the	
several	 hundred	 most	 common	 words	 in	 English	 (“the”	 or	 “and”)	 are	 often	
removed	 from	 documents	 before	 any	 attempt	 to	 classify	 them.	 Actually,	 the	
indicators	of	the	topic	are	relatively	rare	words.	But	not	all	rare	words	are	equally	
useful	as	indicators.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 15	

TD.IDF	=	Terms	Frequency	Times	Inverse	Document	Frequency.	This	is	the	formal	
measure	of	how	concentrated	into	relatively	few	documents	are	the	occurrences	
of	a	given	word.		

	

		
	

5.2 Hash	Functions	
	

A	hash	 function	 h	 takes	 a	 hash-key	 value	 as	 an	 argument	 and	 produces	 a	 bucket	
number	as	a	result.	The	bucket	number	is	an	integer,	normally	in	range	0	to	B-1,	where	
B	is	the	number	of	buckets.		
Hash-keys	can	be	of	any	type.	There	is	an	intuitive	property	of	hash	functions	that	they	
“randomize”	 hash-keys.	 If	 hash-keys	 are	 drawn	 randomly	 from	 a	 reasonable	
population	of	possible	hash-keys,	 then	h	will	 send	approximately	equal	numbers	of	
hash-keys	to	each	of	the	B	buckets.		

	
5.3 Indexes	

	
An	index	is	a	data	structure	that	makes	it	efficient	to	retrieve	objects	given	the	value	
of	one	or	more	elements	of	those	objects.	The	most	common	situation	is	one	where	
the	objects	are	records,	and	the	index	is	on	one	of	the	fields	of	that	record.	Given	a	
value	v	for	that	field,	the	index	lets	us	retrieve	all	the	records	with	value	v	in	that	field.		
Ex:	 file	of	 (name,	address,	phone),	and	an	 index	on	the	phone	 field.	Given	a	phone	
number,	 the	 index	 allows	us	 to	 find	quickly	 the	 record	or	 records	with	 that	 phone	
number.		 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 16	

CHAPTER	2:	GET	TO	KNOW	YOUR	DATA	
	
Analysing	data	requires	

• Collecting	data	
• Understanding	data	
• Putting	data	into	format	such	that	analysis	can	be	performed.	

Collecting	 the	 data	 is	 the	 most	 complicated,	 time	 consuming,	 and	 important	 part	 of	 the	
analysis.	50-75%	of	the	time	is	spent	on	collecting	the	data.	Most	of	the	mistakes	arise	here,	
especially	in	the	transformation	phase.		
	

1. Retrospective	vs.	Prospective	data	
	
Correlational	vs.	causation	
	

• Retrospective	for	correlation	A	and	B	are	related	
• Prospective	for	causality	A	causes	B	

	
There	exist	two	types	of	data	

• Prospective	data:	collected	as	part	of	controlled	scientific	experiment.			
• Retrospective	or	observational	data:	collected	passively	or	some	particular	reason.		

	
ð The	type	of	data	you	have	influences	the	conclusions	you	can	draw	from	it.	With	

prospective	data,	you	can	find	things	 like	causality.	With	retrospective	data	 it	 is	
difficult	to	find	causality.		
	

PROSPECTIVE	DATA		
Prospective	 data	 is	 like	 original,	 traditional,	 scientific	 experiment	 design.	 We	 have	 a	
hypothesis	H	we	want	to	test	and	design	experiment,	with	controls,	to	test	H.	we	collect	data	
to	try	to	determine	the	cause,	before	analysing	results	and	see	if	they	confirm	H.		
Ex:	Clinical	trials,	gene	knockout	experiments,	etc.		

ð Very	expensive	and	time	consuming	since	you	need	a	lot	of	samples,	divide	data	
into	groups,	trials	are	needed,	etc.	Today,	this	seems	completely	outdated.		

	
Data	mining	is	largely	about	correlation.	

• Data	passively	collected	
• Data	collected	for	some	other	reason	
• Data	is	relatively	cheap	to	collect.	

ð We	can	draw	stronger	conclusions	from	prospective	data,	but	it	is	expensive	and	
time	consuming	to	collect.	

	
OBSERVATIONAL	DATA	
	
Now,	we	have	huge	observational	data	 sets.	 Ex:	Web	 logs,	 customer	 transactions	at	 retail	
stores,	human	genome,	etc.		
It	 makes	 sense	 to	 leverage	 available	 data	 since	 it	 may	 contain	 useful	 information	 and	 it	
appears	very	cheap	to	collect.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 17	

	
The	assumptions	of	experimental	design	are	violated.		

• How	can	we	use	such	data	to	do	science?		
• Can	we	do	model	exploration,	hypothesis	testing?	

	
One	exception:	the	web.	It	tends	to	be	very	easy	to	experiment	on	the	Web	as	it	counts	a	huge	
number	of	users.	Amazon	for	instance	has	a	huge	number	of	users,	which	makes	it	easy	to	
quickly	and	easily	collect	data.	
	
Amazon	applies	a	recommendation	system.	Greg	Linden’s	shopping	cart	 recommendations	
add	items	based	on	what	is	in	shopping	cart.	A	marketing	vice	president	states	that	it	might	
distract	people	away	from	checking	out.	This	result	in	a	prohibition	to	continue.	He	disobeyed	
and	ran	a	test	to	see	and	found	not	having	recommendations	was	costing	Amazon	a	 lot	of	
money.		
	
This	illustrates	that	our	intuitions	are	often	wrong.	Why	should	we	debate	if	we	can	collect	
data?	Cultural	reasons:		

• Upton	Sinclear:	 it	 is	difficult	to	get	a	man	to	understand	something	when	his	salary	
depends	upon	his	not	understanding	it	

• Corollary:	no	not	trust	the	HIPPO:	Highest	Paid	Person’s	Opinion.	By	definition,	these	
people	are	probably	biased	in	their	opinion.		
	

	
	

We	have	two	groups:	the	treatment	group	and	the	control	group.	We	are	gonna	divide	
our	population,	usually	50-50	among	these	groups.	The	treatment	group	will	see	one	
variant	 of	 the	 website;	 the	 control	 group	 will	 see	 another	 variant.	 We	 will	 then	
compare	the	outcomes	between	the	two	groups.	We	could	for	instance	see	how	much	
money	people	spend	in	one	group.		
This	test	for	causation	not	correlation.	If	it	is	done	correctly,	there	are	only	two	things	
that	can	explain	the	change	in	outcome.		

• A	vs.	B	
• Random	Chance	

Everything	else	affects	both	variants.	Statisticians	try	to	answer	if	A	or	B	is	better	with	
a	formal	hypothesis	test.	Note	that	this	does	not	solve	everything.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 18	

	
	Hypothesis	 testing	 outline:	we	define	 two	hypotheses:	 the	 null	 hypothesis	 and	 the	
alternative.		
The	H0	states	that	the	original	model	is	better	whereas	the	alternative	or	Ha	states	that	
the	variant	is	better.		
We	run	an	experiment	to	get	data	about	the	alternative	hypothesis.	We	then	compare	
how	 probable	 the	 observed	 outcome	 is	 compared	 to	 what	 is	 expected	 if	 the	 null	
hypothesis	were	true.		
The	p-value	is	needed	to	perform	the	testing.	The	v-value	is	the	probability	of	the	data	
or	something	more	extreme	under	the	null	hypothesis.	Usually	we	use	p<=	0,05	to	be	
confident	 that	 a	 difference	 is	 statistically	 significant.	 The	 probability	 of	 getting	 the	
outcome	corresponds	to	the	area	under	the	curve.		
	

	
	
	 Looking	at	hypothesis	testing,	what	kind	of	errors	can	we	make	?		

• Type	I	Error	:	reject	a	true	null	hypothesis	aka	a	false	positive.	
• Type	II	Error	:	Do	not	reject	a		false	null	hypothesis	aka	a	false	

negative.	The	Null	hypothesis	is	actuall	false.		
	

	
Some	key	things	to	think	about	is	the	overall	Evaluation	criteria	(OEC),	a	metric	we	are	
measuring.	It	is	important	to	think	carefully	about	this.	Decide	it	upfront	and	do	not	
change	it.		
Effect	size	:	difference	of	OEC	between	treatment	and	control.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 19	

	
	

ð We	have	to	stay	aware	of	day	of	week	and	seasonal	effects.	Beware	to	of	newness	
effects.		
Assigning	users	to	groups	can	be	difficult	as	need	to	ensure	that	this	is		

• Random	
• Consistent	across	platforms.		
• No	interactions	between	different	experiments,	no	correlations.	
• Fast,	people	are	intolerant	to	slowness	of	operations.	

	
2. Types	of	data	

ð What	can	data	look	like?	
	

• Feature	vector	

	
• Transaction	data	occurs	for	instance	when	visiting	and	analysing	

data	on	Amazon’s	website.	 Implicitly	 you	can	use	 it	 as	 sparse	
representation.		

	
• Relational	 data:	 extremely	 common	 sort	 of	 data	

representation,	including	tables	made	out	of	rows	and	columns.	
There	 might	 be	 dependencies	 between	 tables,	 and	
dependencies	between	rows	in	the	table.	Data	may	be	sorted	in	
one	or	several	places.		

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 20	

• Semi-structured	 data:	 Little	 boxes	 where	 we	 get	 structured	
information	about	someone.		

	
• Graph:	Molecules	
• Sequencial	data:	DNA.	This	is	one	type	of	ordered	data	
• Time	Series	Data	
• Spatial	Data:	could	be	locational	data	for	instance.	
• Spatial-Temporal	

	
	

3. Simple	descriptive	statistics	
	

First	get	an	overall	 sense	of	 the	data,	analysing	data	 type	of	variables	 for	 instance:	
numerical	data,	text	data.	In	other	words,	first	look	at	obvious	things	like:	number	of	
variables,	number	of	data	points,	missing	values,	class	skew	for	prediction	problems,	
etc.	 Missing	 values	 are	 tricky!	 Class	 skew	 looks	 at	 number	 of	 positive,	 negative	
instances	in	the	sample	for	instance.	
Next,	dive	into	the	individual	variables.		

• Discrete	variables:	For	a	certain	variable	you	could	for	instance	
look	at	the	number	of	values	this	variable	can	take.	How	often	
does	 each	 value	 occur,	 etc.	Which	 values	 are	 ordered,	mode	
(most	common	value)?	

• Continuous	 variables:	 look	 at	 the	 mean,	 sample	 variance,	
median,	 quartile.	 This	 gives	 an	 idea	 about	 how	 the	 data	 is	
distributed.	

o Q1:	value	at	position	0,25n	
o Q3:	value	at	position	0,74n	
o Interquartile	range:	Q3-Q1	

When	looking	at	averages,	we	are	often	interested	in	weighted	averages.	The	mean	
assumes	that	each	data	point	 is	of	equal	 importance	 in	average.	But	actually,	some	
data	may	be	more	important	than	other	data.	So,	the	estimate	will	be	more	reliable,	
more	 valuable,	 more	 representative,	 more	 recent,	 by	 taking	 the	 weight	 of	 each	
individual	variable	into	account.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 21	

	 	
	 	

Simpson's	 paradox,	 or	 the	 Yule–Simpson	 effect,	 is	 a	 paradox	 in	 probability	 and	
statistics,	 in	 which	 a	 trend	 appears	 in	 different	 groups	 of	 data	 but	 disappears	 or	
reverses	when	these	groups	are	combined.	It	is	sometimes	given	the	descriptive	title	
reversal	paradox	or	amalgamation	paradox.	This	result	is	often	encountered	in	social-
science	and	medical-science	statistics,	and	is	particularly	confounding	when	frequency	
data	is	unduly	given	causal	interpretations.	The	paradoxical	elements	disappear	when	
causal	relations	are	brought	into	consideration.	
	
The	 most	 famous	 example	 is	 the	 UC-Berkely	 admissions.	 UC-Berkley	 got	 sued	 for	
gender	bias	in	grad	school	admissions	in	the	70s.		

• Men’s	acceptance	rate:	44%	
• Women’s	acceptance	rate:	35%	

It	was	observed	that	no	department	was	biased	against	women.	Actually,	most	slightly	
favoured	 women.	 Women	 tended	 to	 apply	 to	 competitive	 programs	 with	 lots	 of	
applicants	and	low	admit	rates.		
	
Describing	networks	

• Geodesic:	shortest_path(n,m)	
• Diameter:	max(geodesic(n,m))	n,m	actors	in	graph	
• Density:	number	of	existing	edges	/	all	possible	edges.	
• Degree	distribution,	counting	each	node,	attributes	they	have.	

	
4. Visualization	

	
This	figure	shows	four	data	sets,	made	of	simple	data.	In	each	data	set,	the	x	variable	
has	a	mean	of	9,	and	Y	has	a	mean	of	7,5.	Each	has	same	correlation(X,Y):	0,82.	They	
also	all	have	the	same	linear	regression:	y	=	3	+	0,5x.	

	
Looking	at	the	data,	there	are	many	different	ways	to	plot	it	and	represent	this	visually.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 22	

	

Linear	regression	lines	have	been	
drawn.	 We	 observe	 that	 each	
graphs	 is	 different.	 The	 two	 on	
the	 left	 are	 more	 or	 less	 the	
same.	The	bottom	less	is	more	or	
less	 a	 straight	 line,	 except	 the	
outlier.	On	the	right,	the	shape	of	
the	distribution	is	different.		

	
The	graph	on	the	top	has	a	curved	shape.	Whereas	on	the	bottom	right,	it	looks	like	a	
straight	line.		
	
Next,	we	can	look	at	the	box	plot	of	the	data.	With	continuous	data,	people	use	this	
kind	of	plots.		
	

		 	 	 	
Another	common	visualization	is	the	bar	chart.	There	are	different	positions,	and	each	
position	includes	a	count.	We	can	get	a	good	insight	into	what’s	going	on.		
Histograms	are	another	way	 to	plot	continuous	variables.	We	divide	data	 into	bins,	
usually	each	of	equal	width,	we	then	count	the	number	of	points	in	each	bin.	Regarding	
histograms,	the	bin	size	is	important!	We	can	also	look	at	the	distribution’	shape.		

	
	 	

To	 conclude,	 typically,	 you	 start	 the	analysis	by	 trying	 to	understand	 the	data.	 Is	 it	
observational	or	prospective?	What	is	being	measured?	What	does	the	data	look	like?	

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 23	

CHAPTER	 3:	 INTRODUCTION	 TO	 PREDICTIVE	 MODELING	 IN	 DATA	
MINING	
	
This	chapter	is	close	to	machine	learning,	we	will	cover	some	algorithms	and	see	how	they	
come	in	handy	when	analysing	data.		
	

1. Inductive	learning		
	

1.1 Scoring	problems	
	

• Given:	Data	S	=	{(x1,	y1),...,(xn,	yn)}		
• Learn:	Function	F:	x	->	y	

	
ð If	Y	is	discrete,	we	will	use	classification,	if	it	is	continuous,	we	use	regression.		

	
Very	classic	examples	of	scoring	problems	are	credit	scoring,	where	you	have	to	predict	who	
is	likely	to	default	on	loan.	The	score	is	the	probability	people	will	repay.	Another	examples	
relates	to	marketing.	Marketing	costs	a	lot	of	money,	you	have	to	mail	people,	call,	…	Target	
marketing	allows	us	to	 identify	people	who	are	more	 likely	to	respond.	Doing	this,	a	score	
could	 be	 a	 probability	 of	 someone	 responding	 to	 the	marketing	 campaign.	 Finally,	 churn	
prediction	is	another	common	thing,	where	you	rank	customers	who	are	likely	to	switch	to	
another	service,	drop	service.	You	will	provide	incentives	to	those	most	likely	to	leave.		
	

1.1.1 A	regression	approach	
	
The	goal	of	regression	is	to	learn	a	function	to	approximate	E[Y|X]1	for	each	X.		
	

	
ð We	try	to	estimate	she	posterior	class	probabilities	=	binary	classifier.	

Ex:	What’s	the	probability	that	a	client	responds	to	my	advertising	campaign.	
	
The	most	 common	 thing	we	 can	 do	 for	 this	 is	 the	 logistic	 regression.	 This	 is	 a	
discriminative	model	for	learning	the	probability	of	Y	given	X.	We	don’t	care	about	
modelling	the	single	values	of	X,	modelling	the	probability	of	X.	
This	is	a	sigmoid	applied	to	linear	function	of	data.		
	

																																																								
1	Expected	value	of	Y	given	X	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 24	

	
	

2. Features	
• There	are	binary	variables,	which	means	that	for	each	word,	we	

create	a	binary	variable	that	is	either	O	or	1.		
• There	are	discrete	variables,	that	we	take	on	k	values.	We	will	

use	k-1	values.		
• Real:	just	as	is	
• Complex	variables	

o Democrat	or	independent	
o Word	A	=Present	AND	Word	B	=	Present	
o Real	sin(x)	or	X1X2	

	
In	logistic	regression,	we	have	two	possibilities:	Y	=	0	and	Y	=	1.		

	
	

	 	 	 	
	 	 	 	
	

	 	 	 	
Why	pick	up	logistic	regression?	In	many	tasks,	calibration	of	the	probability	estimates	
is	important.	By	estimating	a	probability,	it	should	be	a	probability.	Ex:	if	say	75%	of	
being	 in	 positive	 class,	 then	 in	 test	 set	 you	 would	 expect	 ¾	 of	 the	 instances	 with	
estimate	to	be	truly	positive.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 25	

However,	 not	 all	 classifiers	 are	 well-calibrated.	 For	 instance,	 Naïve	 Bayes	 is	 not	
whereas	logistic	regression	is	well	calibrated.	If	you	look	at	probabilities	provided	by	
Naïve	Bayes,	you	don’t	get	good	probabilities.		
	

3. Calibration	check	
	

Perform	 the	 check	 on	 validation	 data,	 divide	 predicted	 probability	 estimates	 into	
multiple	bins.	Plot	Y-Axis,	for	each	bin,	the	number	of	positive	examples	in	the	bin	or	
the	 total	 number	 of	 examples	 in	 the	 bin.	 The	 X	 axis	 represents	 the	 predicted	
probability.	A	good	calibration	remains	close	to	the	diagonal.		

	
	

4. Bayes	Rule	&	Naïve	Bayes	Classifiers	
	
Let’s	 consider	 a	 supervised	 learning	 problem	 in	which	we	wish	 to	 approximate	 an	
unknown	target	function	f:	X	à	Y	or	equivalently	P(Y|X).	We	assume	Y	is	a	Boolean-
valued	random	variable,	and	X	 is	a	vector	containing	n	Boolean	attributes.	Applying	
Bayes	rule,	we	see	that:		

	
ð Intractable	sample	complexity	for	leaning	Bayesian	classifiers,	hence,	we	must	look	

for	ways	to	reduce	this	complexity.	The	Naïve	Bayes	classifier	does	this	by	making	
a	conditional	independence	assumption	that	dramatically	reduces	the	number	of	
parameters	to	be	estimated	when	modelling	P(X|Y).	
	
The	 Naïve	 Bayes	 classifier	 assumes	 all	 attributes	 describing	 X	 are	 conditionally	
independent	 given	 Y.	 this	 dramatically	 reduces	 the	 number	 of	 parameters	 that	
must	be	estimated	to	lean	the	classifier.		
	
Given	three	sets	of	random	variables	X,	Y	and	Z,	we	say	that	X	is	conditionally	
independent	of	Y	given	Z,	if	and	only	if	the	probability	distribution	governing	X	
is	independent	of	the	value	of	Y	given	Z.		

	
	
	

The	Naive	Bayes	algorithm	is	a	classification	algorithm	based	on	Bayes	rule	and	a	set	
of	conditional	independence	assumptions.	Given	the	goal	of	learning	P(Y|X)	where	X	=	
⟨X1	...,Xn⟩,	the	Naive	Bayes	algorithm	makes	the	assumption	that	each	Xi	is	conditionally	
independent	of	each	of	the	other	Xks	given	Y,	and	also	independent	of	each	subset	of	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 26	

the	other	Xk’s	given	Y.	This	assumption	dramatically	simplifies	the	representation	of	
(X|Y)	and	the	problem	of	estimating	it	from	the	training	data.		
	

	
5. Logistic	regression,	training	task	

	
Logistic	Regression	is	an	approach	to	learning	functions	of	the	form	f:	Xà	Y,	or	P(Y|X)	
in	 the	 case	where	 Y	 is	 discrete-valued,	 and	X	 =	 (X1,	…,	 Xn)	 is	 any	 vector	 containing	
discrete	or	continuous	variables.		
	
Logistic	Regression	assumes	a	parametric	form	for	the	distribution	P(Y|X),	then	directly	
estimates	 its	parameters	 from	the	training	data.	The	parametric	model	assumed	by	
Logistic	Regression	in	the	case	where	Y	is	Boolean	is:		
	

	
	 	 	 Both	equations	must	sum	to	1.		
	

Given:	Data	D	=	((x1,	y1),...,(xn,yn))	
	
You	want	to	learn	weights	that	maximize	the	initial	probability:	P(Y|X).	In	other	words,	
the	maximum	weigh	that	push	all	predicted	probability	to	zero	for	negative	examples	
and	to	1	for	positive	examples.	The	good	news	is	that	this	function	is	concave,	which	
means	 this	 function	 is	easy	 to	optimize.	However,	 there	 is	no	closed-form	solution,	
which	is	bad	news.		

	

	
	

	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 27	

	
	

ð Logistic	regression	is	often	referred	to	as	a	discriminative	classifier	because	we	can	
view	the	distribution	P(Y|X)	as	directly	discriminating	he	value	of	the	target	value	
Y	for	any	given	instance	X.		

	
6. Challenge	Problem	

	
Ex:	Let’s	say	you	try	to	predict	flu	outbreaks.	Your	model	will	help	to	model	where,	when	flu	
occurs.	What	 data	 could	 we	 use?	What	 features	 would	 we	 look	 at?	What	 else	 would	 be	
important	in	the	prediction?	
	
We	could	for	example	get	data	from	a	pharmacy,	as	people	often	go	buying	some	medicine	
when	they	feel	sick.	When	we	get	sick,	we	also	tweet	about	it	on	Facebook,	go	on	the	internet	
to	get	some	more	information,	hence,	social	media	data	could	be	interesting	too.	However,	
social	media	may	 be	 biased.	 Nevertheless,	 looking	 at	 social	media	 provides	 us	with	 large	
amounts	of	data.	
Logistic	regression	could	be	a	useful	tool	to	predict	the	tool.	Ex:	Influenza	results	in	250	000	–	
500	000	deaths	in	the	world	each	year.	Ruckly	detecting	outbreaks	can	reduce	risk.	Currently,	
the	centre	for	disease	control	tracks	this	by	aggregating	counts	of	people	with	flu	like	illnesses:	
you	 go	 to	 the	 doctor,	 makes	 a	 guess,	 then	 he	 sends	 it	 to	 the	 CDC,	 which	 aggregates	 it.	
However,	this	tends	to	be	slow	and	not	timely	enough,	because	data	needs	to	be	sent	and	
then	aggregated.		
	
The	idea	now	is	to	exploit	query	logs.	The	goal	is	to	predict	the	proportion	of	doctor	visits	that	
are	flu-related	as	calculated	by	the	centre	for	disease	(CD).	Data	 includes	historical	Google	
Search	data.		A	model	would	be	the	logistic	regression.	Features:	queries	most	correlated	to	
target	variable,	to	try	to	select	the	right	features.		
	

	

There	 are	 several	 guesses	 about	 the	 drop.	
Flus	are	correlated	with	the	flu	season.	But	
other	 queries	 are	 correlated	 too	 with	
seasons.		

Often	times,	there	is	a	variable	not	be	used	in	the	analysis	that	is	correlated	with	the	target	
variable,	Y,	and	the	predictor	variables,	X.	in	this	example,	it	is	season.	In	causal	studies,	these	
are	called	confounding	variables.	This	occurs	often,	watch	out	for	it!		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 28	

	
Another	example	is	credit	scoring,	where	a	person	applies	for	a	loan.	This	application	is	either	
rejected	or	accepted.	However,	some	people	accepted	for	a	loan	may	default.	The	goal	is	to	
predict	for	those	granted	a	loan,	who	will	default	on	it.		
Traditionally	loans	were	granted	by	experts.	However,	there	were	scepticism	that	automation	
is	better	than	experts.	Hence,	it	was	first	adopted	in	credit-card	approvals.	Later	it	was	then	
broadly	adopted	in	home-loans,	etc.	Now,	it	is	widely	accepted	and	used	by	almost	all	banks,	
credit-granting	agencies,	etc.		
	
Customer	provided	data:	Age,	address,	income,	job,	number	of	credit	cards,	savings,	etc.	We	
also	get	internal	data	about	customer:	how	long	with	the	bank,	previous	loans,	etc.	We	also	
buy	external	customer-level	data	like	credit	reports	and	legal	proceedings.	Also	macro-level	
data	comes	in	handy:	demographics	(post	code	for	instance).		

ð This	is	challenging	as	data	might	be	incorrectly	entered.	People	also	deliberate	false	
information,	entering	a	higher	income	or	lower	income	than	the	true	one.		
Also	legal	issues	may	occur:	illegal	to	use	race,	colour,	religion,	national	origin,	sex	
marital	status,	or	age	in	the	decision	to	grant	credit.		

The	approach	we	take	relates	to	logistic	regression	and	decision	trees.	We	want	to	make	sure	
that	data	 is	 relevant	and	fits	customers.	We	need	to	access	to	relevant	variables	 for	 these	
customers.		
Defining	labels	remains	a	tricky	problem.		
	

Practical	issues	
	

• Cost/benefit	analysis	
o Saving	of	employing	system,	small	gains	in	accuracy	may	

be	very	valuable.		
o Costs	of	developing,	testing,	maintaining,	checking	legal	

requirements,	etc.		
• Other	points:	

o Set	threshold:	when	should	loans	be	granted	
o Override:	bank	employees	can	ignore	system	
o When	is	a	new	model	needed?	
o Continuous	evaluation.	

	
Another	place	where	logistic	regression	is	used	is	in	suggesting	Facebook	Friends.	How	does	
Facebook	come	up	with	people	we	may	know?	The	first	insight	is	that	most	come	from	friends	
of	friends.	The	problem	is	that	there	are	lots	of	candidates.	The	average	user	has	130	friends:	
17000	candidates.	Hence,	the	trick	is	to	define	lots	of	features,	exploiting	the	right	data.		
You	can	 think	of	 things	 like	 the	number	of	 friends	 in	common,	a	good	 friend	of	yours	 just	
friended	this	person,	demographics	(age,	gender,	etc.).		
A	model	is	then	built,	to	predict	whether	a	user	will	click	on	a	given	suggestion.	What	is	the	
probability	that	the	user	clicks	on	it?	Therefore,	a	logistic	regression	(+	decision	tree)	is	used	
to	produce	a	ranking.	
	
One	final	application	in	logistic	regression	is	the	prediction	of	CTR	for	advertising.	When	you	
Google,	you	enter	a	keyword.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 29	

On	the	right	you	have	ad	slots.	The	links	are	algorithmic	searches.	Every	time	someone	clicks	
on	the	add,	you	get	a	certain	amount.		
Advertisers	

• Bid	x$	per	keyword	w	
• Pay	x$	every	time	someone	clicks	on	add	
• Gives	a	maximum	budget	

ð Someone	searches	on	a	keyword	w,	which	ad	should	the	search	engine	display?		
	
Naïve	solution:	just	return	the	ad	with	the	highest	bid	on	w.		
Google’s	insight:	profit	=	x$	*	click	through	rate	(CTR).	Display	based	on	this	CTR.		
	
To	sum	up,	we	often	want	to	assign	a	score	to	examples	in	prediction	problems.	The	logistic	
regression	 is	 a	workhorse	 in	 practice	 for	 this	 types	 of	 problems.	 There	 are	many	 relevant	
industry	applications.		
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 30	

CHAPTER	4:	RECOMMENDING	PRODUCTS	
	

ð How	would	you	recommend	products?	What	kind	of	data	do	we	need?	How	do	you	
collect	this?		
We	could	for	 instance	look	at	products	that	are	usually	sold	together.	We	could	
also	 look	at	everything	the	customer	has	bought,	and	cluster	among	customers.	
Another	option	could	be	to	look	at	similar	customer	profiles.		

	 	 	
There	 is	 an	 extensive	 class	 of	Web	 applications	 that	 involve	 predicting	 user	 responses	 to	
options.	Such	a	facility	is	called	a	recommendation	system.	
Ex:	 offering	 news	 articles	 to	 on-line	 newspaper	 readers,	 based	 on	 a	 prediction	 of	 reader	
interest;	offering	customers	of	an	on-line	retailer	suggestions	about	what	they	might	like	to	
buy,	based	on	their	past	history	of	purchases	or	product	searches.		
	

1. Problem	overview	
	
When	we	think	about	economics	of	traditional	retailer	market,	space	is	scarce	and	expensive	
commodity.		

• Retailers:	physical.	You	need	some	space	to	rent.	Physical	delivery	systems	are	
characterized	by	a	scarcity	of	resources.	

• TV	networks:	time	
• Movie	theatres:	space	and	time.		
• Brick-and-mortar	stores	have	limited	shelf	space,	can	show	the	customer	only	

a	small	fraction	of	all	the	choices	that	exist.	
><	on-line	stores	can	make	anything	that	exists	available	to	the	customer.	

	
ð People	are	not	willing	to	travel	far	for	products	(buying,	movie,	etc.),	so	you	need	

to	have	a	customer	based.		
Implication:	focus	on	popular	products.		

	
On	the	other	hand,	if	you	have	an	online	economy,	for	instance	on	the	web,	storage	space	is	
cheap,	it	is	much	cheaper	to	store	things	on	the	web.	Next,	sites	cater	to	everyone,	you	are	
not	restricted	to	people	near	you,	you	can	reach	people	all	around	the	world.		
Implication:	low	cost	and	easy	access,	which	means	it	is	possible	to	offer	more	choice.		
	

ð Problem:	how	can	we	find	products	given	huge	number	of	choices?	
Solution:	systems	that	can	recommend	products,	particularly	unusual	or	unpopular	
ones.		

	

	

Ranking	of	products	and	sales.		
• Physical	 stores,	 they	 can	 stock	

physical	products,	limited	offering.		
• Mixed:	Amazon,	on	the	internet	but	

they	also	have	physical	retailers	
• Online	only:	purely	online.	Ex:	iTunes	

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 31	

	
The	distinction	between	the	physical	and	on-
line	 worlds	 has	 been	 called	 the	 long	 tail	
phenomenon.	 Items	 are	 ordered	 on	 the	
horizontal	axis	according	to	their	popularity.	
Physical	 institutions	 provide	 only	 the	most	
popular	items	to	the	left	of	the	vertical	line,	
while	the	corresponding	on-line	institutions	
provide	the	entire	range	of	items:	the	tail	as	
well	as	the	popular	items.		 	
	
Making	 recommendations.	 Ex:	 what	 do	 I	 want	 to	 watch	 tonight?	 Let’s	 look	 online.	What	
website	could	I	use?	Based	on	the	viewed	items,	the	system	will	recommend	me	a	product.		
	

	
	
An	important	concept	in	recommendation-system	application	is	the	utility	matrix.	There	are	
two	classes	of	entities,	which	we	shall	refer	to	as	users	and	items.	Users	have	preferences	for	
certain	 items,	 and	 these	 preferences	 must	 be	 teased	 out	 of	 the	 data.	 The	 data	 itself	 is	
represented	as	a	utility	matrix,	giving	for	each	user-item	pair,	a	value	that	represents	what	is	
known	about	the	degree	of	preference	of	that	user	for	that	item.	

	
without	a	utility	matrix,	it	is	almost	impossible	to	recommend	items.	However,	acquiring	data	
from	which	 to	build	a	utility	matrix	 is	often	difficult.	There	are	 two	general	approaches	 to	
discovering	the	value	users	place	on	items:	

• Ask	users	to	rate	items	
• Make	inferences	from	users’	behaviour	

	
ð Goal	of	a	recommendation	system	is	to	predict	the	blanks	in	the	utility	matrix.	It	is	

not	necessary	to	predict	every	blank	but	only	to	discover	some	entries	in	each	row	
that	are	likely	to	be	high.	

ð Find	a	large	subset	of	those	with	the	highest	ratings.	
	

1.1 Recommendation	types	
	

There	exist	loads	of	recommendation	types.		
• Editorial:	 these	 are	 list	 of	 favourites.	 Ex:	 newspapers,	 travel	

magazines.	News	services	have	attempted	to	identify	articles	of	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 32	

interest	of	readers,	based	on	the	articles	that	they	have	read	in	
the	past.	Might	be	based	on	the	similarity	of	important	words	in	
the	documents,	or	on	the	articles	that	are	read	by	people	with	
similar	reading	tastes.	
You	can	also	have	lists	of	essential	items.		

• Aggregates	
o Top	10	lists	
o Most	emailed	articles	
o Most	recent	posts	

• Personalized	 user	 recommendations:	 They	 make	
recommendations	based	on	your	preferences.	Perhaps	the	most	
important	 use	 of	 recommendation	 systems	 is	 at	 on-line	
retailers.		

o Amazon	
o Movie	 sites	 (Netflix):	 Netflix	 offers	 its	 customers	

recommendations	of	movies	they	might	like.	These	are	
based	on	ratings	provided	by	users.		

	
	
1.2 Challenges		

	
There	are	3	key	challenges	

• How	do	we	get	user	feedback?	
• How	do	we	predict	an	unknown	rating?	You	want	to	be	able	to	

nail	the	things.	
• How	do	we	evaluate	predictions?		

	
How	could	we	obtain	ratings?	There	exist	many	ways	to	do.	I	want	to	predict	what	a	
specific	user	will	like,	based	on	his	preferences.		

• Explicit	rating	of	products	
• Bought	items	
• Items	on	“wish	lists”	
• Recently	clicked	product	pages/link	
• Length	of	time	spent	on	product	page	
• Printed	links	
• Etc.	

	
Problem:	predict	ratings	

• Given	 information	 about	 a	 user’s	 preferences,	 interests,	
likes/dislikes	

• Predict:	will	a	specific	user	like	a	given	product,	service,	etc.?		
	

Challenges	…		
• Sparse	data:	most	users	rate	very	few	items	
• Cold	start:	new	items	have	no	ratings	
• Main	paradigms	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 33	

o Content	based	filtering	
o Collaborative	filtering	
o Hybrid:	use	both	prior	approaches	

	
2. Content	based	filtering	

	
Idea:	focus	on	properties	of	items.	Similarity	of	items	is	determined	by	measuring	the	
similarity	in	their	properties.	
	
Machine	learning	problem,	so	we	can	just	apply	basic	standards	seen.	We	can	easily	
recommend	items	to	a	customer	based	on	profiles	of	the	past.	We	try	to	find	things	
that	are	similar	to	what	the	customer	has	visited	before,	similar	to	previous	items	rated	
highly	by	the	customer.		
	

	
	
	

	
So	we	need	to	define	a	number	of	features,	and	obtain	data	from	the	users.	We	will	
then	apply	any	machine	learning	algorithm	to	this	data.		
Ex:	for	every	movie,	I	construct	features	(actors,	genre,	director	…),	I	then	try	to	find	
out	whether	the	user	will	like	the	movie.	
	
A	key	challenge	is	building	item	profile.	An	item	profile	is	a	way	to	describe	each	item.	
Usually	these	are	hand-crafted.	
You	have	to	spend	a	lot	of	time	building	this	profile.	Usually,	for	such	tasks,	they	are	
not	done	in	an	automated	way.		
Ex:	for	a	news	article:	Words,	title,	author,	etc.		
	
	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 34	

Pro’s	 Con’s	
• Only	 need	 data	 about	 one	 user.	

No	 need	 to	 have	 data	 about	
millions	of	users.	

• Results	 in	 a	 more	 personalized	
approach	 (Ex:	 good	 if	 user	 has	
unique	taste).		

• More	 easily	 recommend	
new/unpopular	items	

• Can	 provide	 context	 for	
recommendation	(Ex:	path	down	
decision	tree)	

• Lots	of	 research	on	classification	
algorithms.	Every	 time	there	 is	a	
new	one,	I	use	it	instead	of	the	old	
one.	

• Need	 to	 construct	 meaningful	
features	 that	 are	 predictive	 of	
user’s	 preferences	 Ex:	 lots	 of	
hand-coding,	guess	&	check)	

• Never	 recommends	 items	
outside	user’s	content	profile	

• Hard	to	build	a	profile	for	a	new	
user.	 I	 need	 to	 have	 sufficient	
number	of	examples	 in	order	to	
recommend	something.		

• Ignores	information	about	other	
users	

	
ð Supervised	classification	problem		

	
We	not	only	need	to	create	vectors	describing	items;	we	need	to	create	vectors	with	
the	 same	 components	 that	 describe	 the	 user’s	 preferences;	 the	 utility	 matrix	
represents	the	connection	between	users	and	items.	The	best	estimate	we	can	make	
regarding	which	items	the	user	lies	is	some	aggregation	of	the	profiles	of	those	items.	
	
A	completely	different	approach	to	a	recommendation	system	using	item	profiles	and	
utility	matrices	is	to	treat	the	problem	as	one	of	machine	learning.	Regard	the	given	
data	as	a	training	set,	and	for	each	user,	build	a	classifier	that	predicts	the	rating	of	all	
items.	The	construction	of	a	decision	tree	might	be	handy.	Nevertheless,	 it	requires	
the	selection	of	a	predicate	for	each	interior	node.	There	are	many	ways	of	picking	the	
best	predicate.	Once	the	predicate	has	been	choosing,	we	divide	the	 items	into	the	
two	groups:	those	that	satisfy	the	predicate	and	those	that	do	not.	

	
3. Collaborative	filtering	

	
Idea:	Find	users	with	similar	tastes	and	recommend	products	they	liked.	The	big	insight	
is	that	we	can	do	this	just	by	looking	at	ratings,	and	just	use	these	ratings	to	make	the	
predictions,	no	need	to	look	at	features.		
	
So,	the	big	idea	is	to	find	other	users	whose	ratings	are	similar	to	the	current	user.	And	
then	propagate	the	(dis)likes	to	the	current	user.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 35	

	

Standard	 matrix	 where	 each	 row	
corresponds	 to	 a	 user,	 so	 we	 have	
loads	 of	 users.	 Each	 column	 is	 a	
product.	 The	 entries	 are	 the	 ratings.	
There	are	many	users,	many	products,	
and	most	of	the	entries	will	be	empty.	
Very	 sparse!	Most	 of	 the	 entries	 are	
missing	here.		

	
	
	

	
So,	we	have	our	database,	and	active	users,	and	we	want	to	find	similarities	between	
the	current	user	and	all	the	other	users	in	the	database.	For	instance,	Bob	and	Eve	have	
the	same	ratings,	this	rating	is	different	from	Alice,	Chris,	etc.	We	then	try	to	find	out	
how	strong	the	similarity	is.		
The	algorithm	works	in	four	steps.		
	

• STEP	 1:	 Measure	 similarity	 between	 user	 of	 interest	 and	 all	
other	 users.	 The	 question	 is,	 how	 can	we	 compute	 similarity	
between	two	users?	There	are	loads	of	similarity	metrics.	
I	 have	 two	users,	 I	 know	what	 the	 first	 is	 interesting	 in	 and	 I	
should	make	recommendations	for	the	second	one.		

	

	
Problem:	treats	missing	ratings	as	zero	since	it	treats	every	entry	
as	a	vector.	This	treating	as	zero	is	a	wrong	way	of	doing	since	it	
is	clearly	not	the	case.		
	
The	Pearson	correlation	is	a	possible	solution.		

	
The	key	thing	to	remember	with	the	Pearson	correlation	is	that	
it	 only	 considers	 items	 k	 rated	 by	 both	 users.	 This	 is	 just	 a	
standard	correlation	we	could	use.	If	this	correlation	equals	1,	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 36	

this	 is	a	perfect	 linear	relationship	with	both	 increasing	 in	the	
same	direction.	Whereas	 as	 a	 correlation	 equals	 to	 -1	means	
that	when	one	rating	decreases,	the	other	one	will	increase.		
	

	
	 	 	

• STEP	2:	 (Optional):	 select	 a	 smaller	 subset	 consisting	of	most	
similar	 users.	 You	 could	 use	 the	 whole	 database.	 But	 there	
would	be	loads	of	people	with	no	correlation,	that’s	why	we	will	
ignore	“far	away”	users,	and	pick	only	the	“k”	nearest	users.	We	
could	also	decide	just	including	all	users	above	a	predetermined	
weight	threshold.		
Note:	could	use	any	k-NN	strategy	here.	

• STEP	3:	Predict	ratings	as	a	weighted	combination	of	“nearest	
neighbours”.		
Now	we	want	to	predict	ratings.	One	big	problem	here	is	that	
people	 have	different	 rating	 scales.	 So,	 one	user	might	 use	 5	
stars,	while	 others	may	 use	 only	 3.	We	will	 first	 compute	 an	
average	rating,	and	then	try	to	implement	an	algorithm	to	find	
out	about	the	nearest	users.		

	
One	potential	problem	here	is	that	correlations	which	are	based	
on	very	few	co-rated	items	may	be	inaccurate.		
Simple	solution	adjust	the	Pearson	correlation	based	on	number	
of	 co-rated	 items.	 I	 take	 some	 threshold.	 I	 then	 adapt	 the	
correlation.		

	
• STEP	 4:	 return	 the	 highest	 rated	 items.	 We	 don’t	 want	 to	

recommend	 items	with	a	 low	correlation	rate.	Next,	we	don’t	
want	to	overload	the	users,	for	instance,	returning	thousands	of	
possible	products.		
We	usually	return	the	top	2,	5	or	10	items.	It	is	then	possible	to	
give	the	user	the	option	to	view	more	items.		
	

ð Could	 you	 employ	 the	 basic	 collaborative	 filtering	 algorithm	 between	 pairs	 of	
items?	Would	this	work?	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 37	

ð An	example	is	provided	in	the	slides.	Given	a	user	movie	pair,	I	want	to	predict	the	
rating.		
	
The	big	practical	issue	is	that	we	have	large	data	sets:	we	could	have	millions	of	
users	and	100	000s	of	items.	The	key	issue	is	how	to	efficiently	find	similar	items?	
I	want	to	compute	pairwise	similarity	between	users.		

• Pairwise	similarity	for	1M	users:	+-	5	days	
• Pairwise	similarity	for	10M	users:	+-	1	year!	

The	trick	is	to	use	the	Locality	Sensitive	hashing.		
	

	
Pro’s	 Con’s	

• Simple	and	intuitive	approach	
• Works	for	any	kind	of	item	

o No	feature	design	
o No	feature	selection	

• Works	between	pairs	of	Users	
• Exploits	 information	 about	

other	users/items	

• Data	 sparsity:	 even	 lots	 of	
data,	 hard	 to	 find	 users	 that	
rated	the	same	items.		

• Cold	 start:	 need	 for	 enough	
users	in	database	

• First	 rate:	 can’t	 recommend	
unrated	items	

o Now	product	
o Unique	items	

• Popularity	 bias:	 favours	 items	
that	lots	of	people	like	(i.e.,	bad	
if	you	have	unique	taste).	

	
	

4. Evaluation	
	

ð How	do	we	evaluate	these	algorithms?	Here,	we	have	a	huge	rating	matrix.	We	
think	 about	 the	 matrix,	 taking	 out	 the	 most	 recent	 ratings.	 We	 then	 make	
predictions	on	these	most	recent	ratings.		
	

	
The	two	most	typical	metrics	are	Root-Mean	Square	error	(RMSE)	and	the	Rank	
Correlation	Spearman’s.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 38	

	
	
Assume	0/1	data	

• Coverage:	 number	 of	 items/users	 for	 which	 the	 system	 can	
make	 a	 prediction.	 You	 want	 to	 be	 able	 to	 make	 as	 many	
predictions	as	possible.		

• Precision:	accuracy	of	predicted	items	
• Receiver	operator	characteristic	(ROC)	curve	

o False	positive	rate	
o True	positive	rate	

	
ð Weakness	with	Metrics	

	
• Focusing	on	accuracy	misses	important	points	

o Prediction	diversity	
o Prediction	context	
o Order	of	prediction	

• Only	high	ratings	matter:	RMSE	might	penalize	a	method	that	
does	well	for	high	ratings	and	badly	for	others.	

	
	

5. Case	study:	Netflix	challenge	
	
	
Netflix	is	a	monthly	subscription	service,	providing	movies	and	TV.	The	original	model	was	a	
Mail	order	DVD	service.	People	could	buy	digital	rights	to	many	movies.	It	was	also	possible	to	
rank	movies	of	interest	and	receive	in	mail	based	on	movies	you	want	to	see.		
	
Today,	things	have	changed,	we	now	face	a	new	model:	streaming	online	content.	Capitalize	
on	“binge	watching”		create	their	own	content	
	
In	2009,	Netflix	had		

• 100,000	movies	
• 10	millions	customers		
• More	US-based	

	
Currently	 it	 tends	 to	 be	 very	 international.	 It	 was	 first	 based	 in	 the	 US,	 now	 it	 is	 very	
international.		

• The	content	based	on	region.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 39	

• In	US:	~5,000	movies	and	~2,000	TV	shows.			
• 75	million	subscribers	

	
They	wanted	 to	have	a	recommender	system.	The	 idea	was	 to	create	a	competition	 for	1	
million	$.	That’s	why,	in	2006,	they	announced	the	Netflix	Prize,	a	machine	learning	and	data	
mining	competition	for	movie	rating	prediction.	$1	million	was	offered	to	whoever	improved	
the	accuracy	of	the	existing	system	called	Cinematch.	Proposed	algorithms	were	tested	on	
their	ability	to	predict	the	ratings	in	a	secret	remainder	of	the	larger	dataset.	
A	team	came	up	with	the	final	combination	of	107	algorithms.	To	put	these	algorithms	to	use,	
they	had	to	work	to	overcome	some	limitations,	for	instance	that	they	were	built	to	handle	
100	million	ratings,	instead	of	the	more	than	5	billion	that	they	have.	They	were	not	built	to	
adapt	as	members	added	more	ratings.		
	

Given:	a	training	set	of	100	million	rating	
Do:	 build	 a	 recommendation	 system	 that	 improves	 the	 root-mean	 squared	
error	by	10%	over	Netflix’s	system.	

	
• Provided	100	million	ratings		

o Matrix	is	99%	sparse	
o 480,000	users	
o 17,700	movies	

• Rating	include		
o User	
o Movie	
o Rating	
o Time-stamp	

	
ð Why	sponsor	a	challenge?	Netflix	only	makes	money	if	they	keep	customers.	The	

Cinematch,	 their	 internal	 system	 was	 expensive	 to	 develop	 and	 made	 slow	
progress.	Next,	publicity	is	good	and	the	awarding	prize	will	pay	for	itself.		
	

ð What	is	to	lose?		
	

§ Negative	publicity	
• Concerns	about	user	privacy	(i.e.,	user	backlash	to	data	release)	
• Prize	won	too	quickly	
• No	one	wins	the	prize	

§ Time	and	effort	associated	with	running	the	competition	(set	up	server)	
§ Results	not	useful	in	practice	(e.g.,	too	slow).	

	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 40	

	

Evaluation	
ð Why	 was	 the	 test	 set	 split?	 To	

avoid	overfitting.		

	
The	 competition	 began	 in	 October	 of	 2006.	 There	 were	 many	 more	 teams	 than	
anticipated,	eventually	around	40	000.	There	were	lots	on	lots	of	initial	progress	and	
within	weeks	a	1%	improvement	over	baseline	system	was	achieved.		

	
There	are	four	important	big	ideas	
	

• Modelling	global	and	local	biases	
• Latent	factor	models	
• Modelling	temporal	dynamics	
• Try	lots	and	lots	of	different	models	and	combine	the	output	

	
	

5.1 Modelling	global	and	local	biases	

	
We	have	two	components	

• User	mean	rating	
• User-Movie	effect	

	
The	 Better	 baseline	 rating	 wants	 to	 take	 the	mean	 rating	 and	 divide	 it	 into	 three	
components.	I	want	to	look	at	the	overall	mean,	and	then	add	the	user	bias	and	movie	
bias.		

• User	bias:	how	much	better	is	it	than	other	movies.	For	the	user	bias,	each	user	
has	a	different	rating	scale.	What	the	number	means	depends	on	the	individual	
user.	Other	things	affect	the	user	bias	like	the	values	of	other	ratings	the	user	
gave	recently	(day-specific	mood,	anchoring,	multi-user	accounts).		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 41	

Ex:	if	you	are	given	a	number,	ask	people	to	write	their	cell	phone	number,	and	
you	then	ask	“how	many	countries	are	there	in	Africa?”.	People	will	respond	
based	on	the	previously	given	numbers.		

• Movie	bias:	How	much	higher	or	low	is	this	movie	rating	compared	to	other.	
You	may	 be	 interested	 in	 the	 (recent)	 popularity	 of	movie	 I,	 selection	 bias;	
related	to	the	number	of	ratings	user	gave	on	the	same	day	(“frequency”).	By	
looking	at	these	we	have	indications	and	expectations.		

	
ð Capturing	the	global	effects.		

	

	
	

	
ð Instead	of	having	similarities,	we	will	replace	it	by	the	weight.		

	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 42	

	
	

We	can	actually	 train	 the	weights	 to	optimize	 the	objective	 function,	 that	 is	 to	say,	
minimize	this	objective!	

	

• Take	initial	guess	for	weights	
• Take	function	derivative	
• Update	 values	 of	 weight	 in	

direction		
• Repeat	until	convergence	

	
	

	

	
	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 43	

	
In	 2007,	 data	 appears	 as	 the	 challenge	 task	 at	 KDD	 and	 there	 was	 an	 associated	
workshop.	 The	 winners	 of	 the	 improvement	 prize	 were	 from	 BellKor,	 8.4%	
improvement	(Yehuda	Koren,	Bob	Bell,	Chris	Volinksy,	AT&T	Research).		

	
5.2 Latent	factor	models	

	
	

Idea:	 make	 some	 matrix	 factors	 and	 decompose	 it	 into	 interesting,	 smaller	 parts.	
Topics	capture	shared	hidden	structures.	You	want	the	number	of	topics	to	be	as	small	
as	possible.		

	

	 	
	

ð Examples	are	provided	in	the	slides	
	
Solve	via	an	optimization	problem		
• Challenges:	

o Sparse	matrix	with	many	missing	entries		
o Slow	to	compute	gradient	
o Need	to	avoid	overfitting	

• Solutions	
o Solve	least	squares	over	just	observed	data		
o Stochastic	gradient	descent	
o Shrink	towards	mean	if	little	data	

	
In	 2008,	 the	 progress	 slowed	down	and	many	 teams	dropped	out	 due	 to	 the	 time	
needed	to	complete.	Many	papers	were	published	on	the	task.		
Leaders	had	9,4%	improvement.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 44	

	
5.3 Modelling	temporal	dynamics	
	

	
In	2004,	there	was	a	considerable	jump	in	the	rating	people	assign	to	movies.	Could	
be	 due	 to	 improvements	 of	 cinematch.	 Netflix	 improved	 matching,	 leading	 to	
higher	rankings?		
Another	 explanation	 could	 be	 that	 people	 are	 biased	 towards	 higher	 ratings:	
meaning	of	rating	changes?		
	

	
	

	

	 	
	

5.4 Try	lots	and	lots	of	different	models	and	combine	the	output	
	

People	are	getting	desperate.	They	tried	lots	of	things,	but	still	have	not	reached	
the	10%	threshold.		
Idea:	“Kitchen	Sink	Approach”.	Build	lots	and	lots	of	predictors		
• Classifiers	
• Collaborative	filters	
• Ensembles	
	
Come	up	with	clever	ways	to	blend	the	results	
	
2009,	at	the	end	of	June,	the	 leading	team	submits	results	that	exceed	the	10%	
threshold.	The	competition	enters	the	30-day	final	period.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 45	

A	new	“ensemble”	team	is	formed	based	on	collaboration	for	others	near	at	top	of	
leader	board	and	quickly	beat	the	10%	threshold	too.		
The	race	is	on	…		
	
Take	away	messages	

§ Knowing	your	data	is	crucial	
§ Must	account	for	unpredictable	users’	behaviour	
§ Discovering	hidden	structure	can	help	
§ When	in	doubt,	combine	lots	of	models	

	
Thanks	to	the	competition,	it	served	as	publicity	(and	money)	for	the	winning	
team	 and	 its	 members.	 Netflix	 received	 much	 attention	 and	 valuable	 new	
algorithms.		
Data	mining/machine	learning	

§ Excitement	and	publicity	for	the	field	
§ Interesting	new	publications	
§ Valuable	data	set	

	
To	sum	up,	recommender	systems	are	an	important	and	active	area	or	research	
and	use.		
Three	paradigms	

§ Content:	 based	 on	 designing	 features	 and	 applying	
classification/regression	algos	

§ Collaborative:	 based	 on	 comparing	 users/items	 (aka	 nearest	
neighbour)	

§ Hybrid:	blends	both	approaches	
ð Netflix	challenge	was	interesting	and	successful	

	
One	 of	 the	 reasons	 their	 focus	 in	 the	 recommendation	 algorithms	 has	 changed	 is	
because	 Netflix	 as	 a	 whole	 has	 changed	 dramatically	 in	 the	 last	 few	 years.	 Netflix	
launched	an	 instant	 streaming	 service	 in	 2007.	 Streaming	members	 are	 looking	 for	
something	great	to	watch	right	now;	they	can	sample	a	few	videos	before	settling	on	
one,	they	can	consume	several	in	one	session,	statistics	are	provided	such	as	whether	
a	video	as	watched	fully	or	partially.		
	
We	have	adapted	our	personalization	algorithms	to	this	new	scenario	in	such	a	way	
that	now	75%	of	what	people	watch	is	from	some	sort	of	recommendation.	We	reached	
this	 point	 by	 continuously	 optimizing	 the	 member	 experience	 and	 have	 measured	
significant	gains	in	member	satisfaction	whenever	we	improved	the	personalization	for	
our	members.		
	
Over	the	years,	Netflix	discovered	that	there	is	a	tremendous	value	to	their	subscribers	
in	 incorporating	 recommendations	 to	 personalize	 as	 much	 of	 Netflix	 as	 possible.	
Personalization	starts	on	their	homepage,	consisting	of	groups	of	videos	arranged	in	
horizontal	rows.		
Ex:	Top	10	row:	best	guess	at	the	ten	titles	people	are	most	likely	to	enjoy.	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 46	

An	important	element	is	awareness.	Netflix	want	members	to	be	aware	of	how	they	
are	adapting	to	their	tastes.	 It	 then	encourages	members	to	give	feedback	that	will	
result	in	batter	recommendations.		
Next,	recommendations	are	partly	based	on	our	friends.	Knowing	about	your	friends	
not	only	gives	Netflix	another	signal	to	use	in	the	personalization	algorithms,	but	it	also	
allows	 for	 different	 rows	 that	 rely	 mostly	 on	 the	 social	 circle	 to	 generate	
recommendations.	
	
Similarity	is	another	important	source	of	personalization	in	their	service.	Similarity	can	
be	thought	of	in	a	very	broad	sense;	it	can	be	between	movies	or	between	members	
and	can	be	in	multiple	dimensions	such	as	metadata,	ratings,	or	viewing	data.		
	
In	most	of	the	previous	contexts	–	be	it	in	the	Top10	row,	the	genres,	or	the	similars	–	
ranking,	the	choice	of	what	order	to	place	the	items	in	a	row,	is	critical	in	providing	an	
effective	personalized	experience.	The	goal	of	Netflix’	ranking	system	is	to	find	the	best	
possible	ordering	of	a	set	of	items	for	a	member,	within	a	specific	context,	in	real-time.	
Their	 business	 objective	 is	 to	maximize	member	 satisfaction	 and	month-to-month	
subscription	retention,	which	correlates	well	with	maximizing	consumption	of	video	
content.		

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 47	

CHAPTER	5:	MODEL	ENSEMBLES	
	

1. Motivation	and	overview	
	

An	ensemble	of	classifiers	is	a	set	of	classifiers	whose	individual	decisions	are	combined	
in	some	way	to	classify	new	examples.		
One	 good	 learner	 produces	 one	 effective	 classifier:	 could	 learning	many	 classifiers	
help?		
The	 main	 discovery	 is	 that	 ensembles	 are	 often	 much	 more	 accurate	 than	 the	
individual	classifiers	that	make	them	up.		
An	ensemble	can	be	more	accurate	than	its	component	classifiers	only	if	the	individual	
classifiers	disagree	with	one	another.		
	
	
Human	ensembles	are	demonstrably	better.		
Ex:	how	many	jelly	beans	in	the	jar?	Individual	estimates	vs.	group	average.		
Ex:	Who	wants	to	be	a	Millionaire:	Expert	friend	vs.	audience	vote.	
	
ð If	classifiers	make	INDEPENDENT	mistakes,	then	h*	(combined	hypothesis)	is	more	

accurate,	because	the	probability	that	they	all	make	a	mistake	is	low.	
	

Let’s	 say	 we	 assume	 independent	 errors	 (30%)	 and	 a	 majority	 vote.	 We	 have	 21	
classifiers	which	all	have	the	same	error	rate.		

	
	 Area	under	curve	for	>=	11	wrong	is	0.026.		

ð Order	of	magnitude	improvement!	
	

	
	

How	to	generate	the	base	classifiers?		
• Different	learners?	
• Bootstrap	samples?	
• Etc.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 48	

	
How	to	integrate/combine	them?		

• Average	
• Weighted	Average	
• Instance-specific	decisions		
• Etc.	

	
Ensemble	approaches	
	

Sample	data	set:	create	replicates	in	some	way,	or	reweight	the	examples	in	
some	way.	

• Bagging	
• Boosting	

Manipulate	features	
• Input	feature.	for	instance,	I	can	only	show	a	subset	of	them,	train	one	

classifier	first,	then	another,	etc.	
• Target	features.	Create	a	new	classifier.	Grouping	together	some	labels.	

Add	randomness		
• Data	
• Algorithm		

Stacking	
	

2. Sampling-based	approaches	
	

This	first	method	manipulates	the	training	examples	to	generate	multiple	hypotheses.	
The	learning	algorithm	is	run	several	times,	each	time	with	a	different	subset	of	the	
training	examples.	This	works	especially	well	for	unstable	learning	algorithms.	The	key	
idea	here	has	to	do	with	the	stability	of	an	algorithm.		
	
Unstable	learner:	minor	variations	in	training	data	result	in	major	changes	in	classifier	
output,	lead	to	a	different	model.		

• Unstable:	Decision	tree,	neural	network,	rule	learning	algorithms	
• Stable:	linear	regression,	nearest	neighbour,	linear	threshold	algorithms,	etc.		

	
ð Subsampling	is	best	for	unstable	learners	

• Bagging	
• Boosting	
• Cross-validated	Committees	

	
2.1 Bagging:	Bootstram	Aggregating	

	
Given:	Data	set	S,	integer	T	
For	i	=	1,	...,	T	
Si	=	Bootstrap	replicate	of	S	
(i.e.,	sample	with	replacement)	
hi	=	Apply	learning	algorithm	to	Si	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 49	

Classify	test	instance	using	unweighted	vote	
	

	

Draw	 |Data	 Set|	 examples	 with	
replacement.	 Each	 sample’	 contains	 63.2%	
of	original	examples	(+	duplicates)	

	
	

Bagging	is	the	most	straightforward	way	of	manipulating	the	training	set.	On	each	run,	
bagging	presents	the	learning	algorithm	with	a	training	set	that	consists	of	a	sample	of	
m	training	examples	drawn	randomly	with	replacement	from	the	original	training	set	
of	m	items.		
	

2.2 AdaBoost	(Addapted	Boosting)	
	

• Idea	1:	Assign	weights	to	examples.	It	will	iteratively	change	the	weights.		
Decrease	weight	of	correctly	labelled	examples		
Increase	 weight	 of	 incorrectly	 labelled	 examples	 =>Focus	 attention	 on	
misclassified	examples	
The	algorithm	wants	to	decrease	the	focus	of	examples	that	are	well-classified.	
I	want	to	make	sure	I	get	inexact	instances.		
	

• Idea	2:	Assign	weights	to	each	learned	hypothesis	based	on	how	accurate	it	is.	
Weighted	vote	to	label	new	examples.	
	

	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 50	

	

	

Assume	that	we	are	going	to	make	one	axis	
parallel	cut	through	the	feature	space.	

	

	
We	have	3	misclassified	instances.	What	we	want	to	do	is	to	assign	a	higher	weight	to	
these	 3	 misclassified	 examples.	 In	 brief,	 we	 up	 weight	 the	 mistakes	 and	 we	
downweight	everything	else.		

	
ð How	will	the	number	of	rounds	effect	generalization?		

	
Expect	
• Training	error	to	drop	or	reach	0	
• Test	 error	 to	 increase	when	h*	becomes	 too	 complex:	 “Occam’s	 razor”	 (i.e.	

overfitting)	
• Hard	to	know	when	to	stop	training	

	
><	But	of	the,	the	test	error	does	not	increase,	even	after	100	rounds.	The	test	error	
continues	to	drop,	even	after	training	error	is	0!.		
Occam’s	razor:	”simpler	is	better”	appears	to	not	apply!	

	
	

The	 key	 idea	 here	 is	 called	 margins.	 The	 training	 error	 only	 measures	 whether	
classifications	 are	 right	 or	 wrong.	 But	 it	 should	 also	 consider	 confidence	 of	
classifications.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 51	

Margins	try	to	exploit	the	confidence.		
	
H*	is	a	weighted	majority	vote	of	weak	classifiers.	Each	of	the	individual	classifiers	is	
better	than	50-50.	We	can	measure	the	confidence	by	margin.	We	take	the	weighted	
vote	and	calculate	how	much	weight	we	have	on	the	positive	cases	and	how	much	we	
have	on	negative	cases.		
à	(weighted	vote	+)	−	(weighted	vote	-)	
	

	
It	turns	out	that	boosting	really	tries	to	build	up	a	classifier	with	a	high	margin.	Boosting	
increases	the	margin	very	aggressively	since	it	concentrates	on	the	hardest	examples.	
If	 the	margin	 is	 large,	more	weak	 learners	 agree	 and	hence	more	 rounds	does	not	
necessarily	imply	that	the	final	classifier	is	getting	more	complex.		
Theorem:	 large	 margins	 yield	 better	 bound	 on	 generalization	 error.	 If	 all	 training	
examples	have	large	margins,	then	we	can	approximate	final	classifier	by	a	much	small	
classifier.	It	is	similar	to	how	polls	can	predict	outcome	of	a	not-too-close	election.		
	

	
2.3 Cross-validation	

	
Another	training	set	sampling	method	is	to	construct	the	training	sets	by	leaving	out	
disjoint	subsets	of	the	training	data.		
Ex:	 the	 training	 set	 can	 be	 randomly	 divided	 into	 10	 disjoint	 subsets.	 Then	 10	
overlapping	training	sets	can	be	constructed	by	dropping	out	a	different	one	of	these	
10	subsets.		
	

2.4 Gradient	Tree	Boosting	
	

The	base	algorithm	is	old	but	very	hyped	now.	We	will	focus	on	least	squares	regression	
case.	We	will	ignore	some	of	mathematical	details.		
	
Gradient	Boosting	=	Gradient	Descent	+	Boosting.	It	fits	an	additive	model	(ensemble)	
in	 a	 greedy	 forward	 stage-wise	 manner.	 Each	 stage	 introduces	 a	 weak	 learner	 to	
address	 the	 shortcomings	 of	 the	 current	 model.	 Shortcomings	 are	 identified	 by	
gradients.		
	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 52	

	
Intuitively,	we	start	with	a	very	simple	hypothesis.		

	

	
	

	
	

	
	

The	 function	 is	 just	 an	 additive	 function	 and	 the	 regression	model	 is	 just	 a	
decision	tree.		
I	start	with	the	initial	data	set	and	I	want	to	learn	a	model.	hence,	I	evaluate	all	
possible	decision	trees.		
Idea:	incrementally	get	closer	to	tree	level.		
	

Recall,	gradient	descent	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 53	

	
	

ð Connection	to	Gradient	Descent	
	

	
	

	
	

	
	
Why	 is	 Gradient	 Boosting	 so	 powerful?	 It	 is	 a	 generalization	 of	
AdaBoost.	AdaBoost	designs	a	particular	function	and	tries	to	optimize	
classification.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 54	

Gradient	Boosting	tends	to	abstract	away	the	algorithm	from	the	loss	
function	and	hence	the	task.		
Thus,	 it	can	plug	 in	any	differentiable	 loss	 function	and	use	the	same	
algorithm	

• Other	regression	loss	functions	
• Classification	
• Ranking	

	
Several	details	were	skipped	

• Regularization	to	avoid	overfitting	
o Restrict	 depth	 of	 trees	 by	 not	 considering	 full	

possible	trees.	I	enumerate	trees	up	to	a	certain	
depth.	

o Add	penalty	term	to	objective	function	J	
• Setting	the	learning	rate	η		
• Derivations	and	discuss	of	all	loss	functions	

	
	

AdaBoost	vs.	Gradient	Boosting	
	
ð How	are	they	similar	and	how	are	they	different	

	
• Similarities	

o Stage	 wise	 (1st	 model	 then	 second	 model,	 etc.)	 greedy	 learning	 of	
additive	model.		

o Focus	on	mispredicted	examples.	The	model	makes	some	mistakes	and	
both	techniques	want	to	focus	on	these	mistakes.	

• Differences	
o Focus	on	mispredictions	

§ AdaBoost	:	High-weight	data	points	
§ Gradient	Boosting	:	Gradient	of	 loss	function.	Focus	on	a	 little	

part	of	each	example.		
o Generality	

§ AdaBoost	:	Just	classification.		
§ Gradient	Boosting	:	Any	differentiable	loss	

	
3. Manipulate	features	

	
Idea:	different	learners	see	different	subsets	of	features	(of	each	training	instances).	
Empirically	it	provided	mixed	results.	The	technique	works	best	when	input	features	
are	highly	redundant.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 55	

	
	

ð How	to	use	this	in	a	sampling	context?	The	idea	is	to	create	more	than	log	k	models,	
to	get	some	redundancy.		
“Error-Correcting	Codes”	(some	redundancy)	

	
Given:	Integer	T	
For	I	=	1	to	T	

• Partition	labels	into	two	disjoint	sets	
• Build	classifier	to	distinguish	between	these	sets	of	examples	

	

	
	

4. Add	randomness	
	

Neural	networks:	
• Different	initial	values		
• Not	really	independent	

Decision	trees:	
• Consider	top	20	attributes	choose	one	at	random?		
• Produce	200	classifiers	
• To	classify	new	instance:	Vote	

FOIL:	
• Choose	any	test	w/foil	gain	within	80%	of	top		
• Good	empirical	performance	

	
Random	Forests	

	
Random	 forests	 or	 random	 decision	 forests[1][2]	 are	 an	 ensemble	 learning	
method	 for	 classification,	 regression	 and	 other	 tasks,	 that	 operate	 by	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 56	

constructing	a	multitude	of	decision	trees	at	training	time	and	outputting	the	
class	 that	 is	 the	 mode	 of	 the	 classes	 (classification)	 or	 mean	 prediction	
(regression)	 of	 the	 individual	 trees.	 Random	 decision	 forests	 correct	 for	
decision	trees'	habit	of	overfitting	to	their	training	set.	
	

	
	

Increasing	i	
• Increases	correlation	among	individual	trees	(BAD)		
• Also	increases	accuracy	of	individual	trees	(GOOD)	

Use	tuning	set	to	choose	good	setting	for	i	
	
Overall,	random	forests	

• Are	very	fast	
• Deal	with	large	#	of	features	
• Reduce	overfitting	substantially		
• Work	very	well	in	practice	

	
Random	forests	differ	in	only	one	way	from	the	general	scheme	of	bagging:	they	use	a	
modified	tree	learning	algorithm	that	selects,	at	each	candidate	split	 in	the	learning	
process,	a	random	subset	of	the	features.	This	process	 is	sometimes	called	"feature	
bagging".	 The	 reason	 for	 doing	 this	 is	 the	 correlation	 of	 the	 trees	 in	 an	 ordinary	
bootstrap	sample:	if	one	or	a	few	features	are	very	strong	predictors	for	the	response	
variable	(target	output),	these	features	will	be	selected	in	many	of	the	B	trees,	causing	
them	to	become	correlated.		
	

5. Stacking	
	
Stacking	is	a	similar	to	boosting:	you	also	apply	several	models	to	your	original	data.	
The	difference	here	is,	however,	that	you	don't	have	just	an	empirical	formula	for	your	
weight	function,	rather	you	introduce	a	meta-level	and	use	another	model/approach	
to	estimate	the	input	together	with	outputs	of	every	model	to	estimate	the	weights	
or,	in	other	words,	to	determine	what	models	perform	well	and	what	badly	given	these	
input	data.	
	
Idea:	you	want	to	learn	whether	each	learner	is	good		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 57	

	
	
	

	
	 	
	

6. Why	do	ensemble	methods	work?	
	

ð There	 are	 four	 possible	 explanations	 to	 why	 ensembles	 are	 better	 than	 basic	
classifiers.		
	

6.1 Expected	Error	
	

	
	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 58	

	
	

	
• Bias:	left	picture.		
• Variance:	right	picture.	Complicated	hypothesis	space.		

	
	
Sources	of	Bias	

• Bias	 comes	 from	 the	 inability	 to	 represent	 certain	 decision	
boundaries.	E.g.,	linear	threshold	units,	decision	trees.		

• You	make	incorrect	assumptions	
o E.g.,	failure	of	independence	assumption	in	naïve	Bayes	

• Classifiers	that	are	“too	global”	
o E.g.,	single	linear	separator,	small	decision	tree	

• If	bias	is	high,	the	model	is	underfitting	the	data	
	

Sources	of	variance	
• Statistical	sources.	Classifiers	are	“too	local”	and	can	easily	fit	the	

data.	(e.g.,	nearest	neighbor,	large	decision	trees)	
• Computational	sources	

o Decision	made	on	small	subsets	of	the	data	(e.g.,	decision	
tree	splits	near	the	leaves)	

o Randomization	 in	 the	 learning	 algorithm	 (e.g.,	 neural	
nets	with	random	initial	weights)	

o Unstable	 learning	 algorithms	 (e.g.,	 decision	 boundary	
can	change	if	one	training	example	changes)	

o High	variance	⇒	model	is	overfitting	the	data	
	

6.2 Bias/variance	explanation	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 59	

Bias	and	variance	are	two	components	of	error.	
	

§ Bias:	inability	to	represent	the	true	concept.	I	have	some	function	I	want	
to	predict,	based	on	hypothesis	and	model.	 I	might	have	some	error	
which	is	called	“bias”.	We	can	think	about	bias	when	we	don’t	have	a	
good	hypothesis	space.		

§ Variance:	 fluctuations	due	to	random	variations	 in	the	data.	Appears	
when	the	hypothesis	class	is	too	big.	

	
ð Hence,	we	are	faced	with	a	trade-off!		

§ More	expressive	class	of	hypotheses,	which	generates	higher	variance	
§ Less	expressive	class,	which	will	generate	higher	bias.	

	
I	have	to	make	a	decision	beforehand	based	on	whether	I	prefer	high	bias	or	high	
variance.		
	

ð Ensembles	can	address	both	bias	and	variance!	
	

§ Bagging:	 if	 bootstrap	 approximation	 is	 correct,	 then	 it	would	 reduce	
variance	without	changing	bias.	In	practice,	bagging	can	reduce	both.		

• For	high-bias	classifiers,	can	reduce	bias	
• For	high-variance	classifiers,	can	reduce	variance	

§ Boosting:	 Attends	 to	 allow	 you	 to	 work	 with	 more	 expressive	
hypothesis.	

• Early	iterations:	primarily	reduces	bias	
• Later	iterations:	primarily	reduces	variances	(apparently).	

	
6.3 Statistical	explanation	

	
To	motivate	this	explanation,	we	could	look	at	an	example	of	flipping	coins.		
	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 60	

	
ð I	can	then	compute	the	probability	that	I	use	one	of	the	coins,	based	on	this	figures.		

I	see	that	there	is	a	small	change	that	I	flipped	C1,	but	there	is	a	bigger	chance	that	
I	swap	C2	and	C3.	
	
	

	
	

	
	

Bayesian	estimate	could	be	a	better	idea.	We	make	the	probability	of	seeing	a	
head	 a	weighted	 vote	 among	 all	 possibilities.	We	 then	 get	 a	weighted	 vote	
about	the	predictions.		

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 61	

	
	

ð How	 can	 the	 learning	 algorithm	 select	 among	 the	 set	 of	 (almost)	 equally	 good	
hypotheses?	How	can	I	pick	the	best	hypothesis?	I	can	for	example	thing	about	the	
error	rate.		
	
From	theory	we	know	it	is	called	the	Bayes	optimal	classifier,	making	a	weighted	
majority	 vote	 among	 all	 possible	 hypothesis.	 That	 is	 the	 best	 way	 we	 can	 do:	
weighted	by	their	posterior	probability,	probably	the	best	possible	classifier,	that	
is,	it	minimizes	the	error	rate.	But	it	is	actually	infeasible.		
	

ð Ensemble	learning	approximates	Bayes	optimal	
	

6.4 Representational	explanation	
	

Each	 leaner	works	with	 a	 given	hypotheses	 class	 (i.e.,	 set	 of	 possible	models).	 It	 is	
possible	that	the	target	function	lies	outside	of	the	considered	hypothesis	class.		

	

• Linear	 classifier:	 I	 will	 have	 a	 y	
function	that	separates	positive	and	
negatives	 examples.	 I	 won’t	 have	 a	
single	separation	line.		

• No	straight	 line,	a	decision	 tree	can	
represent	this	diagonal	line.		

	

	

An	 ensemble	 averaging	 may	 approximate	
the	true	target	function	with	arbitrarily	good	
accuracy.		

• Curved	boundary	by	averaging	lines	
• Diagonal	 boundary	 by	 averaging	

“staircases”.	
	

6.5 Computational	explanation	
	

Most	learning	algorithms	search	through	hypotheses	space	to	find	one	“good”	model.	
Hypothesis	space	could	be	a	space	of	decision	trees,	regression	lines,	etc.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 62	

	
The	 most	 interesting	 hypothesis	 space	 are	 huger	 or	 infinite,	 so	 we	 have	 to	 do	 a	
heuristic	search.		
	
The	 learning	 might	 get	 stuck	 in	 a	 local	 minimum.	 One	 strategy	 for	 avoiding	 local	
minima	is	to	repeat	 the	search	many	times	with	random	restarts.	This	 is	essentially	
what	bagging	does.		This	method	is	really	powerful.		

	
7. Some	applications	

The	best	one	or	at	least	the	most	successful	one	is	in	the	web	search.		
	

	

Uses	 ensembles	 of	 decision	 trees.	
They	 use	 the	 gradient	 boosting.	We	
can	think	about	the	data,	we	have	a	
query,	here,	a	 radio	station.	And	we	
then	 have	 different	 Url’s	 (=	 training	
data).	We	also	have	a	ranking	among	
the	lines.	
They	will	then	induce	an	ensemble	of	
trees.	

A	score	is	used	to	rank	the	Url’s.	I	want	to	make	sure	I	pick	the	perfect	one	first,	then	
a	good	one,	etc.	They	want	to	predict	a	score	and	learn	about	decision	trees	to	perform	
the	ranking.		
One	thing	that	is	important	is	to	evaluate	the	trees.	Another	reason	is	that	this	method	
tends	to	be	very	accurate.		
	
Another	 area	 where	 ensembles	 are	
widely	used	is	in	edge	detection.	Given	
an	 image,	 you	 want	 to	 detect	 edges,	
finding	 the	 outline	 of	 the	 different	
figures.	What	 you	 could	 do	 then	 is	 to	
use	an	ensemble,	for	instance	random	
forest.		
We	 will	 have	 some	 probabilistic	
models,	train	decision	trees,	etc.		
	 	
	
A	third	area	refers	to	motion	capture.	I	want	to	model	a	person.	The	goal	standard	is	
to	have	a	good	camera	tracking	system.	You	then	have	a	random	map	and	you	try	to	
get	 location	of	 the	people.	This	 is	widely	used	 in	sports	domain	 to	 look	at	people’s	
behaviour	on	the	field.	
This	is	method	is	really	accurate.	However,	the	lab	setup	is	incredibly	expensive	and	
very	time	consuming.		
	
Video	games	that	tries	to	recognize	your	gesture.	You	gen	try	to	infer	what	the	poses	
of	people	are.	You	get	a	depth	image	and	you	then	go	to	a	body	part	before	moving	on	
to	a	3D	joint	proposal.	Decision	trees	are	used	to	move	on	through	the	procedure.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 63	

	
To	sum	up,	a	committee	of	experts	is	typically	more	effective	than	a	single	supergenius.		
	
Key	issues	

• Generating	base	models	
• Integrating	responses	from	base	models:	I	have	to	combine	or	

aggregate	the	predictions.		
	

Popular	ensemble	techniques	
• Manipulate	training	data:	bagging	and	boosting	
• Manipulate	output	values:	error-correcting	output	coding	

	
ð Bias/variance	is	really	important	in	data	mining.		

	
	

	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 64	

INTERLUDE:	ACTIONABLE	DATA	MINING	
	

• How	many	of	you	go	to	the	same	grocery	store	every	week?	
• How	many	of	you	go	to	the	same	bar?	
• How	many	of	drink	one	type	of	beer?	
• What	would	make	you	change?	
• Why	do	we	work	this	way?	

	
What	we	want	to	take	away	is	that	people	typically	have	similar	habits.	Similar	habits	
make	some	things	easier	to	analyse,	entering	a	certain	routine.		
Once	you	have	certain	habits,	it	becomes	hard	to	change.		
	
Task:	based	on	customer	information	
Do:	You	want	to	predict	whether	the	customer	is	pregnant	or	not.		
	
Many	questions	arise	then	
	

• What	data	is	needed?	Where	would	you	get	it?	We	need	data	about	gender,	
age.	Purchase	data.	We	also	need	data	about	search	engines,	looking	at	which	
products	people	are	looking	for.	I	should	try	to	figure	out	what	pregnant	people	
are	looking	for.		

• What	techniques	are	applicable	to	this	problem?	This	is	a	binary	classification	
problem,	where	you	may	want	to	assign	a	score	to	pregnant	people.		

• What	would	you	look	for?	
• How	could	you	exploit	your	findings?	The	main	goal	of	data	mining	is	to	act	

upon	 the	 data.	 So	 if	 I	 know	 if	 someone	 is	 pregnant,	 a	 want	 to	 use	 this	
information	to	act	in	a	certain	manner.	I	may	be	tended	to	recommend	some	
products	for	instance,	proposing	some	adds,	etc.		

• Are	there	risks	involved?	If	so,	what	are	they?	There	are	some	risks	related	to	
privacy.	Then	questions	arise:	is	this	rational	or	not?		
There	is	also	a	risk	of	taking	false	positive.	Take	for	instance	a	person	that	makes	
searches	for	his	or	her	friends	but	who	might	not	be	pregnant	at	all.		

	
	

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 65	

INTERLUDE:	LARGE	SCALE	DECISION	TREE	LEARNING	
	

1. Decision	tree	overview	
	

	

• Internal	 nodes	 are	
choice	nodes.		

• Leave	 nodes	 are	
prediction	nodes.	They	
represent	 the	
classification.	

	
	

	

I	have	a	bunch	of	training	data.	I	then	split,	
picking	the	best	internal	node.		
You	first	want	to	check	if	all	points	are	of	the	
same	 class.	 Otherwise	 you	 have	 to	 run	
through	all	attributes	and	evaluate	the	splits	
on	each	of	them.	You	then	find	the	best	one	
and	partition	the	data	you	have.	

	
ð When	will	this	basic	decision	tree	algorithm	be	inefficient?	Think	about	very	large	

data	sets.		
Answer:	if	my	decision	tree	does	not	fit	in	the	memory.	Every	time	I	want	to	do	a	
split,	I	have	to	do	a	full	scan	of	the	data.	So,	I	might	keep	a	list	of	instances	I	want	
to	look	at.	There	are	many	examples	I	can	ignore.		
	

2. Rainforest	
	

	
ð Can	we	improve?	Yes!	We	just	need	aggregate	information	at	each	node	in	order	

to	compute	the	split	point.	We	can	just	store	the	aggregate	information.		
	
The	data	structure	is	called	Attribute	Value	Class	Label	set	or	AVC	set.	Counts	for	
each	class	are	aggregated	and	it	stores	the	class	label	distribution	for	each	attribute	
value.			
	
The	AVC	group	is	an	AVC	set	for	all	possible	attributes.		

	
	 RainForest	Algorithms	
	

• RF-Write:	Always	write	out	partitions	to	disk	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 66	

Pro:	Do	not	have	to	read	whole	DB	each	time		
Con:	Writing	to	disk	is	expensive	

• RF-Read:	Scan	the	whole	database	at	each	node	level	
Pro:	Avoid	expensive	write	operations	
Con:	Read	lots	of	irrelevant	information		

• RF-Hybrid:	Mixed	strategy	
Use	RF-Read	until	AVC-Groups	of	child	nodes	don’t	fit	in	memory.	For	each	level	
where	AVC-Groups	don’t	fit	in	memory,	partition	child	nodes	into	sets	M	&	N		

• AVC-Groups	for	n	Î	M	all	fit	in	memory		
• AVC-Groups	for	n	Î	N	are	build	on	disk.		

Process	nodes	in	memory	then	fill	memory	from	disk		

	

I	have	a	database	and	I	scan	the	
data.	 I	 build	 the	 AVC	 set	 for	
each	 of	 my	 possible	 nodes.	 I	
pick	my	root	node.		

	
I	now	get	two	nodes.	For	each	node	
I	 have	 to	 consider	 the	 possible	
splits.	I	consider	each	attribute.		
So,	 I	 doubled	 the	 number	 of	
attributes	I	have	to	consider.		

	
	

	

	

	
	

3. BOAT	
	

Another	 way	 to	 think	 about	 scaling	 up	 is	 the	 BOAT	 algorithm.	 This	 stands	 for	
Bootsrapped	Optimist	Algorithm	for	Tree	Construction.	This	is	very	scalable	to	learning	
decision	 trees.	 Indeed,	 it	 needs	 very	 few	 scans	 (perhaps	 2)	 over	 the	 data.	 And	 it	
constructs	multiple	levels	at	once.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 67	

The	algorithm	runs	in	two	phases	
• Sampling	phases:	 it	 is	gonna	look	at	as	much	as	the	data	set	we	can.	

Take	 a	 sample	D	́́Ì	 D	 from	 the	 training	 database	 such	 that	 D’	 fits	 in	
memory.	 Construct	 b	 bootstrap	 trees	 T1,...,Tb	 by	 creating	 training	
samples	 D1,...,Db	 obtained	 by	 sampling	 with	 replacement	 from	 D’.	
Perform	bagging!	I	then	end	up	with	a	large	number	of	trees.	It	will	then	
try	to	combine	them	into	a	unified,	single	tree.	So,	it	will	try	to	create	a	
summary	tree.		

• Create	Coarse	Splitting	Criteria:	
Process	the	trees	in	a	top-down	fashion.	At	each	node	N,	check	if	the	
splitting	criteria	is	identical	for	all	trees.	If	not,	delete	N	and	its	subtrees	
in	all	trees.	If	they	agree	construct	coarse	splitting	criteria		

ð 	Coarse	splitting	criteria		
• Discrete:	Just	the	attribute-values		
• Continuous:	Confidence	interval	[L,	U]	such	that	the	true	split	

is	likely	in	the	interval.	We	have	a	range	of	possible	values.		
	

	

Both	 trees	 agree	 on	 the	
root	 node.	 On	 the	 left	
subtree	they	all	agree.	On	
the	 right	 subtree	 they	
agree.	 But	 then	 they	
disagree.		

On	the	left	tree	we	have	>20,	on	the	other	side	>25.	So	for	age	we	don’t	
know	where	the	actual	threshold	will	be.		
For	the	final	tree,	we	compute	an	exact	split.		
	

	
• Cleaning	phase	

For	discrete	attribute	the	coarse	splitting	criteria	 is	the	exact	splitting	
attribute,	 whereas,	 for	 continuous	 data,	 only	 try	 splits	 within	
confidence	interval.		
Collect	all	examples	that	follow	this	path	AND	fall	within	the	confidence	
interval.	Then	compute	exact	split	based	on	these	examples	

	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 68	

CHAPTER	6:	ASSOCIATION	RULE	MINING	
	

ð How	to	find	patterns?		
	

1. Introduction	and	definitions	
	

Given:	Set	of	transactions	
Find:	If-Then	rules	that	predict	the	occurrence	of	an	item	based	on	other	items	in	the	
transaction.	

	
	

The	 main	 motivation	 is	 finding	 regularities	 in	 data.	 What	 products	 were	 often	
purchased	 together?	What	kinds	of	DNA	are	 sensitive	 to	new	drug?	Try	 to	 find	co-
occurrences.	 We	 try	 to	 find	 patterns	 in	 the	 data,	 patterns	 that	 predict	 a	 certain	
variable.	
	
Foundation	for	many	data	mining	tasks:		

• Association	
• Correlation	

	
ð Algorithms	do	not	require	labelled	data	or	for	a	user	to	specify	a	predefined	target	

concept.	
	

	
• An	itemset	is	a	collection	of	one	or	more	items.	Ex:	{Bread,	Milk}	
• A	k-itemset	 is	an	 itemset	that	contains	k	 items.	Ex:	3-itemset	{Bread,	

Milk,	Diaper}	
	

Association	rules	are	if-then	rules	about	the	contents	of	baskets	
Given:	Set	of	items:	I	=	{i1,	i2,	...,	im}	

Set	of	transactions:	D	=	{d1,	d2,	...,	dn}	
An	association	rule:	A	à	B	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 69	

	
{i1,	i2,...,ik}	→	j	means:	“if	a	basket	contains	all	of	i1,...,ik	then	it	is	likely	
to	contain	j.”	

	
When	dealing	with	association	rules,	a	simple	question	is:	find	sets	of	items	that	appear	
“frequently”	in	the	baskets.		
	
The	support	count	for	itemset	I	is	the	number	of	baskets	containing	all	items	in	I.	the	
support	 is	the	fraction	of	transactions	that	contain	an	 itemset.	Basically	we	are	 just	
counting	how	many	times	we	see	an	itemset	in	the	data.	
Given	a	support	threshold	s,	frequent	itemsets	appear	in	at	least	s	baskets.		

A	Þ	C	=	support({A}È{C})	/	|T|	
	

	

The	 confidence	 of	 an	 association	 rule	 is	 the	 conditional	
probability	 of	 j	 given	 i1,	…,	 ik.	 This	 gives	 a	measure	 of	 how	
accurate	 the	 rule	 is.	 Given	 I	 have	 observed	 A,	 what	 is	 the	
probability	I	also	observe	B?		
Confidence	(A	Þ	B)	=	P(B|A)	=	sup({A,B})	/sup(A)		
The	confidence	of	the	rule	is	the	fraction	of	the	baskets	with	
all	of	I	that	also	contain	j.	

Confidence	alone	can	be	useful,	provided	the	support	for	the	 left	side	of	the	rule	 is	
fairly	large.	We	usually	want	the	confidence	of	the	rule	to	be	reasonable	high,	perhaps	
50%,	or	else	the	rule	has	little	practical	effect.	

	
	 Given	an	association	rule	ià	j,	Interest	=	Confidence	(j	|	I)	-	Support(j).		

• Interest	=	0	:	I	has	no	influence	on	J	
• Interest	>	0	:	I	may	cause	the	presence	of	j	
• Interest	<	0	:	I	discourages	the	presence	of	j	

If	I	has	no	influence	on	j,	then	we	would	expect	that	the	fraction	of	baskets	including	I	
that	contain	j	would	be	exactly	the	same	as	the	fraction	of	all	baskets	that	contain	j.	
such	a	rule	has	interest	0.		

	 	
In	data	mining	and	association	rule	learning,	lift	is	a	measure	of	the	performance	of	a	
targeting	model	at	predicting	or	classifying	cases	as	having	an	enhanced	response	(with	
respect	to	the	population	as	a	whole),	measured	against	a	random	choice	targeting	
model.	A	targeting	model	is	doing	a	good	job	if	the	response	within	the	target	is	much	
better	than	the	average	for	the	population	as	a	whole.	Lift	is	simply	the	ratio	of	these	
values:	target	response	divided	by	average	response.	
If	some	rule	had	a	 lift	of	1,	 it	would	 imply	that	the	probability	of	occurrence	of	the	
antecedent	 and	 that	 of	 the	 consequent	 are	 independent	of	 each	other.	When	 two	
events	 are	 independent	 of	 each	 other,	 no	 rule	 can	 be	 drawn	 involving	 those	 two	
events.	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 70	

If	 the	 lift	 is	 >	 1,	 it	 lets	 us	 know	 the	 degree	 to	 which	 those	 two	 occurrences	 are	
dependent	on	one	another,	and	makes	those	rules	potentially	useful	for	predicting	the	
consequent	in	future	data	sets.	
	
Why	 could	 the	 lift	 measure	 be	 useful?	 By	 dividing	 confidence	 by	 support,	 we	 can	
“normalize”	data	and	compare	the	results.		
	
The	association	rule	mining	task	is	simple.		
Given:	Transaction	data,	support	s,	and	confidence	c.		
Find:	All	association	rules	with	support	≥	s	and	confidence	≥	c		
	
Task	focus:		

• General	many-many	mapping	(association)	between	items	and	baskets	
• Connection	among	“items”	not	“baskets”	
• Focus	on	common	event	not	on	rare	events	

	
There	exist	different	types	of	associations	

• Boolean	associations	

	
	

• Quantitative	associations	

	
	
	 Number	of	predicates	captured	

• Single	attribute	

	
• Multiple	attributes	

	
• Multi-relational	

	
	
	 Single	or	Multiple	Level	

• Single	Level	

	
• Multiple	Level	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 71	

	
	

Association	rules	are	often	used	in	the	retail	sector.		
• Baskets:	sets	of	products	someone	bought	in	one	trip	to	the	store	
• Items:	products	

Ex:	given	that	many	people	buy	beer	and	diapers	together,	run	a	sale	on	
diapers;	raise	price	of	beer.	Only	useful	if	many	buy	diapers	and	beer.	
What	items	should	store	stock	up	on.		
	

By	finding	frequent	itemsets,	a	retailer	can	learn	what	is	commonly	bought	together.	
Especially	important	are	pairs	or	larger	sets	of	items	that	occur	much	more	frequently	
than	would	be	expected	were	the	items	bought	independently.		
Ex:	diapers	and	beer.	One	would	hardly	expect	these	two	items	to	be	related.	Through	
data	analysis	one	chain	store	discovered	that	people	who	buy	diapers	are	unusually	
likely	to	buy	beer.		

	
	 Another	application	is	plagiarism	

• Baskets	=	sentences	
• Items	=	documents	contain	those	sentences	

Items	that	appear	together	too	often	could	represent	plagiarism.	
Notice	that	items	do	not	have	to	be	“in”	baskets.	Documents	having	a	
high	count	contain	plagiarism.	

	
	 Association	rules	are	also	often	used	in	web	pages	analytics.		

• Baskets	=	web	pages	
• Items	=	words	

Unusual	words	 appearing	 together	 in	 a	 large	 number	 of	 documents,	
e.g.,	“Brad”	and	“Angelina”,	may	indicate	an	interesting	relationship.	

	
2. Naïve	Algorithm	

	
Walmart	sells	100	000	items	and	can	store	billions	of	baskets.	The	Web	has	billions	of	
words	and	many	billions	of	pages.	We	have	access	to	lots	and	lots	of	data	…		
	
Naïve	Generate	and	Test	
Goal:	Find	all	association	rules	with	support	≥	s	and	confidence	≥	c.		
For	each	association	rule	X	=>	Y,	keep	it	if	it	meets	support	&	confidence	threshold.		
><	Complexity:	exponential	in	number	of	items.	

	
	 This	Naïve	algorithm	tends	to	be	too	slow!		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 72	

	
	 Association	Rule	Mining	Goal	
	 Insight:	Given	frequent	itemsets,	

• Trivial	to	derive	all	association	rules	
• These	will	contain	all	rules	with	support	s	and	confidence	c	

	
Hard	part:	finding	the	frequent	itemsets.		
Note:	if	{i1,	i2,...,ik}	→	j	has	high	support		
and	confidence,	then	both	{i1,	i2,...,ik}	and	{i1,	i2,...,ik	,j	}	will	be	“frequent”		
	
Creating	association	rules	
Given:	Support	s,	confidence	c	

• Step	1	:	Find	all	itemsets	with	support	s	
• Step	2	:	For	each	frequent	itemset	L,	for	each	non-empty	subset	s	of	L.	

Output	the	rule	s	→	{l-s}	if	its	confidence	≥	c		
Once	I	have	frequent	itemsets,	finding	association	rules	is	quite	easy.		
	

Typically,	data	is	kept	in	flat	files	rather	than	in	a	database	system.	Data	is	stored	on	
disk	basket-by-basket.	Use	k	nested	to	expand	baskets	into	pairs,	triples,	etc.	as	you	
read	basket.	
	
The	true	cost	of	mining	disk-resident	data	is	usually	the	number	of	disk	I/O’s.		

• Read	data	in	passes:	all	baskets	read	in	turn	
• Cost:	Number	of	passes	an	algorithm	takes	

	
The	bottleneck	is	main	memory.	For	many	frequent-itemset	algorithms,	main	memory	
is	 the	 critical	 resource.	 As	 we	 read	 baskets,	 we	 need	 to	 count	 something,	 e.g.,	
occurrences	of	pairs.	The	number	of	different	things	we	can	count	is	limited	by	main	
memory.		
Swapping	counts	in/out	is	a	disaster	(why?).	
	
The	hardest	problem	often	turns	out	to	be	finding	the	frequent	pairs,	often	frequent	
pairs	are	common,	frequent	triples	are	rare.	The	probability	of	being	frequent	drops	
exponentially	with	size.	The	number	of	sets	grows	more	slowly	with	size.	
First,	focus	on	pairs,	then	extend	to	largest	sets.	
	
Naïve	Algorithm	
	
What	is	the	naïve	way	to	think	about	this?	For	each	basket	that	I	process,	I	generate	all	
possible	pairs	and	I	process	them.	
Read	 file	 once,	 counting	 in	main	memory	 the	occurrences	of	 each	pair.	 From	each	
basket	of	n	items,	generate	its	n(n-1)/2	pairs	by	two	nested	loops.		
Fails	if	(#items)2	exceeds	main	memory	
Remember:	#items	can	be	100K	(Wal-Mart)	or	10B	(Web	pages)	
	
2	approaches	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 73	

1) Count	all	pairs,	using	a	triangular	matrix.	Observe	all	possible	pairs	in	there.	I	can	
figure	out	the	identifiers	of	the	items.	

- Assign	each	item	a	number	
- Count	{i,j}	only	if	i	<	j		
- Keep	pairs	 in	 the	order:	 {1,2}	…	 {1,n	 }	 :	 {2,3}	 ...	

{n	-1,n	}		
- Pair{i,j}	at	the	position:	(i–1)(n–i/2)+j–i	

ð 4	bytes/pair	store	all	pairs	

Assign	each	transaction	a	number	and	keep	a	count	for	each	itemset.	

We	have	a	simple	transactional	database	containing	four	transactions.	Then	I	have	
my	array	where	I	generated	all	possible	itemsets.	I	have	to	keep	one	entry	for	each	
possible	pair.	I	want	to	scan	my	data.	For	each	transaction	I	generate	all	possible	
pairs.		

	

2) Table	of	triples	[i,	j,	c]	=	pair	{i,	j}	count	is	c.	This	method	is	more	memory	efficient	
than	previous	approach.		
The	total	number	of	bytes	used	is	about	12p,	where	p	is	the	number	of	pairs	that	
actually	occur.	This	method	requires	us	to	store	three	integers,	rather	than	one,	or	
every	pair	 that	does	appear	 in	 some	basket.	 This	approach	beats	 the	 triangular	
matrix	if	at	most	1/3	of	the	possible	pairs	actually	occur.	It	requires	extra	space	for	
retrieval	of	structure.	The	triples	method	does	not	require	us	to	store	anything	if	
the	count	for	a	pair	is	zero.	
	

	
	
So	far,	we	focused	on	identifying	frequent	pairs.	But,	there	exist	many	more	possible	
frequent	triples	than	frequent	pairs.	How	can	we	avoid	generating	all	of	them?		
Number	of	frequent	itemsets	of	size	two	will	be	bigger	than	frequent	itemset	of	size	
three.	But	on	the	other	hand,	there	are	more	possible	frequent	triples	than	possible	
doubles.	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 74	

3. Apriori	
	

In	practice,	 the	most	main	memory	 is	 required	for	determining	the	frequent	pairs.	The	
number	 of	 items,	while	 possible	 very	 large,	 is	 rarely	 so	 large	we	 cannot	 count	 all	 the	
singleton	sets	in	main	memory	at	the	same	time.		
In	 practice	 the	 support	 threshold	 is	 set	 high	 enough	 that	 it	 is	 only	 a	 rare	 set	 that	 is	
frequent.	Monotonicity	 tells	 us	 that	 if	 there	 is	 a	 frequent	 triple,	 then	 there	 are	 three	
frequent	 pairs	 contained	 within	 it.	 Thus,	 we	 expect	 to	 find	 more	 frequent	 pairs	 than	
frequent	triples,	more	frequent	triples	than	frequent	quadruples,	and	so	on.	
	
The	A-Priori	algorithm	is	designed	to	reduce	the	number	of	pairs	that	must	be	counted,	
at	the	expense	of	performing	two	passes	over	data,	rather	than	one.	This	is	the	job	of	the	
A-Priori	Algorithm	and	related	algorithms	to	avoid	counting	many	triples	or	larger	sets.		
	
The	main	purpose	here	is	to	generate	and	test	approach	for	discovering	frequent	itemsets.	
The	apriori	algorithm	is	an	iterative	approach.		

• Find	 all	 frequent	 itemsets	 of	 size	 k	 before	 finding	 frequent	
itemsets	of	size	k+1	

• One	pass	through	the	data	for	each	frequent	itemset	size.	
	

If	an	itemset	appears	at	least	s	times,	so	do	all	its	subsets.	The	contrapositive	for	pairs	
states	that	if	item	I	does	not	appear	in	s	baskets,	then	no	pair	including	I	can	appear	in	
s	baskets.	It	will	never	be	frequent.	As	soon	as	I	know	that	something	is	infrequent,	
there	is	no	point	of	counting	an	itemset	that	is	bigger.		

The	Apriori	principle	holds	due	to	the	following	property	of	the	support	measure: "X	
,Y	:	(X	Í	Y)	Þ	s(X)	³	s(Y)		
	

	
	

• Pass	1:	Create	two	tables.	The	first	table	translates	item	names	
into	integers	from	1	to	n.	The	other	table	is	an	array	of	counts.	
Read	 baskets	 and	 count	 in	main	memory	 the	 occurrences	 of	
each	 item.	 It	 requires	memory	proportional	 to	 the	number	of	
items.	Frequent	items	are	those	that	appear	s	times.	
	
After	the	first	pass	we	examine	the	counts	in	order	to	determine	
the	frequent	itemsets.	We	then	create	a	new	number	from	1	to	
m	for	just	the	frequent	items.	This	table	is	an	array	indexed	1	to	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 75	

n,	and	the	entry	for	I	 is	either	0,	 if	 item	I	 is	not	frequent,	or	a	
unique	integer	in	the	range	1	to	m	if	item	I	is	frequent.		
	

• Pass	 2:	 Read	 baskets	 again	 and	 count	 in	 main	 memory	 only	
those	pairs	both	of	which	were	found	in	Pass	1	to	be	frequent.	
In	 a	 double	 loop,	 generate	 all	 pairs	 of	 frequent	 items	 in	 that	
basket.	 For	 each	 such	 pair,	 add	 one	 to	 its	 count	 in	 the	 data	
structure	used	to	store	counts.	
It	 requires	 memory	 proportional	 to	 the	 square	 of	 frequent	
items,	plus	a	 list	of	the	frequent	 items.	Frequent	 itemsets	are	
those	that	appear	s	times.	

	 	

	
Verify	if	each	candidate	satisfies	the	threshold.		
	

ð If	no	frequent	itemsets	of	a	certain	size	are	found,	then	monotonicity	tells	us	there	
can	be	no	larger	frequent	itemsets,	so	we	can	stop.	

	
1) Join	Step:	Candidate	set	Ck+1	is	generated	by	joining	Lk	with	itself		

Suppose	the	items	in	Lk	are	listed	in	an	order.	Join	each	element	
in	Lk	with	itself.	If	l1,	l2	∈	Lk,	they	are	joinable	if:		

o The	first	k-1	items	in	l1	and	l2	are	the	same		
o l1[1]	 =	 l2[1]	 AND	 l1[2]	 =	 l2[2]	 AND	 ...	 AND	

l1[k-1]	=	l2[k-1]		

	
2) Prune	 Step:	 Any	 k-itemset	 that	 is	 not	 frequent	 cannot	 be	 a	

subset	of	a	frequent	(k+1)-itemset		
For	each	candidate	itemsets	Ck+1,	look	at	each	subset	of	size	k,	
i.e.,	drop	one	item	from	the	candidate.	
If	any	of	these	subsets	isn’t	frequent,	discard	this	candidate.		
à	Application	of	the	Apriori	Principle	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 76	

	
The	real	trick	is	the	pruning	step.	This	is	the	key	step.		
	

	
	
The	size	of	the	file	of	baskets	is	sufficiently	large,	hence	it	does	not	fit	in	main	memory.	
Thus,	a	major	cost	of	any	algorithm	is	the	time	it	takes	to	read	the	baskets	from	disk.		
	
Besides	cost,	another	data-related	issue	may	be	related	to	the	use	of	the	main	memory	
for	 itemset	 counting.	 All	 frequent-itemset	 algorithms	 require	 us	 to	maintain	many	
different	counts	as	we	make	a	pass	through	the	data.	We	might	for	instance	need	to	
count	 the	 number	 of	 times	 that	 each	 pair	 of	 items	occurs	 in	 baskets.	We	must	 be	
careful	 as	we	cannot	 count	anything	 that	does	not	 fit	 in	main	memory.	 Thus,	each	
algorithm	has	a	limit	on	how	many	items	it	can	deal	with.	
	

4. PCY	
	

In	this	section	we	consider	the	PCY	algorithm,	which	takes	advantage	of	the	fact	that	
in	the	first	pass	of	A-Priori	there	is	typically	lots	of	main	memory	not	needed	for	the	
counting	of	single	items.	
	
Simple	problem:	check	if	an	object	has	been	previously	encountered.		
	
Filter	strings:	Scan	a	larger	file	F	of	strings	and	output	those	that	are	in	S	(e.g.,	emails)	
Has	someone	visited	the	set	yet	(a	bit	more	complicated	…).		
	
ð Often,	 files	will	 not	 fit	 in	memory.	 This	 algorithm	exploits	 the	 observation	 that	

there	may	 be	much	 unused	 space	 in	main	memory	 on	 the	 first	 pass.	 The	 PCY	
Algorithm	uses	that	space	for	an	array	of	 integers	that	generalizes	the	 idea	of	a	
Bloom	filter.	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 77	

	

Think	 of	 an	 array	 as	 a	 hash	 table,	
whose	 buckets	 hold	 integers	 rather	
than	sets	of	keys	or	bits.	Pairs	of	items	
are	 hashed	 to	 buckets	 of	 this	 hash	
table.	As	we	examine	a	basket	during	
the	first	pass,	we	not	only	add	1	to	the	
count	for	each	item	in	the	basket,	but	
we	 generate	 all	 the	 pairs,	 using	 a	
double	loop.	
Hash	 each	 pair	 and	 add	 1	 to	 the	
bucket	into	which	that	pair	hashes.	

At	the	end	of	the	first	pass,	each	bucket	has	a	count,	which	is	the	sum	of	the	counts	of	
all	the	pairs	that	hash	to	that	bucket.	If	the	count	of	a	bucket	is	at	least	as	great	as	the	
support	threshold	s,	it	is	called	a	frequent	bucket.	

• We	 can	 say	 nothing	 about	 the	 pairs	 that	 hash	 to	 a	 frequent	
bucket;	 they	could	all	be	 frequent	pairs	 from	the	 information	
available	to	us.	

• If	the	count	is	less	than	s,	we	know	no	pair	that	hashes	to	this	
bucket	can	be	frequent.	

Next	define	the	set	of	candidate	pairs	for	the	next	pass.	
	
	

	
Analysis		

• No	false	negatives:	catches	all	elements	in	F	
• False	positives	are	possible	
• If	b=n|S|	at	most	1/n	of	the	bit	array	is	1,	only	1/nth	of	elements	

not	in	S	get	through	filter		
o Note	will	be	less	than	1/N	given	collisions	
o Assuming	hashing	uniformly	at	random	

	
During	the	first	pass	of	the	Apriori	algorithm,	most	memory	is	idle.		
Idea:	use	free	memory	for	a	hash	table	

• Hash	pairs	 of	 items	 that	 appear	 in	 a	 transaction:	we	need	 to	
generate	these	

• Just	the	count,	not	the	pairs	themselves	
• Interested	in	the	presence	of	a	pair	AND	whether	it	is	present	at	

least	s	(support)	times.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 78	

	

	
	
	 	 Observation	about	buckets	

• A	bucket	that	a	frequent	pair	hashes	to	meet	minimum	support	
threshold.	Cannot	eliminate	any	member	of	this	bucket	

• Even	 without	 any	 frequent	 pair,	 a	 bucket	 can	 be	 frequent.	
Cannot	eliminate	any	member	of	this	bucket	

• Best	 case:	 count	 for	 a	 bucket	 is	 less	 than	minimum	 support.	
Eliminate	all	pairs	hashed	to	this	bucket	even	if	the	pair	consists	
of	two	frequent	items.	

	

	
ð An	example	is	provided	in	the	slides.		

	
5. Limiting	disk	I/O	

	
A-Priori,	PCY,	etc.,	 take	k	passes	to	find	frequent	 itemsets	of	size	k.	 in	other	words,	
previously	discussed	algorithms	use	one	pass	for	each	size	of	itemset	we	investigate.	
If	 the	main	memory	 is	 too	 small	 to	 hold	 the	 data	 and	 the	 space	 needed	 to	 count	
frequent	itemsets	of	one	size,	there	does	not	seem	to	be	any	way	to	avoid	k	passes	to	
compute	the	exact	collection	of	frequent	itemsets.		

• Good:	clever	pruning	strategy	
• Bad:	still	requires	lots	of	pass	over	data	L		

	
Many	applications	where	it	is	not	essential	to	discover	every	frequent	itemset.	Hence,	
it	is	quite	sufficient	to	find	most	but	not	all	of	them.	
Making	one	pass	over	the	data	is	what	the	eliminating	factor	is.		
Other	techniques	use	2	or	fewer	passes	for	all	sizes:		

• Simple	algorithm	
• SON	(Savasere,	Omiecinksi,	and	Navathe)	
• Toivonen	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 79	

ð The	question	is,	can	we	find	all	frequent	itemsets	in	2	passes	or	less?	
	

5.1 Simple	Algorithm:	Sample	
	

Idea:	instead	of	using	the	entire	file	of	baskets,	we	could	pick	a	random	subset	of	the	
baskets	and	pretend	it	is	the	entire	dataset.		
	
Procedure:	Set	of	the	data,	 I	have	a	database,	then	memory.	We	need	to	have	two	
parts	of	the	memory.	We	will	randomly	sample	baskets	and	make	sure	these	end	up	in	
the	memory.	We	then	have	some	data	in	memory,	we	then	run	Apriori	on	the	sample.		
So	 we	 need	 to	 think	 about	 the	 support	 threshold,	 that	 scales	 to	 the	 size	 of	 the	
database.	That	is	to	say,	scale	back	support	count,	e.g.,	use	s/100	if	sample	is	1/100	of	
original	DB	size.		
	
The	safest	way	to	pick	the	sample	is	to	read	the	entire	dataset,	and	for	each	basket,	
select	that	basket	for	the	sample	with	some	fixed	probability	p.	 In	case	our	baskets	
appear	in	random	order	in	the	file	already,	then	we	do	not	even	have	to	read	the	entire	
file.		
	
Once	we	have	selected	our	sample	of	the	baskets,	we	use	part	of	main	memory	to	
store	these	baskets.	The	balance	of	the	main	memory	is	used	to	execute	one	of	the	
algorithms	we	have	discussed,	such	as	A-Priori,	PCY,	…	the	algorithm	must	run	passes	
over	 the	main-memory	 sample	 for	 each	 itemset	 size,	 until	 we	 find	 a	 size	 with	 no	
frequent	items.		
Misses	sets	frequent	in	whole	but	not	in	sample	

• Can	use	even	smaller	support	
• E.g.,	s/125	instead	of	s/100	

	
Optional:	verify	guesses	on	entire	data	set.		

	
This	algorithm	requires	at	most	two	passes:	one	pass	to	construct	the	sample	and	then	
one	sample	if	you	want	to	verify	guesses.		
	
This	can	be	very	fast;	It	is	also	very	simple.	Of	course	the	algorithm	will	fail	if	whichever	
method	 seen	 cannot	 be	 run	 in	 the	 amount	 of	main	memory	 left	 after	 storing	 the	
sample.	
	

	
	

ð Be	 careful,	 it	 cannot	be	 relied	upon	either	 to	produce	all	 the	 itemsets	 that	 are	
frequent	in	the	whole	dataset,	nor	will	it	produce	only	itemsets	that	are	frequent	
in	the	hole;	an	itemset	that	is	frequent	in	the	whole	but	not	in	the	sample	is	a	false	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 80	

negative,	while	an	itemset	that	is	frequent	tin	the	sample	but	not	the	whole	is	a	
false	positive.		

ð Retain	as	frequent	only	those	itemsets	that	were	frequent	in	the	sample	and	also	
frequent	 in	 the	whole.	This	 improvement	will	eliminate	all	 false	positives,	but	a	
false	negative	is	not	counted	and	therefore	remains	undiscovered.		
	

5.2 The	SON	Algorithm	
ð Savasere,	Omiecinski,	and	Navathe	(SON)	

	
This	 improvement	avoids	both	false	negatives	and	false	positives,	at	 the	cost	of	
making	two	full	passes.		
	
Idea:	divide	the	input	file	into	chunks,	treat	each	chunk	as	a	sample,	and	run	the	
simple,	randomized	algorithm	ion	that	chunk.	Use	ps	as	threshold,	if	each	chunk	is	
fraction	p	of	the	whole	file,	and	s	 is	the	support	threshold.	Store	on	disk	all	 the	
frequent	itemsets	found	for	each	chunk.	
	
Once	all	chunks	have	been	processed,	take	the	union	of	all	the	itemsets	that	have	
been	found	frequent	for	one	or	more	chunks.	These	are	the	candidate	itemsets.		
	
Monotonicity:	every	 itemset	that	 is	frequent	 in	the	whole	 is	frequent	 in	at	 least	
one	chunk,	and	we	can	be	sure	that	all	the	truly	frequent	itemsets	are	among	the	
candidates;	i.e.,	there	are	no	false	negatives.	

	
• 1st	pass:	read	each	chunk	and	process	it	
• 2nd	pass:	count	all	the	candidate	itemsets	and	select	those	that	

have	support	at	least	s	as	the	frequent	itemsets	
	

	
	

5.3 Toivonen’s	Algorithm	
	
Again,	it	uses	the	simple	algorithm,	but	lower	the	threshold	s	for	the	sample.	Ex	if	the	
sample	is	1%	of	the	baskets,	use	s/125	vs.	s/100.		
	
Goal:	avoid	missing	truly	frequent	itemsets.		
	
Toivonen’s	 algorithm	 begins	 by	 selecting	 a	 small	 sample	 of	 the	 input	 dataset,	 and	
finding	from	it	the	candidate	frequent	itemsets.	It	is	essential	that	the	threshold	is	set	
to	something	less	than	its	proportional	value.	The	smaller	we	make	the	threshold,	the	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 81	

more	 main	 memory	 we	 need	 for	 computing	 all	 itemsets	 that	 are	 frequent	 in	 the	
sample,	but	the	more	likely	we	are	to	avoid	the	situation	where	the	algorithm	m	fails	
to	provide	an	answer.	
	
We	then	construct	the	negative	border.	This	is	the	collection	of	itemsets	that	are	not	
frequent	in	the	sample,	but	all	of	their	immediate	subsets	are	frequent	in	the	sample.	
	
Example:	ABCD	is	in	the	negative	border	if	and	only	if:		

• It	is	not	frequent	ni	the	sample,	and	
• ABC,	ABD,	ACD,	BCD	are	all	frequent	in	sample.		

A	is	negative	border	if	and	only	of	
• It	is	not	frequent	in	the	sample	
• Empty	set	is	frequent	unless	the	number	of	baskets	<	support	

	

	
	
To	complete	the	algorithm,	we	make	a	pass	through	the	entire	dataset,	counting	all	
the	itemsets	that	are	frequent	in	the	sample	or	are	in	the	negative	border.		
	
There	are	two	possible	outcomes	

• No	member	 of	 the	 negative	 border	 is	 frequent	 in	 the	 whole	
dataset.	 In	 this	 case,	 the	 correct	 set	 of	 frequent	 itemsets	 is	
exactly	those	itemsets	from	the	sample	that	were	found	to	be	
frequent	in	the	whole.	

• Some	member	of	the	negative	border	is	frequent	in	the	whole.	
The	we	cannot	be	sure	that	there	are	not	some	even	larger	sets,	
in	 neither	 the	 negative	 border	 nor	 the	 collection	 of	 frequent	
itemsets	for	the	sample,	that	are	also	frequent	in	the	whole.	So,	
we	 can	 give	 no	 answer	 at	 this	 time	 and	 must	 repeat	 the	
algorithm	with	a	new	random	sample.	

	
Theorem:	if	there	is	an	itemset	that	is	frequent	in	the	whole,	but	not	frequent	in	the	
sample,	then	there	is	a	member	of	the	negative	border	for	the	sample	that	is	frequent	
in	the	whole.		
	
Proof:	prove	it	by	contradiction	
	
Suppose	not;	i.e.;		

1) There	is	an	itemset	S	frequent	in	the	whole	but	not	frequent	in	the	
sample,	and	

2) Nothing	in	negative	border	is	frequent	in	the	whole	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 82	

Let	T	be	a	smallest	subset	of	S	that	is	not	frequent	in	the	sample.	T	is	frequent	in	the	
whole	(S	is	frequent	+	monotonicity).	T	is	in	the	negative	border	because	otherwise	it	
would	not	be	the	smallest.	
Any	removal	from	T	results	in	something	that	is	frequent.		
	
ð Why	 are	 these	 variants	 interesting?	 These	 employ	 standard	 things	 to	 improve	

efficiency:	 hashing	 and	 sampling.	 Hashing	 is	 a	 good	 technique,	 used	 in	 many	
algorithms	to	make	things	go	fast.	These	are	standard	techniques	that	we	will	often	
encounter.		
They	can	be	used	in	many	other	contexts,	so	good	to	know	there	strengths	and	
weaknesses.		
	
Always	think	about	how	you	can	improve	an	algorithm!	
	

6. FP	Growth	
	

Quick	reminder,	where	are	we	so	far?		
• A-Priori	

o Guaranteed	to	be	complete	
o Slow	due	 to	 repeated	DB	 scans	 to	 generate	 candidate	

itemsets	
Although	 the	 Apriori	 heuristic	 achieves	 good	 performance	
gained	by	reducing	the	size	of	candidates	sets,	it	may	suffer	from	
some	 costs	 in	 situations	 with	 a	 large	 number	 of	 frequent	
patterns,	 long	 patterns,	 or	 quite	 low	 minimum	 support	
thresholds.	
	

• Toivonen’s	Algorithm	
o Only	requires	two	DB	scans	
o Not	guaranteed	to	be	complete	

	
ð Can	we	get	fast	and	complete?		

	
There	is	an	approach	called	Frequent-pattern	tree	(FP	tree)	that	tries	to	do	this.	It	
mainly	 consists	 out	 of	 two	 big	 ideas.	 This	 is	 an	 extended	 prefix-tree	 structure	
storing	crucial,	quantitative	information	about	frequent	patterns.		
	
Everything	we	have	seen	so	far	is	based	on	the	A-Priori	algorithm,	count	everything	
of	size	1	before	moving	to	size	2,	and	so	on.	Studies	have	shown	that	FP-growth	is	
about	an	order	of	magnitude	faster	than	Apriori,	especially	when	the	data	set	is	
dense	and/or	when	the	frequent	patterns	are	long.		
	

• Data	 compression:	 Exploit	 redundancy	 to	 compactly	 but	
completely	 represent	 frequent	 items	 in	 DB.	 Compress	 the	
database	to	something	smaller	that	fits	in	the	main	memory.	

• Avoids	repeated	DB	scans.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 83	

	
A	compact	data	structure	can	be	designed	based	on	the	following	observations	

• Since	only	 the	 frequent	 items	will	play	a	 role	 in	 the	 frequent-
pattern	 mining,	 it	 is	 necessary	 to	 perform	 one	 scan	 of	
transaction	database	DB	to	identify	the	set	of	frequent	items	

• If	the	set	of	frequent	items	of	each	transaction	can	be	stored	in	
some	compact	structure,	it	may	be	possible	to	avoid	repeatedly	
scanning	the	original	transaction	database	

• If	multiple	transactions	share	a	set	of	frequent	items,	it	may	be	
possible	 to	 merge	 the	 shared	 sets	 with	 the	 number	 of	
occurrences	registered	as	count.	It	is	easy	to	check	whether	two	
sets	are	identical	if	the	frequent	items	in	all	of	the	transactions	
are	listed	according	to	a	fixed	order.	

• If	two	transactions	share	a	common	prefix,	according	to	some	
sorted	order	of	frequent	items,	the	shared	parts	can	be	merged	
using	 one	 prefix	 structure	 as	 long	 as	 the	 count	 is	 registered	
properly.	 If	 the	 frequent	 items	 are	 stored	 in	 their	 frequency	
descending	 order,	 there	 are	 better	 chances	 that	 more	 prefix	
stings	can	be	shared.	
	

The	FP-tree	construction	takes	exactly	two	scans	of	the	transaction	database:	the	
first	scan	collects	the	set	of	frequent	items,	and	the	second	constructs	the	FP-tree.	
	

	
To	discover	item	sets	in	the	FP-tree,	partition	the	data	and	count	
within	 each	 partition:	 aka	 Divide-and-conquer.	 It	 avoids	
candidate	generation.		
	
Looking	 at	 the	 five	 transactions,	we	 observe	 that	 the	
first	 one	 and	 the	 second	 one	 are	 exactly	 the	 same	

transactions.	The	transaction	is	repeated	so	we	could	just	store	it	once	with	
count.	However,	it	is	very	unlikely	to	find	man	exact	repeats.	The	question	is,	
how	to	do	better	than	this?		
When	we	look	at	the	data,	there	are	still	repeated	structures	in	this	data.	We	can	see	
things	like	f	appears	in	all	transactions.		
Question:	how	could	we	exploit	the	structure	to	compress?	The	goal	is	to	very	quickly	
and	cheaply	compress	the	data.	 Ideally	we	should	compress	the	data	in	one	or	two	
passes.		

	
Instead	of	storing	f	once.	We	store	it	once	and	we	keep	track	of	the	
counts.	Each	node	in	the	three	is	just	an	item	with	the	count.	We	
can	reconstruct	the	pattern	by	going	down	the	tree.		
Question:	is	there	a	better	way	to	order	the	data?	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 84	

	
	 	

General	idea:	Divide-and-conquer	to	recursively	grow	frequent	pattern	path	using	the	
FP-tree.		
	
Method:		

• For	each	item,	construct	is	conditional	pattern-base	and	then	its	
conditional	FP-tree	

• Repeat	process	on	each	newly	created	conditional	FP-tree	until	
o The	resulting	FP-tree	is	empty,	or	
o It	contains	only	one	path	

	

	
	

ð A	detailed	example	is	given	in	the	slides.	
	

ð Why	 is	 this	 a	 beneficial	 technique?	 It	 is	 a	 very	 compact	 representation	 of	 the	
database.	We	just	increase	the	counts	instead	of	just	keeping	the	itemsets	several	
times	into	the	database.		

	
Why	is	FP-Growth	Fast?		

• No	candidate	generation,	no	candidate	test	
• Use	compact	data	structure	
• Eliminate	repeated	database	scans	
• Basic	operation	is	counting	and	FP-tree	building	

	
7. Incorporating	constraints	into	mining	

	
It	is	not	realistic	to	find	all	patterns	in	a	database	autonomously.		

• Too	many	patterns	
• Patterns	too	unfocused	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 85	

	
Data	mining	 is	 interactive:	users	 should	provide	advice	and	direction	 to	algorithms.	
Usually	we	have	a	hypothesis	we	want	to	evaluate	by	looking	at	the	data.		
	
Constraint-based	mining	

• User	provides	constraints	on	what	to	mine	
• System	exploits	constraints	for	efficiency	

	
Type	of	constraints	

• Interest	constraint:	Ex:	rule	meets	minimum	support,	
confidence,	interest	thresholds	

• Data	constraint.	Ex:	products	sold	together	in	Leuven,	in	March	
2017-04-29		

• Rule	or	pattern	constraint.		
o Content:	small	male	(sum	<10)	triggers	 large	sale	(sum	

>200)	
o From:	meta-rule.	P(x,	y)	Ù	Q(x,	w)	→	takes	(x,	database	

systems)		
	

Given	constraints,	a	mining	algorithm	should	be		
• Sound:	only	finds	itemsets	that	satisfy	constraints	
• Complete:	finds	all	itemsets	that	satisfy	constraints	

	
A	Naïve	solution	finds	all	frequent	itemsets,	then	test	them	for	constraint	satisfaction.	This	
is	an	efficient	technique.		
	
The	efficient	approach	is	to	analyse	the	itemset	and	push	the	constraint	into	the	mining	
process.	Then,	things	will	be	much	more	efficient.		
	
Anti-Monotonicity:	when	an	itemset	S	violates	the	constraint,	so	does	any	of	its	superset.		

	
	
	
	 Succinctness:	if	A	is	succinct	you	can	enumerate	all,	and	only	those,	that	satisfy	it.		
	

Idea:	without	looking	at	the	data,	can	determine	itemsets	that	satisfies	the	constraint.		
Ex:	min(S.Price)	£	v	is	succinct		
	

8. Presenting	results,	other	metrics	
	

• Maximal	itemsets:	no	immediate	superset	is	frequent	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 86	

• Closed	 itemsets:	 no	 immediate	 superset	 has	 the	 same	 count	
(>0)	

o Stores	what	is	frequent	and	exact	counts	
o Lossless	encoding	of	frequent	itemsets	

	

	
ð Why	do	we	need	these	notions	of	maximal	and	closed	itemsets?		

• Way	to	compress	the	search	space.	What	is	the	intuition	if	we	
only	keep	the	closed	itemsets?	Or	if	we	only	keep	the	maximal	
ones,	in	which	case	do	we	lose	information?		

o If	 we	 only	 keep	 the	 closest,	 we	 can	 generate	 all	 the	
frequent	itemsets.		

	
Mining	Maximal	Itemsets:	MaxMiner	
	

	
We	want	to	try	something	that	is	as	big	as	possible	and	frequent.	Always	add	sub-branches.		
	
Pruning	techniques	

• Local	pruning	(e.g.,	at	node	A)		
o If	h(N)Èt(N)	is	frequent,	prune	whole	sub-	tree	(e.g.,	if	ABCD	is	frequent	don’t	

explore)		
o If	 h(N)	È	 i,	 for	 some	 i	Î	 t(N)	 is	 NOT	 frequent	 remove	 i	 from	 “h”	 before	

expanding	(e.g.,	if	AC	not	frequent,	remove	C)		
• Global	pruning:	When	max	pattern	found	(e.g.,	ABCD).	Prune	all	nodes	(e.g.,	B,	C,	D)	

where	h(N)Èt(N)	is	a	subset	(e.g.,	subset	of	ABCD)		
	
	

ð An	example	is	given	in	the	slides	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 87	

We	 have	 looked	 at	 two	 popular	 objective	measurements:	 support	 and	 confidence.	
There	 are	 other	 things	 we	 can	 look	 at,	 which	 are	 more	 subjective	 measures:	
interestigness.	A	rule	(pattern)	is	interesting	if	it	is	

• Unexpected	(surprising	to	the	user)	
• Actionable	(the	user	can	do	something	with	it)	

	
	

	
	

To	sum	up	…	
	
Characterization	of	algorithms	

• Search	techniques:		
o Breadth-first:	Apriori	and	its	variants	
o Depth-first:	FP-Growth	
o Look	ahead	

• Pruning	techniques	
o Subset	infrequent	
o Hashing	
o Superset	frequency	

• Limiting	disk	accesses	is	the	primary	goal	
	

Presenting	rules	
• Which	itemsets	

o All	itemsets	
o Closed	itemsets	
o Maximal	itemsets	

• What	metrics	
o Support,	confidence,	interest	
o Lift	
o Correlation	

	
ð What	is	the	difference	between	standard	rule	induction	and	association	rules?		

o Rule	 induction:	 the	 rule	 is	 just	 a	 target.	 In	 rule	 mining	 we	 perform	 a	
classifier.	

o Association	rules	
	

Association	rules	are	an	efficient	way	to	mine	interesting	information	in	very	
large	 databases:	 get	 probabilities.	 It	 does	 not	 require	 (but	 can	 exploit)	 user	
guidance	for	interesting	patterns.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 88	

A-priori	algorithm	and	its	extensions	allow	the	user	to	gather	a	good	deal	of	
information	without	too	many	passes	through	data.		
	

Food	for	thought:	Pattern	explosion	is	a	well-known	problem	in	frequent	itemset	mining.	High	
support	 thresholds	 typically	 result	 only	 in	 few	 well-known	 patterns;	 but	 for	 low	 support	
thresholds,	the	number	of	frequent	itemsets	can	easily	be	orders	of	magnitude	larger	than	
the	number	of	transactions.	Knowledge	discovery	in	such	humongous	itemset	collections	is	
virtually	impossible.	
What	are	the	causes	of	pattern	explosion?	Can	you	think	of	a	way	to	solve	or	at	least	alleviate	
this	issue?	
	

• Problem	with	the	choice	of	support	because	there	is	a	trade-off.		
o Too	low:	lots	and	lots	of	itemsets	
o Too	high:	few	itemsets	which	are	well-known	

• If	there	are	statistical	dependencies	between	some	items	then	you	see	them	appearing	
everywhere	together,	which	might	not	add	additional	information.		
	
How	 can	we	deal	with	 it?	We	 could	 for	 instance	 use	 constraints.	 If	we	 have	 some	
background	information,	we	can	exclude	some	itemsets.		

	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 89	

CHAPTER	7:	MINING	SEQUENCES	
	

• Understand	how	sequential	pattern	mining	relates	to	association	rule	mining	
• Introduce	the	basic	terminology	and	concepts	of	sequential	pattern	mining	
• A	brief	introduction	to	the	different	algorithms	for	sequential	pattern	discovery	

	
	

1. Motivation	
	

Idea:	 Sequential	 pattern	 mining	 discovers	 frequent	 subsequences	 as	 patterns	 in	 a	
sequence	database.	It	is	an	important	data	mining	problem	with	broad	applications.		
	

	
	

	
	

• Association	rule	mining:	find	relationships	between	items	that	
co-occur	simultaneously.	Looking	at	associations	rule	mining	we	
were	looking	at	associations	and	connections	between	items	in	
a	market	basket	for	instance.		

• Sequential	pattern	analysis	considers	time	(order	transactions	
occur	 in).	 In	 sequential	pattern	mining	we	will	 take	 the	order	
into	account.	The	order	matters	here.	Often	the	order	can	be	
important	in	decision	making.		
	
Many	 different	 applications	 domains	 are	 characterized	 by	
sequential	data.	Often	the	time	or	order	of	actions/events	can	
be	 relevant	 in	 decision	making.	 It	 is	 important	 to	 be	 able	 to	
capture	those	types	of	dependencies.		
	
The	 Sequential	 pattern	mining	 task	 is	 quite	 similar	 to	 that	 of	
association	rule	mining.		
	
Given:	A	sequential	database	and	minimum	support	threshold.	
Find:	All	(maximal)	frequent	sub	sequences	

	
2. Background	and	definitions	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 90	

We	previously	worked	on	transaction	database,	assuming	a	transaction	ID.	Here,	we	
will	time	stamp	a	customer	identifier.	So	we	need	to	make	a	sequence	database	based	
on	the	transactions	of	each	customer.		

	
	 	
Transaction	Database	
	

	
	

Sequence	Database	
	

	
The	customer-sequence	database	is	a	time-order	list	of	
a	 customer’s	 transactions.	 For	 instance,	 customer	 1	
bought	 a	 PC	 before	 paper.	 Customer	 4	 bought	 a	 PC	
before	a	printer	and	ink.	

We	can	group	all	transactions	by	users.		

	
	
A	sequence	is	just	an	ordered	list	of	itemsets.	Items	in	the	transactions	remain	
unordered.		

	
The	 length	 of	 a	 sequence	 is	 the	 number	 of	 itemsets	 in	 the	 sequence,	 the	
number	of	transactions	in	it.	

	
	

A	 sequence	 S1	 =	 (a1,a2,...,an)	 is	 contained	 in	 another	 sequence	 S2	 =	
(b1,b2,...,bm)	IF		

• 	Exists	integers	i1	<	i2<...<	in	such	that		
• 	a1	⊆	bi1	AND	a2	⊆	bi2	AND	...	AND	an	⊆	bin		

I	can	find	some	transactions	in	S2	such	that	S1	occurs	in	it.	So	we	have	to	find	a	
way	to	map	those	transactions	of	S1	belonging	to	S2.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 91	

	
An	 item	can	occur	at	most	once	 in	an	element	of	a	sequence,	but	can	occur	
multiple	times	in	different	elements	of	a	sequence.		
	

• A	 customer	 supports	 a	 sequence	 s	 if	 s	 is	 contained	 in	 the	
customer	sequence.		
The	 support	 is	 the	 fraction	 of	 customers	 who	 support	 the	
sequence.	

• A	 sequence	 is	 frequent	 if	 it	 meets	 a	 minimum	 support	
threshold.		

• A	 sequence	 s	 is	maximal	 if	 it	 is	 not	 contained	 in	 any	 other	
sequence.	

	
Ex:	

	

	
Rmq:	 <(Printer)	 (Ink)>	means	 that	 the	 printer	 and	 the	 ink	 are	
bought	 in	 two	 separate	 transactions.	 Notice	 that	 customer	 4	
buys	 both	 the	 printer	 and	 ink	 but	 in	 the	 same	 transactions.	
Which	is	different	from	<(Printer)	(Ink)>.	

	
Remember	the	Apriori	property:	if	a	sequence	is	not	frequent,	then	none	of	its	
super-sequences	are	frequent.		

	
Sequential	pattern	mining	faces	some	challenges.	Indeed,	databases	contain	a	
huge	number	of	possible	sequential	patterns.	Because	we	are	now	considering	
the	order.	Hence,	generating	candidates	tends	to	be	quite	challenging.		
Algorithms	should	find	all	patterns	(if	possible)	that	meet	a	minimum	support	
threshold.	They	should	also	be	efficient	and	scalable	and	incorporate	the	user	
provided	constraint.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 92	

ð The	big	challenges	reside	in	generating	candidates.		
	

There	are	2	possible	ways	to	extend	a	possible	candidate.		
• Extend	the	sequence	to	include	another	itemset	(i.e.,	a	separate	

transaction).	I	have	a	sequence	of	a	certain	length,	for	instance	
length	2	and	I	add	a	new	transaction,	leading	to	a	sequence	of	
length	3.		

	
• Extend	the	number	of	items	included	in	one	itemset	(i.e.,	model	

co-occurring	items).		

	
	
	 	 Assume	that	we	have	6	frequent	length	1	sequences.		
	 	 First:	Extend	the	length	of	the	sequence.	This	yields	6x6	=	36	candidates.	
	

	
	 	 	

Second:	we	will	extend	the	size	of	an	item	set.	This	yields	6x5/2	=	15	candidates.	
Instead	of	having	15	itemsets	we	will	have	15+36	itemsets.		

	 	 	
There	are	a	number	of	applications	that	people	look	at.		

§ Think	about	retail	shopping.	First,	buy	a	computer,	second,	by	printer	
within	the	next	3	months.		

§ Other	 applications	 are	 in	 the	 medical	 domains.	 First	 distinguish	
symptoms,	then	diseases	and	third	treatments.		

§ Financial	markets:	commonly	occurring	transaction	orders.		
§ Web	data.	Ex:	click	streams.	What	order	do	people	visit	pages	in?		
§ Telephone	calling	patterns:	what	order	do	people	call	other	sin?		
§ DNA	sequences:	what	structure	is	commonly	repeated?	

	
	

Quick	check	…		

	
What	is	the	support	of:		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 93	

§ (PC).	Support	is	2.	We	only	care	about	the	number	of	customers	who	
bought	a	pc.	Here:	customers	3	and	4.	We	don’t	count	the	number	of	
times	a	pc	was	bought.		

§ (Ink,	Paper).	Support	is	3.		
§ (PC)	(Ink).	Support	is	2		

	
Given:	10	things	of	size	1	are	found	to	be	frequent.		
How	many	 item	sets	must	be	evaluated	on	 the	next	 search	 iteration?	45	 (=	
10x9/2)	
How	many	 sequences	 must	 be	 evaluated	 on	 the	 next	 search	 iteration?	 45	
(items)	+	100	=	145	(=	10x9/2)	+	102)	
	

3. FreeSpan	
	

ð Can	we	 develop	 a	method	which	may	 absorb	 the	 spirit	 of	 Apriori	 but	 avoid	 or	
substantially	reduce	the	expensive	candidate	generation	and	test?		
	

FreeSpan	 is	basically	 the	 first	 thing	we	 think	of	 in	 sequential	mining.	The	 idea	 is	 to	
adapt	the	FP-Growth	to	the	sequential	case.		
	
Idea:	 Use	 frequent	 items	 to	 recursively	 project	 sequence	 databases	 into	 a	 set	 of	
smaller	 projected	 databases	 and	 grow	 subsequence	 fragments	 in	 each	 projected	
database.		
	
Overview:	Divide-and-conquer	approach	

§ Step	1:	Count	sequences	to	find	f-list	
§ Step	2:	Recurse	

• Project	sequence	database	into	a	set	of	smaller	databases	
• Mine	frequent	patterns	in	each	projected	database.		

The	big	challenge	here	is	that	order	matters!	
	
Step	1:	Find	length-1	sequential	patterns	and	list	them	in	support	descending	order	

	

ð f_list	=	a:4,b:4,c:4,d:3,e:3,f:3;	g:1		

Rmq:	we	don’t	count	how	often	a	pattern	appears	in	the	transactions.	We	count	
the	number	of	customers’	transactions	in	which	the	1-length	sequence	appears.		

Here,	we	can	prune	g,	as	it	only	has	a	support	of	1.	Hence,	we	don’t	care	about	g.	we	
will	use	the	other	frequent	sequences	to	partition	the	search	space.		
	
Step	 2:	 Divide	 the	 search	 space.	 The	 complete	 set	 of	 sequence	 patterns	 can	 be	
partitioned	into	6	disjoint	subsets	(move	down	the	f_list).		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 94	

	
	 The	subsets	of	sequential	patterns	can	be	mined	by	constructing	projected	databases.		
	

§ Finding	 sequential	 patterns	 containing	 only	 item	 a.	 By	 scanning	
sequence	database	once,	the	only	two	sequential	patterns	containing	
only	item	a	are:	(a)	and	(aa).	

§ Finding	 sequential	 patterns	 containing	 item	b	 but	 no	 item	after	 b	 in	
f_list.	This	can	be	achieved	by	constructing	the	(b)-projected	database.	

§ Finding	 other	 subsets	 of	 sequential	 patterns.	 Others	 subsets	 can	 be	
found	similarly,	by	constructing	corresponding	projected	database	and	
mining	 them	 recursively.	 These	 databases	 are	 constructed	
simultaneously	during	one	scan	of	the	original	sequence	database.	

	
	 Let’s	look	at	the		projected	database.		
	

	
	
	 	 	
	 	
Pro’s	 Con’s	

• Projections	 replace	 candidate	
generate	

• Con	project	at	any	point	in	sequence	
• Projected	 sequences	 may	 not	 be	

shorter	
	

	
In	 this	case	 I	didn’t	save	that	much	work.	My	sequences	are	not	that	
shorter	 than	 the	 previous	 sequences.	 I	 just	managed	 to	 remove	 one	
customer	ID.		
	

4. PrefixSpan	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 95	

Idea:	 instead	 of	 projecting	 sequence	 databases	 by	 considering	 all	 the	 possible	
occurrences	 of	 frequent	 subsequences,	 the	 projection	 is	 based	 only	 on	 frequent	
prefixes	 because	 any	 frequent	 subsequence	 can	 always	 be	 found	 by	 growing	 a	
frequent	prefix.	
	
PrefixSpan	mines	 the	 complete	 set	of	patterns	but	 it	 greatly	 reduces	 the	efforts	of	
candidate	 subsequence	 generation.	 Moreover,	 it	 reduces	 the	 size	 of	 projected	
databases	and	leads	to	efficient	processing.		
PrefixSpan	 outperforms	 both	 the	 A-Priori	 algorithm	 and	 previously	 seen	 method,	
FreeSpan.			
	
Pro’s	

o Maintain	projection	idea,	avoid	candidate	generation.	We	want	to	guarantee	
we	do	less	work.		

o Projection	based	on	sequence	prefix:	ensure	that	sequences	get	progressively	
shorter.		

	
Definition:	Prefix	
	
Sequence	β	=<b1b2...bm>	is	a	prefix	of	sequence	α	=<a1a2...an>,	where	m	≤	n,	IFF		

• bi	=	ai	for	i	≤	m-1		
• bm	⊆	am		
• All	items	in	(am	–	bm)	are	alphabetically	after	those	in	bm		

	

	
	
	 Definition	:	Projection	
	

A	subsequence	α’	of	sequence	α	is	a	projection	of	α	w.r.t.	prefix	β	IFF		
• β	is	a	subsequence	of	α		
• α’	has	prefix	β		
• No	proper	super-sequence	α’’	of	α’	such	that	α’’	is	a	subsequence	of	α	and	has	

prefix	β		
	

	
	

Similarly,	what	we	can	do	is	look	at	the	Suffix.	Split	the	projection	into	two	part,	the	
prefix	(data)	and	the	suffix.		

	
• Let	α’	=<a1a2...an>	be	the	projection	of	α	w.r.t.	prefix	β	=<a1a2...am-1a’m>	(m	

≤n)		
• Sequence	γ=<a’’mam+1...an>	is	called	the	suffix	of	α	w.r.t.	prefix	β,	denoted	as	

γ=	α	/	β,	where	α’’m=(am-a’m)		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 96	

• We	also	denote	α’	=β⋅γ	
	

	
	

Projected	DB	 	
• Given,	prefix	β	and	suffix	γ	
• We	call	γ	the	β	projected	DB	

	
When	my	prefix	gets	longer	and	longer,	my	suffix	gets	smaller	and	smaller.		
	

	
The	first	occurrence	of	e	occurs	in	a	transaction	with	two	items,	so	we	don’t	
want	to	lose	the	fact	that	there	is	some	structure	and	that	e	co-occurs.	So,	we	
add	an	“_”,	to	indicate	that	f	should	occur	with	another	item.		

	
	

The	PrefixSpan	Algorithm	performs	a	divide-and-conquer	search	to	find	all	sequential	
patterns.		
	

• Step	1:	Find	all	frequent	length	1	sequences	
• Step	 2:	 Divide	 search	 space	 based	 on	 length	 1	 prefixes	 and	 recurse:	

PrefixSpan(α,	l,	S|	α)		
	

	
	

1. Scan	S|	α	to	find	frequent	items	b	such	that:		
a. b	can	be	assembled	to	the	 last	element	of	α	to	form	a	sequential	

pattern;	or		
b. 	can	be	appended	to	α	to	form	a	sequential	pattern		

	
2. For	each	frequent	item	b,	append	it	to	α	to	form	a	sequential	pattern	α’,	

and	output	α’;		
	

3. For	each	α’,	construct	α’-projected	database	S|	α’,	and	call	PrefixSpan(α’,	
l+1,	S|	α’).		

	
A	detailed	example	is	provided	in	the	slides	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 97	

Projected	DBs	allow	us	to	avoid	generating	candidate	sequences.		
• No	 candidate	 sequence	 needs	 to	 be	 generated	 by	

PrefixSpan.	It	only	grows	longer	sequential	patterns	from	
the	shorter	frequent	ones.	It	does	not	generate	nor	test	
any	 candidate	 sequence	 non-existent	 in	 a	 projected	
database.	

• The	 projected	 databases	 keep	 shrinking:	 a	 projected	
database	 is	 smaller	 than	the	original	one	because	only	
the	 postfix	 subsequences	 of	 a	 frequent	 prefix	 are	
projected	into	a	projected	database.		

• Major	cost	of	PrefixSpan	is	the	construction	of	projected	
databases.	

	
The	 costliest	 operation	 is	 building	 projected	 DBs.	 Every	 time	 I	 perform	 a	 new	
recursive	 step,	 i	 have	 to	 build	 a	 new	 database.	 	 If	 the	 number	 and/or	 size	 of	
projected	databases	can	be	reduced,	the	performance	of	sequential	pattern	mining	
can	 be	 improved	 substantially.	 There	 are	 two	 ways	 to	 improve	 computational	
efficiency.		

	
o Bi-level	projections	to	reduce	the	number	and	sizes	of	projected	DBs.	

The	first	scan	identifies	frequent	length	1	sequences.	The	second	scan	
constructs	a	triangular	matrix	instead	of	projected	databases	and	count.		

• Support(a,a)	for	each	item		
• For	each	pair	(a,b)	of	frequent	items	count	

o Support(<ab>)	
o Support(<ba>)	
o Support(<(ab)>	

• On	the	next	level,	construct	projected	DBs		
We	will	look	at	very	small	parts	of	the	data.	Look	at	things	we	think	we	
need.		
	

	
	
For	each	frequent	length-2	sequential	pattern	construct	a	projected	DB.	
Then	on	next	scan	build	the	matrix.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 98	

	
	

ð For	more	information,	cfr.	Hand-written	notes	in	the	slides.			
	

o Pseudo-projection	reduces	cost	 if	projected	database	fits	 in	memory.	
We	want	to	avoid	copying.		
Insight:	 Postfixes	 of	 sequences	 often	 appear	 repeatedly	 in	 recursive	
projected	databases.		
Pseudo-projection:	avoid	repeated	physical	copying	postfix	

• Efficient	if	projected	DB	fits	in	memory	
• Costly	if	projected	DB	is	disk	resident		

	
Idea:	use	points	to	avoid	copying	
	
With	each	projection	store	

• Pointer	to	base	sequence.	Points	to	where	I	want	to	be	
in	the	sequence.		

• Offset	to	where	post-fix	starts	

	
Instead	of	building	the	data,	I	just	maintain	a	pointer.		

	
To	conclude,	many	important	domains	are	characterized	by	the	presence	of	sequential	
data.		
Sequential	 pattern	 mining	 helps	 capture	 time	 dependences	 between	 events.	 It	 is	
similar	to	frequent	itemsets	but	considers	orders	of	elements.		

	
ð Common	algorithms	are	inspired	by	itemset	mining.		

	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 99	

CHAPTER	8:	CLUSTERING	
	

1. Unsupervised	learning,	clustering	intro	
	

Clustering	is	the	process	of	examining	a	collection	of	“points”,	and	grouping	the	points	
into	“clusters”	according	to	some	distance	measure.	
	
Goal:	find	groups	of	items	
	
Produce	clusters	such	that	things	that	occur	in	the	same	group	are	highly	similar,	or	
are	close	together	in	distance.		
A	good	clustering	method	will	produce	clusters	with		

• High	intra-class	similarity	
• Low	inter-class	similarity	

	
When	you	are	faced	with	the	clustering	task,	many	things	can	make	sense.	Ex:	divide	
set	into	groups.	You	can	do	grouping	based	on	gender	for	instance.		
Clustering	 is	 a	 subjective	 notion	 hence,	 it	 is	 difficult	 to	 give	 a	 precise	 definition	 of	
clustering	quality.	It	is	application	dependent	and	ultimately	subjective.	
	
Thinking	about	how	many	clusters	can	also	be	a	tricky	question.	How	many	clusters	do	
I	want?		
	

	
	
	 Remember	…		
	
	 Supervised	learning:	

• Data	are	set	of	pairs	<x,y>,	where	y=f(x)		
• Goal:	Approximate	f	

	
Unsupervised	learning:	the	data	is	just	x!	
Goal:	Find	structure	in	the	data	
Challenge:	Ground	truth	 is	often	missing	 (no	clear	error	 function,	 like	 in	supervised	
learning)	
	
One	way	to	think	about	clustering	is	that	it	is	an	unsupervised	learning	technique.	In	
unsupervised	learning,	you	don’t	have	a	label.	You	just	have	attributes.	The	goal	is	to	
find	a	structure	in	the	data,	based	on	the	attributes.	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 100	

><	In	supervised	learning	we	know	the	label	and	we	want	to	optimize	a	certain	metric:	
ROC,	AUC,	…		
	
Unsupervised	learning	tends	to	be	more	abstract.		
	
Why	is	clustering	useful?	It	can	be	interesting	to	look	at.	You	can	use	it	to	compress	
the	data.		

• Groups	of	data	are	often	useful	
• Compress	or	reduce	the	data	(e.g.,	establish	prototypes)	
• Identify	outliers	(or	novel	examples)	
• Pre-processing	for	supervised	learning	(e.g.,	feature	construction)	
• Visualization	of	the	data	

	
Given:	 D	 =	 {	 x1,	 x2,...,	 xN	 },	 where	 each	 xi	 is	 a	 d-dimensional	 feature	 vector	 (xi,1,	
xi,2,...,xi,d)		
Do:	Divide	the	N	vectors	into	K	groups	such	that	the	grouping	is	“optimal”		

	
There	are	3	key	issues	

• Measure	of	distances:	distance	between	examples,	between	clusters,	
between	example	and	clusters.		

• How	will	we	represent	clusters?		
• Assigning	items	to	clusters	

	
Clustering	methods	use	a	distance	(similarity)	measure	to	assess	the	distance	between	

• A	pair	of	instances	
• A	cluster	and	an	instance	
• A	pair	of	clusters	

	
Remember	that	 the	requirements	 for	a	 function	on	pairs	of	points	 to	be	a	distance	
measure	are	that	

• Distances	are	always	nonnegative,	and	only	the	distance	between	a	point	and	
itself	is	0.		

• Distance	is	symmetric;	it	doesn’t	matter	in	which	order	you	consider	the	points	
when	computing	their	distance.		

• Distance	measures	obey	the	triangle	inequality.	The	distance	from	x	to	y	to	z	is	
never	less	than	the	distance	going	from	x	to	z	directly.		
	

Given	a	distance	value,	we	can	convert	it	into	a	similarity	value:	sim(i,j)	=	1/[1+dist(i,j)]	
Not	always	straightforward	to	go	the	other	way.	We’ll	describe	our	algorithms	in	terms	
of	distances.		
	

	
Edit	distance:	The	number	of	required	edits	to	transform	a	string	into	another	string	
edit_distance(mining,smiling)	=	2	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 101	

	
We	 can	 divide	 clustering	 algorithms	 into	 two	 groups.	 There	 exist	 several	 types	 of	
cluster	structures:	the	hierarchical	structures	and	the	flat	structures.		

• Hierarchical	arrangement:	create	a	hierarchy	between	objects.		
• Flat	arrangement:	straight	partition	the	data	into	different	groups.		

	
Regarding	the	cluster	assignment,	we	distinguish	between	different	techniques	

• Hard	clustering:	Each	item	occurs	in	exactly	one	cluster	
• Soft	clustering:	Each	item	has	a	probability	of	belonging	to	a	certain	cluster	
• Disjunctive	vs.	overlapping	clusters.	Items	may	occur	in	multiple	clusters	

	
Clustering	approaches	
	

• Hierarchical:	Create	a	hierarchical	decomposition	of	 the	 set	of	objects	using	
some	criterion	

• Partitioning:	 Construct	 various	 partitions	 and	 then	 evaluate	 them	 by	 some	
criterion	

• Model-based:	Hypothesize	a	model	for	each	cluster	and	find	best	fit	of	models	
to	data	

• Density-based:	Guided	by	connectivity	and	density	functions	
	

2. Hierarchical	clustering	
	

2.1 The	algorithm	
	
This	algorithm	starts	with	each	point	in	its	own	cluster.	Clusters	are	combined	based	
on	their	“closeness”.	Combination	stops	when	further	combination	leads	to	clusters	
that	 are	 undesirable	 for	 one	of	 several	 reasons.	 Ex:	we	may	 stop	when	we	have	 a	
predetermined	 number	 of	 clusters,	 or	 we	may	 use	 a	measure	 of	 compactness	 for	
clusters,	 and	 refuse	 to	 construct	 a	 cluster	 by	 combining	 two	 smaller	 clusters	 if	 the	
resulting	cluster	has	points	that	are	spread	out	over	too	large	a	region.		
	
Hierarchical	 clustering	 can	 do	 top-down	 (divisive	 or	 bottom-up	 (agglomerative)	
clustering.		
	

• Top-down:	subdivide	objects.	Partition	the	items	
• Bottom-up:	every	object	 is	 in	an	 individual	cluster,	cluster	 them	all	 together	

into	one	aggregated	cluster.		
Given	a	set	of	instances,	I	create	one	cluster	for	each	instance.		
I	want	to	find	the	nearest	two	clusters.		

	
	 In	either	case,	we	maintain	a	matrix	of	distance	(or	similarity)	scores	for	all	pairs	of	

• Instances;	
• Clusters	(formed	so	far)	
• Instances	and	clusters	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 102	

Dendograms	are	used	to	represent	hierarchical	clustering.	We	have	distance	on	the	x-
axis.	Leaves	represent	the	instances.	The	bar	height	indicates	the	degree	of	difference	
within	the	cluster.		
	
	

	
	

	
	
	 We	have	to	decide	in	advance	on:		

• How	will	clusters	be	represented?		
• How	will	we	choose	which	two	clusters	to	merge?		
• When	will	we	stop	combining	clusters?	There	are	several	approaches	we	might	

use	to	stopping	the	clustering	process.		
o We	could	be	told,	or	have	a	belief,	about	how	man	clusters	there	are	in	

the	data.		
o We	could	stop	combining	when	at	some	point	the	best	combination	of	

existing	cluster	produces	a	cluster	that	is	inadequate.	
o Continue	 clustering	 until	 there	 is	 only	 one	 cluster.	 However,	 it	 is	

meaningless	to	return	a	single	cluster	consisting	of	all	the	points.		
	

2.2 Distance	measures	
	

	 The	distance	between	two	clusters	can	be	determined	in	several	ways		
• Single	link:	distance	of	two	most	similar	instances:	dist(cu,	cv)	=	min{dist(a,	b)	

|	a∈cu,	b∈cv}	Take	the	minimum	distances.		
Issue:	chain	phenomenon.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 103	

	
• Complete	link:	distance	of	two	least	similar	instances:	dist(cu,	cv)	=	max{dist(a,	

b)	|	a∈cu,	b∈cv}.	Take	the	maximum	distance	between	two	clusters.	Usually	
when	you	do	clustering	you	apply	complete	linkage.	

	
• Average	link:	average	distance	between	instances:	dist(cu,	cv)	=	avg{dist(a,	b)	

|	a∈cu,	b∈cv}		

	
	

If	we	merged	cu	and	cv	into	cj,	we	can	determine	distance	to	each	other	cluster:		
• Single	 link:	

dist(cj,	ck)	=	min{dist(cu,	ck)	,	dist(cv,	ck)}		
• Complete	 link:	

dist(cj,	ck)	=	max{dist(cu,	ck)	,	dist(cv,	ck)}		
• Average	link:|c	|	*	dist(c	,	c)	+	|c	|	*	dist(c	,	c)	dist(cj,	ck)	=		

	
	
	 Single	link	-	Chaining	
	

	
	

	
	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 104	

	
	
Bottom	line	

• Simple,	fast	
• Often	low	quality	

	
Complete	Link	

• Worst	case	O(n3)	
• Fast	algorithm:	Requires	O(n2)	space		
• No	chaining		
• Bottom	 line:	

Typically	much	faster	than	O(n3)	
• Often	good	quality		

	
	

2.3 Evaluation	of	the	algorithm	
	
Weaknesses	of	agglomerative	clustering	methods:		

• The	basic	algorithm	is	not	very	efficient.	At	each	step,	we	must	compute	the	
distances	between	each	pair	of	clusters,	in	order	to	find	the	best	merger.	

• Do	not	scale	well:	time	complexity	of	at	least	O(n2),	where	n	is	the	number	
of	total	objects		

• Can	never	undo	what	was	done	previously	
	
ð 	Integration	of	hierarchical	with	distance-based	clustering	

• BIRCH:	uses	CF-tree	and	incrementally	adjusts	the	quality	of	sub-clusters	
• CURE:	selects	well-scattered	points	from	the	cluster	and	then	shrinks	them	

towards	the	centre	of	the	cluster	by	a	specified	fraction	
	

BIRCH:	 Balanced	 Iterative	 Reducing	 and	Clustering	 using	Hierarchies	 (Zhang,	
Ramakrishnan	 &	 Livny,	 1996).	 It	 incrementally	 construct	 a	 CF	 (Clustering	
Feature)	tree.	
Parameters:	max	diameter,	max	children	

§ Phase	 1:	 scan	 DB	 to	 build	 an	 initial	 in-memory	 CF	 tree	 (each	 node:	
#points,	sum,	sum	of	squares)	

§ Phase	2:	use	an	arbitrary	clustering	algorithm	to	cluster	the	leaf	nodes	
of	the	CF-tree	

	
Scales	linearly:	finds	a	good	clustering	with	a	single	scan	
Weaknesses:	handles	only	numeric	data,	sensitive	to	order	of	data	records	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 105	

	
	

2.4 Cluster	Feature	Vector	
	
	 Given:	X1,...,Xn,	data	points	in	a	cluster	where	each	with	d-dimensions	
	

	
	

Note:	CFs	are	additive!	
E.g.,	CF1	+	CF2	=	(N1+N2,	LS1+LS2,	SS1+SS2)	

	

	 	 	
	
	 2d	+	1	values	represent	any	number	of	points		

d	=	number	of	dimensions.	
	
Averages	in	each	dimension	can	be	calculated	as	SUMi	/N	
Variance	in	dimension	i	can	be	computed	by:	(SUMSQi	/N)	–	(SUMi	/N)2	
To	get	standard	deviation	take	square	root		
	
Can	also	compute	the	radius.		
	

	
2.5 Cluster	Feature	Tree	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 106	

	
A	CF-tree	is	a	height-balanced	tree	with	two	parameters:	

• Branching	factor	(non	leaf	nodes	B,	leaf	nodes,	L)	
• Threshold	T	

	
Each	non	leaf	node	has	the	form	[CFi,	childi]	
Each	leaf	node	has	CF	

• Set	of	CFs	
• Two	pointers:	prev	and	next	

	
Radius	of	a	sub	cluster	under	a	leaf	node	cannot	exceed	the	threshold	T	
	

	
	

To	construct	the	CF-Tree,	scan	the	data	set	and	insert	the	incoming	data	instances	into	
the	CF	tree	one	by	one.	Each	instance	is	inserted	into	the	closest	sub	cluster	under	a	
leaf	node.	If	insertion	causes	sub	cluster	diameter	to	exceed	threshold,	then	create	a	
new	sub-cluster.		
The	new	sub-cluster	may	cause	its	parents	to	exceed	branching	factor.	If	so,	split	the	
leaf	node.		

§ Identifying	the	pair	of	sub-clusters	with	largest	inter-cluster	distance.		
§ Divide	by	proximity	to	these	two	sub-clusters	

	
If	 this	 split	 causes	 the	non-leaf	node	 to	exceed	 the	branching	 fact,	 then	 recursively	
split.	If	the	root	node	is	split,	then	the	height	of	the	CF	tree	is	increased	by	one.		
	
ð An	example	is	given	in	the	slides	
	
Traditional	algorithms	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 107	

	
	 	
	 What	would	BIRCH	do?		

	
	 Birch	assumes:		

§ Clusters	are	normally	distributed	in	each	dimension	
§ Axes	are	fixed:	Ellipses	at	an	angle	are	not	ok	

	
Clustering	Using	Representatives	(CURE)	
	
Cluster	definition:	Set	of	representative	points.	It	enables	clusters	of	differing	shapes.		
ð Requires	an	Euclidean	space	

	
The	CURE	algorithm	does	not	assume	anything	about	the	shape	of	clusters;	they	need	
not	be	normally	distributed,	and	can	even	have	strange	bends,	S-shapes,	or	even	rings.	
Instead	of	representing	clusters	by	their	centroid,	it	uses	a	collection	of	representative	
points,	as	the	name	implies.	

	

	
Two-pass	(hierarchical)	clustering	approach	

• Pass	1:	Clustering	of	subset	of	data	to	pick	“representative	points”.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 108	

o Take	a	 small	 sample	of	 the	data	and	cluster	 it	 in	main	

memory.	 	
• Select	 a	 small	 set	 of	 points	 from	 each	 cluster	 to	 be	

representative	points.	These	points	should	be	chosen	to	be	as	
far	from	one	another	as	possible.		

	
• Move	each	of	the	representative	points	a	fixed	fraction	of	the	

distance	between	its	location	and	the	centroid	of	its	cluster.	20%	
is	a	good	fraction	to	choose.		
	
	

• Pass	2:	Assign	all	points	to	clusters	
Scan	the	entire	data	set	and	assign	each	example	e	to	the	“closest”	cluster.		

• Standard	metric	determines	the	closest	
• Done	by	finding	representative	with	smallest	distance	to	e.		

	

	 	 	 	 	 	
	

	 	
3. Partitional	clustering	

	
3.1 Partitioning	Algorithms	

	
Method:	Construct	a	partition	of	a	database	D	of	n	objects	into	a	set	of	k	clusters	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 109	

Given	a	k,	find	a	partition	of	k	clusters	that	optimizes	the	chosen	partitioning	criterion	
Global	optimal:	exhaustively	enumerate	all	partitions	
Heuristic	methods:	k-means,	k-medoids	algorithms	

§ k-means	(MacQueen,	1967):	Each	cluster	is	represented	by	the	center	
of	the	cluster	

§ k-medoids	or	PAM	(Partition	around	medoids)	(Kaufman	&	Rousseeuw,	
1987):	Each	cluster	is	represented	by	one	of	the	objects	in	the	cluster	

	
Idea:	divide	instances	into	disjoint	clusters.	Flat	vs.	tree	structure.		

	
	 Issues:		

§ How	many	clusters	should	there	be?		
§ How	should	clusters	be	represented?	

	
We	can	generate	a	Partitional	clustering	from	a	hierarchical	clustering	by	“cutting”	the	
tree	at	some	level.		
	

	
3.2 K-Means	algorithm	

	
The	K-means	algorithm	is	a	commonly-used	algorithm.	It	 is	both	easy	to	 implement	
and	quick	to	run.		
	
Assumptions	

§ Objects	are	n-dimensional	vectors	
§ Distance/similarity	measure	between	these	instances	

	
Goal:	Partition	the	data	 in	K	disjoint	subsets.	 Ideally	the	partition	should	reflect	the	
structure	of	the	data.		
	

	 	

	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 110	

Initially	choose	k	points	that	are	likely	to	be	in	different	clusters.	Make	these	points	the	
centroids	of	their	clusters.	For	each	remaining	point	p,	find	the	centroid	to	which	p	is	
closest.	Add	p	to	the	cluster	of	that	centroid	and	then	adjust	the	centroid	of	that	cluster	
to	account	for	p.		

	
How	to	initialize	the	clusters?	We	want	to	pick	points	that	have	a	good	chance	of	lying	
in	different	clusters.	There	are	2	approaches	

• Pick	points	that	are	as	far	away	from	one	another	as	possible.	Good	choice:	
pick	the	first	point	at	random.	

• Cluster	a	sample	of	the	data,	perhaps	hierarchically,	so	there	are	k	clusters.	
Pick	a	point	from	each	cluster,	perhaps	that	point	closest	to	the	centroid	of	
the	cluster.		
	

An	optional	step	at	the	end	is	to	fix	the	centroids	of	the	clusters	and	to	reassign	each	
point,	including	the	k	initial	point.	To	the	k	clusters.		
	
The	results	depend	on	the	seed	selection.	Some	seeds	can	result	in	poor	convergence	
or	sub-optimal	clusterings.		

• Pick	points	randomly	or	from	data	instances	
• Use	results	of	another	method	
• Many	runs	of	k-means:	each	with	random	seeds	

	

	
• |cj	|	is	number	of	examples	assigned	to	cluster	cj	
• iÎ	cj	,	i.e.,	examples	that	are	assigned	to	cluster	cj		
• This	is	a	vector:	Calculate	µ	along	each	dimension		

ð An	example	is	provided	in	the	slides	
	
A	 trick	point	of	 this	algorithm	 is	picking	 the	 right	value	of	k.	we	may	not	know	the	
correct	 value	of	 k	 to	use	 in	 a	 k-means	 clustering.	However,	 if	we	 can	measure	 the	
quality	of	the	clustering	for	various	values	of	k,	we	can	usually	guess	what	the	right	
value	of	k	 is.	 If	we	take	a	measure	of	appropriateness	 for	clusters,	 such	as	average	
radius	or	diameter,	the	value	will	grow	slowly,	as	long	as	he	numbers	of	clusters	we	
assume	remains	at	or	above	the	true	number	of	clusters.		
As	soon	as	we	try	to	form	fewer	clusters,	than	there	really	are,	the	measure	will	rise	
precipitously.		
	

Time	Complexity	
	

• Distance	between	two	instances:	O(d),	where	d	is	the	dimensionality	of	the	
vectors	

• Reassigning	clusters:	O(kn)	distance	computations,	or	O(kdn)	
• Computing	 centroids:	 Each	 instance	 vector	 gets	 added	 once	 to	 some	

centroid:	O(dn)	
• Assume	these	two	steps	are	each	done	once	for	I	iterations:	O(Ikdn)	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 111	

• Linear	in	all	relevant	factors,	with	fixed	number	of	iterations,	more	efficient	
than	O(n2)	HAC	

	
3.3 Bradly-Fayyad-Reina	(BFR)	

	
The	BFR	algorithm	is	a	variant	of	the	k-means	that	is	designed	to	cluster	dta	in	a	high-
dimensional	Euclidean	space.		
	
Key	assumption:	 clusters	 are	normally	distributed	around	a	 centroid	 in	 a	 Euclidean	
space.	The	standard	deviations	in	different	dimensions	may	vary	but	the	dimensions	
must	be	independent.	
	
Algorithm	overview:		

• Read	 points	 one	 main-memory-full	 at	 a	 time.	 The	 algorithm	 begins	 by	
selecting	k	points,	using	one	of	the	methods	we	saw	in	previous	section.	
Then,	the	points	of	the	data	file	are	read	in	chunks.	These	might	be	chunks	
from	a	distributed	file	system	or	a	conventional	file	might	be	partitioned	
into	chunks	of	the	appropriate	size.	Each	chunk	must	consist	of	few	enough	
points	 that	 they	can	be	processed	 in	main	memory.	Also	 stored	 in	main	
memory	are	summaries	of	the	k	clusters	and	some	other	data,	so	the	entire	
memory	is	not	available	to	store	a	chunk.		
	
Three	classes	of	points	

o The	discard	set:	points	close	enough	to	a	centroid	to	be	represented	
statistically.	For	each	cluster,	the	discard	set	is	represented	by:		

§ The	number	of	points,	N	
§ The	 vector	 SUM,	 whose	 ith	 component	 is	 the	 sum	 of	 the	

coordinates	of	the	points	in	the	ith	dimension.		
§ The	 vector	 SUMSQ:	 ith	 component	 =	 sum	 of	 squares	 of	

coordinates	in	the	ith	dimension.	
o The	compression	set:	groups	of	points	that	are	close	together	but	

not	close	to	any	centroid.	They	are	represented	statistically,	but	not	
assigned	to	a	cluster	

o The	retained	set:	isolated	points	
	

	
	

• Summarize	most	points	by	simple	statistics	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 112	

• To	 begin,	 from	 the	 initial	 load	we	 select	 the	 initial	 k	 centroids	 by	 some	
sensible	approach	

	
Initialization	

• Take	a	small,	random	sample	and	cluster	optimally	
• Take	a	sample;	pick	a	random	point,	and	then	k-1	more	point,	each	as	far	

from	the	previously	selected	points	as	possible	
	

Processing	points	
• Find	points	close	to	a	cluster	centroid.	Add	them	to	cluster	and	the	discard	

set.		
• Perform	in-memory	clustering	on	remaining	points	and	the	old	RS.	Clusters	

become	CS,	others	to	RS.		
• Adjust	cluster	statistics	based	on	new	points	
• Consider	merging	pairs	of	CS	
• On	final	round	marge	ell	CSs	and	RS	points	into	the	nearest	cluster.	

	
Two	key	questions	

1) When	is	a	point	“close	enough”	to	a	cluster	that	we	can	it	to	that	cluster?	
We	need	a	way	to	decide	whether	to	put	a	new	point	into	a	cluster.		
	
BFR	suggests	two	ways	

o The	 Mahalanobis	 distance	 is	 less	 than	 threshold.	 This	 is	 a	
normalized	 Euclidean	 distance.	 For	 point	 (x1,...,xk)	 and	 centroid	
(c1,...,ck):	

§ Normalize	in	each	dimension:	yi	=	|xi	-ci|/ si		
§ Take	sum	of	the	squares	of	the	yi	’s	
§ Take	the	square	root	
§ Accept	a	point	for	a	cluster	if	its	M.D.	is	<	some	threshold,	

e.g.,	4	standard	deviations	
	

Equal	M.D.	Regions	

	
o Low	likelihood	of	the	currently	nearest	centroid	changing.		

Add	p	to	a	cluster	if	it	not	only	has	the	centroid	closest	to	p,	but	it	is	
very	unlikely	that,	after	all	the	points	have	been	processed,	some	
other	cluster	centroid	will	be	found	to	be	nearer	to	p.		

2) When	should	two	compressed	sets	be	combined	into	one?	
Compute	 the	 variance	 of	 the	 combined	 sub-cluster.	 N,	 SUM	 and	 SUMQ	
allow	us	to	make	that	calculation.	Combine	if	the	variance	is	below	some	
user	provided	threshold.	

	
	 Getting	the	k	right	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 113	

ð How	to	select	k?	Try	different	k,	looking	at	the	change	in	the	average	distance	to	
centroid	as	k	increases.	Average	falls	rapidly	until	right	k,	then	changes	little.		

	
	

• Too	few:	many	long	distances	to	centroid	

	
• Just	right:	distances	rather	short	

	
• Too	many:	little	improvement	in	average	distance	

	
	
	 	
	
	
	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 114	

To	wrap	up	
	
	 	

K-Means	
Strengths	 Weaknesses	
• Efficient:	O(Ikdn)	
• Straightforward	 to	

implement	
• Fins	 local	 optimum,	 can	

use	 restarts	 more	
advanced	 search	 to	 find	
better	solution	

• Must	 be	 able	 to	 define	
mean	

• Need	to	provide	k	
• Susceptible	 to	 noise	 and	

outliers	
• Cannot	 represent	 non-

convex	clusters	
	

4. Model-Based	clustering	
	

Basic	idea:	Clustering	as	probability	estimation	
	
Generative	model	
	
1) Probability	of	selecting	a	cluster	

	
2) Probability	of	generating	an	object	in	cluster	

	
	
	 	
	
	

	 	 	 	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 115	

	

Representation:	Each	cluster	is	represented	
by	a	probability	distribution	(density).		
Given:	 Data	 points,	 number	 of	 clusters,	
model	form	of	each	cluster	
Find:	 Maximum	 likelihood	 or	 MAP	
assignment	 of	 data	 points	 to	 clusters	 and	
learn	parameters	for	each	cluster.	
Quality	 of	 clustering:	 Likelihood	 of	 test	
objects	

	

	
	

	
	
	 Key	Challenge	

• If	we	knew	which	examples	belong	 to	each	cluster,	 then	we	can	set	 the	
model	parameters	

• If	we	knew	model	parameters,	then	we	can	estimate	probability	that	cluster	
generated	an	example	

ð Chicken	and	egg	problem	L		
	

	
	
Missing	information:	Cluster	membership	
Idea:	hidden	variables	for	cluster	membership	
Each	instance	xi	has	a	set	of	hidden	variables	zi1,...,zik		
Intuition:	zij	=	1	if	i	belongs	to	cluster	j	and	0	otherwise	
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 116	

	
	

In	k-means,	instances	are	assigned	to	exactly	one	cluster.	EM	clustering	is	a	“soft”	k-
means	where	ach	example	has	the	probability	of	belong	to	a	cluster.		
Guess	 the	 initial	 parameters	 for	 model	 in	 each	 cluster	 and	 then	 iterate	 until	
convergence.		

• E	step:	Determine	how	likely	it	is	that	each	cluster	generated	each	instance	
• M	step:	Adjust	cluster	parameters	to	maximize	likelihood.	

	

	
	
	 	 	
	 	 E-Step	
	

Recall	that	zij	is	a	hidden	variable	which	is	1	if	Nj	generated	xi	and	0	otherwise	
In	the	E-step,	we	compute	hij,	the	expected	value	of	this	hidden	variable.	

	

	
	 	 M-Step	
	

Given	the	expected	values	hij,	we	re-estimate	the	means	of	the	Gaussians	and	
the	cluster	probabilities.		

	
Note	:	“i”	goes	over	examples	
	
EM	Clustering	…	To	sum	up	
• Will	converge	to	a	local	maximum	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 117	

• Sensitive	to	initial	means	of	clusters	
• Have	to	choose	the	number	of	clusters	in	advance	

	
Evaluating	cluster	results	
Given	 random	 data	 without	 any	 “structure”,	 clustering	 algorithms	 will	 still	
return	clusters.		
The	gold	standard:	do	clusters	correspond	to	natural	categories?	
Do	clusters	correspond	to	categories	we	care	about?	(There	are	lots	of	ways	to	
partition	the	world)	
	
Approaches	to	cluster	evaluation	

o External	 validation.	 Ex:	 do	 genes	 clustered	 together	 have	 some	
common	function?		

o Internal	validation:	how	well	does	clustering	optimize	intra-cluster	
similarity	and	inter-cluster	dissimilarity?	

o Relative	validation:	how	does	it	compare	to	other	clusterings?	Ex:	
With	a	probabilistic	method	(such	as	EM)	we	can	ask:	how	probable	
does	held-aside	data	look	as	we	vary	the	number	of	clusters?	

	 	
5. Applications	

	
5.1 Low	Quality	of	Web	Searches	

	
• System	perspective	

o Small	coverage	of	Web	(<16%)	
o Dead	links	and	out	of	date	pages	
o Limited	resources	

• IR	perspective	(relevancy	of	doc	~	similarity	to	query)		
o Very	short	queries	
o Huge	database	
o Novice	users	

	
5.2 Document	clustering	

	
• User	receives	many	(200-500)	documents	from	web	search	engine	
• Group	documents	in	clusters	by	topic	
• Present	clusters	as	interface	

ð We	need	a	way	to	compare	queries	and	documents	
	

• Vector	space	model	
o How	to	determine	important	words	in	a	document?		
o How	 to	 determine	 the	 degree	 of	 importance	 of	 a	 term	within	 a	

document	and	within	the	entire	collection?		
o How	to	determine	the	degree	of	similarity	between	a	document	and	

the	query?		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 118	

o In	the	case	of	the	web,	what	is	a	collection	and	what	are	the	effects	
of	links,	formatting	information,	etc.?	

	
Assume	t	distinct	terms	remain	after	pre-processing:	vocabulary	
These	 “orthogonal”	 terms	 form	 a	 vector	 space	 Dimension	 =	 t	 =	
|vocabulary|	
Each	term,	i,	in	a	document	or	query,	j,	is	given	a	real-valued	weight,	wij.	
Both	documents	and	queries	are	expressed	as	t-dimensional	vectors:	
dj	=	(w1j,	w2j,	...,	wtj)	
	

	
	

Vector	 space	 model	 represents	 a	 collection	 of	 n	 documents	 by	 a	 term-
document	matrix.		
Each	entry:	“Weight”	of	a	term	in	the	document	
	

	
	

More	frequent	terms	in	a	document	are	more	important,	i.e.	mmore	indicative	
of	the	topic	
Fij	=	frequency	of	term	I	in	the	document	j	
We	may	want	to	normalize	the	term	frequency	(tf)	by	dividing	by	the	frequency	
of	the	most	common	term	in	the	document:	tfij	=	fij	/	maxi{fij}	

	
Terms	that	appear	in	many	different	documents	are	less	indicative	of	overall	
topic.		
df	i	=	document	frequency	of	term	I		
=	number	of	documents	containing	term	i	
	
idfi	=	inverse	document	frequency	of	term	i,		
=	log2	(N/	df	i)	(N:	number	of	documents)	
An	indication	of	a	term’s	discrimination	power	

ð Log	used	to	dampen	the	effect	relative	to	tf	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 119	

	
	
A	typical	combined	term	importance	indicator	is	tf-idf	weighting:	

wij	=	tfij	idfi	=	tfij	log2	(N/	dfi)	
	
A	term	occurring	frequently	in	the	document	but	rarely	in	the	rest	of	the	collection	
is	 given	high	weight.	Many	other	ways	of	determining	 term	weights	have	been	
proposed.	Experimentally,	tf-idf	works	well	
	
Example:		
	
Given	a	document	containing	terms	with	given	frequencies:	A(3),	B(2),	C(1)	
Assume	collection	contains	10,000	documents	and	document	frequencies	of	these	
terms	are:	A(50),	B(1300),	C(250)	
Then:	
A:	tf	=	3/3;	idf	=	log2(10000/50)	=	7.6;	tf-idf	=	7.6		
B:	tf	=	2/3;	idf	=	log2	(10000/1300)	=	2.9;	tf-idf	=	2.0		
C:	tf	=	1/3;	idf	=	log2	(10000/250)	=	5.3;	tf-idf	=	1.8	
	
	
A	 query	 vector	 is	 typically	 treated	 as	 a	 document	 and	 also	 tf-idf	 weighted.	 An	
alternative	is	for	the	user	to	supply	weights	for	the	given	query	terms.		
	

• Inner	product	

	
o Wij	is	weight	of	term	I	in	doc	j	
o Wiq	is	weight	of	term	I	in	query	

• Cosine	similarity	

	
o Measures	the	cosine	of	the	angel	between	two	vectors	
o Inner	product	normalized	by	the	vector	lengths	

	

	
Comparison	
	
D1	=	2T1	+	3T2	+	5T3	
D2	=	3T1	+	7T2	+	1T3	
Q	=	0T1	+	0T2	+	2T3	
	
Weighted	inner	product	
sim(D1	,	Q)	=	2*0	+	3*0	+	5*2	=	10	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 120	

sim(D2	,	Q)	=	3*0	+	7*0	+	1*2	=	2	
	
Cosine	
sim(D1	,	Q)	=	10	/	Ö	(4+9+25)(0+0+4)	=	0.81		
sim(D2	,	Q)	=	2	/	Ö	(9+49+1)(0+0+4)	=	0.13	
	

ð D1	is	6	times	better	than	D2	using	cosine	similarity	but	only	5	times	better	using	
inner	product.	
	
Comments	on	Vector	Space	Model	
	

• Simple,	mathematically	based	approach	
• Considers	both	local	(tf)	and	global	(idf)	word	
• occurrence	frequencies	
• Provides	partial	matching	and	ranked	results.	
• Tends	to	work	quite	well	in	practice	despite	obvious	weaknesses	
• Allows	efficient	implementation	for	large	document	collections	

	
Weakness	with	Vector	Space	Model	

• Missing	semantic	information.	Ex:	word	sense	
• Missing	syntactic	information	(Ex:	phrase	structure,	word	order,	proximity	

information)	
• Assumption	of	term	independence	(Ex:	ignores	synonymy)	

	
5.3 Bioinformatics	

	
Molecular	 biology	 has	 become	 a	 data-rich	 science.	 The	 Nucleic	 Acids	 Research	
Molecular	Biology	Database	Collection	indexes	1330	data	sources.	This	represents	lots	
and	 lots	 of	 data,	 but	 there	 is	 a	 lack	 of	 understanding	 of	 biological	 systems.	
Computational	methods	are	crucial	for	understanding	available	data.	
	
Genes	
	

	

Genes	are	the	basic	units	of	heredity	
A	 gene	 is	 a	 sequence	 of	 DNA	 bases	
that	carries	the	information	required	
for	 constructing	a	particular	protein.	
Such	 a	 gene	 is	 said	 to	 encode	 a	
protein.	 The	 human	 genome	
comprises	 ~	 25,000	 protein	 coding	
genes	

	
Types	of	data	

• Full	sequences	of	a	genomes	
• Single	nucleotide	polymorphisms	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 121	

• Gene	expression	data	
• Many	more!	

	
Microarrays	allow	us	to	measure	gene	expression.	Microarray	 is	a	solid	support,	on	
which	pieces	of	DNA	are	arranged	in	a	grid-like	array.	It	measures	RNA	abundances	by	
exploiting	complementary	hybridization.		
	
How	active	are	various	genes	in	different	cell/	tissue	types?	
How	does	the	activity	level	of	various	genes	change	under	different	conditions?	

• Stages	of	a	cell	cycle	
• Environmental	conditions	
• Disease	states	
• Knockout	experiments	

What	genes	seem	to	be	regulated	together?	
	

	
	
	 Data	points	are	genes	

• Represented	 by	 expression	 levels	 across	 different	 samples	 (i.e.,	
features=samples)		

• Goal:	categorize	new	genes	
	

Data	points	are	samples	(e.g.,	patients)	
• Represented	by	expression	levels	of	different	genes	(i.e.,	features=genes)	
• Goal:	categorize	new	samples	

	
Unsupervised	Learning	Task	(1)	
	
Given:	a	set	of	microarray	experiments	under	different	conditions	
Do:	 cluster	 the	 genes,	 where	 a	 gen	 described	 by	 its	 expression	 levels	 in	 different	
experiments	
	
Unsupervised	Learning	Task	(2)	
	
Given:	a	set	of	microarray	experiments	(samples)	corresponding	to	different	conditions	
or	patients	
Do:	cluster	the	experiments	
	
Ex	:		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 122	

• Cluster	samples	from	mice	subjected	to	a	variety	of	toxic	compounds	(Thomas	
et	al.,	2001)	

• Cluster	samples	from	cancer	patients,	potentially	to	discover	different	subtypes	
of	a	cancer	

• Cluster	samples	taken	at	different	time	points	
	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 123	

CHAPTER	9:	USING	UNLABELED	DATA	
	

1. Introduction	
	

When	you	do	something	like	classification	you	have	labelled	data.	The	assumption	is	
that	someone	is	telling	you	what	is	labelled	as	positive	or	as	negative.		
	
Where	does	labelled	data	come	from?	It	comes	from	some	tasks;	people	are	willing	to	
label.		

• Netflix,	Amazon,	etc.		
• Spam	
• Medical	diagnoses	

	
Often	we	have	to	get	people	to	label	data	

• Web	ranking	
• Document	classification	

	
Problem:	labelling	data	is	expensive	because	you	have	to	pay	someone	to	do	it	and	you	
need	a	lot	of	data.	Next,	it	is	also	time-consuming,	thinking	about	what	the	label	should	
be,	etc.		
	
Learning	methods	need	labelled	data.		

• Lots	of	<x,	f(x)>	pairs	
• Hard	to	get	…	who	wants	to	label	data	

	
But	unlabelled	data	is	usually	plentiful	…	could	we	use	this	instead??		

• Semi-supervised	learning	
• Active	learning	

	
Problem	set-up	
	
Motivation:	Hard	to	get	labelled	data	
	
Given:	we	assume	we	have	some	labled	data	and	some	unlabelled	data.		

• Labeled	data:	D=	[<x,	f(x)>]	
• Unlabeled	data:	U	=	[<x,	??>]	

	
ð Learn	a	hypotheses	h	that	approximates	f.		

	
2. Semi-supervised	learning	

	
Self-training:	use	an	ensemble	technique	such	as	bagging	to	build	a	set	of	classifiers	
on	labelled	data.	Classify	each	unlabelled	training	example	with	each	classifier.	Make	
a	prediction	on	each	unlabelled	examples.	If	all	classifiers	agree	on	an	example’s	label,	
add	it	to	the	training	set	with	its	predicted	label.	Next,	iterate.	For	the	first	iteration	
you	have	little	training	data.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 124	

Another	way	is	called	co-training.		
	
Idea:	you	have	a	little	labelled	data	and	lots	of	unlabelled	data.	And	each	instance	has	
two	parts:		

• x	=	[x1,	x2]		
• x1,	x2	conditionally	independent	given	f(x)		

Each	half	can	be	used	to	classify	instance		
$f1,	f2	such	that	f1(x1)	~	f2(x2)	~	f(x)		
	
Both	f1,	f2	are	learnable		
f1	Î	H1,	f2	Î	H2,	$	learning	algorithms	A1,	A2		
	
Ex:	you	can	think	of	classifying	document	on	web	pages,	having	two	features	on	the	
web	page.	One:	words	on	the	webpage.	Second:	words	appearing	on	any	internet	page.		
	

	

	
	

Can	apply	A1	to	generate	as	much	training	data	as	one	wants	
If	x1	is	conditionally	independent	of	x2	/	f(x),	then	the	error	in	the	labels	produced	by	
A1	will	look	like	random	noise	to	A2	!!!	
	
Thus	no	limit	to	quality	of	the	hypothesis	A2	can	make	
	

	
	
	 Learning	to	classify	web	pages	as	course	pages.		

Two	features:		
• x1	=	bag	of	words	on	a	page	
• x2	=	bag	of	words	from	all	anchors	pointing	to	a	page	

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 125	

Naïve	Bayes	classifiers	
• 12	labeled	pages
• 1039	unlabeled	pages

One	 thing	 that	 is	 surprising	 is	 that	 accuracy	 and	 error	 rate	 highly	 differ.	With	 co-
training,	the	error	rate	is	halfed.		

	
3. Active	learning	

	
3.1 The	concept	

	
Active	 learning	 is	 a	 subfield	 of	 machine	 learning	 and,	 more	 generally,	 artificial	
intelligence.	The	key	hypothesis	is	that	if	the	learning	algorithm	is	allowed	to	choose	
the	data	from	which	it	learns—to	be	“curious,”	if	you	will—it	will	perform	better	with	
less	training.	Why	is	this	a	desirable	property	for	learning	algorithms	to	have?	Consider	
that,	for	any	supervised	learning	system	to	perform	well,	it	must	often	be	trained	on	
hundreds	(even	thousands)	of	labelled	instances.	

	
Suppose	you	are	the	leader	of	an	Earth	convoy	sent	to	colonize	planet	Mars.		

	
Problem:	there’s	a	range	of	spiky-to-round	fruit	shapes	on	Mars.	You	need	to	learn	the	
“threshold”	of	roundness	where	the	fruits	go	from	poisonous	to	safe.	And	…	you	need	
to	determine	this	risking	as	few	colonists’	lives	as	possible.		
A	way	to	think	about	doing	this	is	a	binary	search.	You	need	to	test	all	of	the	instances.		

	
Key	idea:	the	learner	can	choose	training	data.	You	throw	of	some	labelled	example	
and	choose	which	labels	you	want	to	preserve.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 126	

• On	Mars:	whether	a	fruit	was	poisonous/safe	
• In	general:	the	true	label	of	some	instance	

	
Goal:	reduce	the	training	costs	

• On	Mars:	the	number	of	“lives	at	risk”	
• In	general:	the	number	of	“queries”		

	
Active	learning	systems	attempt	to	overcome	the	labeling	bottleneck	by	asking	queries	
in	the	form	of	unlabeled	instances	to	be	labeled	by	an	oracle	(e.g.,	a	human	annotator).	
In	 this	 way,	 the	 active	 learner	 aims	 to	 achieve	 high	 accuracy	 using	 as	 few	 labeled	
instances	as	possible,	 thereby	minimizing	 the	cost	of	obtaining	 labeled	data.	Active	
learning	 is	well-motivated	 in	many	modern	machine	 learning	problems	where	data	
may	be	abundant	but	labels	are	scarce	or	expensive	to	obtain.		
	
How	do	we	do	this?		
	

	
You	can	think	about	generating	examples	and	asking	for	them.	Another	approach	you	
can	think	about	is	data	streaming.		
	
Pool-Based	Active	Learning	Cycle	
	
There	are	several	scenarios	in	which	active	learners	may	pose	queries,	and	there	are	
also	several	different	query	strategies	that	have	been	used	to	decide	which	instances	
are	most	informative.	In	this	section,	two	illustrative	examples	in	the	pool-based	active	
learning	setting	(in	which	queries	are	selected	from	a	large	pool	of	unlabeled	instances	
U)	 are	 presented	 using	 an	 uncertainty	 sampling	 query	 strategy	 (which	 selects	 the	
instance	in	the	pool	about	which	the	model	is	least	certain	how	to	label).		
	

	
This	figure	illustrates	the	pool-based	active	learning	cycle.	A	learner	may	begin	with	a	
small	number	of	instances	in	the	labeled	training	set	L,	request	labels	for	one	or	more	
carefully	selected	instances,	learn	from	the	query	results,	and	then	leverage	its	new	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 127	

knowledge	to	choose	which	 instances	 to	query	next.	Once	a	query	has	been	made,	
there	are	usually	no	additional	assumptions	on	the	part	of	the	learning	algorithm.	The	
new	labeled	instance	is	simply	added	to	the	labeled	set	L,	and	the	learner	proceeds	
from	there	in	a	standard	supervised	way.		
ð I	have	a	small	label	set,	I	learn	a	model.	We	use	that	model	to	make	predictions	on	

unlabelled	data.	In	active	learning	we	ask	a	question	to	someone	about	what	the	
true	label	is.		

	
You	show	a	plot,	a	number	of	queries	
on	 the	 x	 axes	 and	 accuracy.	 Usually	
you	get	such	a	curve.		
With	 active	 learning	 the	 algorithm	
decides	which	examples	it	takes.	And	
usually	 for	 the	 same	 number	 of	
instances	you	have	a	better	accuracy	
than	 passive	 learning.	 This	 is	 used	 a	
lot.		 	
	
	

	
	

3.2 How	to	select	queries?		
	
We	assume	that	we	received	a	small	sample	of	unlabeled	examples	and	a	set	of	labeled	
examples.	The	goal	 is	 to	 reduce	 the	 training	cost,	 that	 is	 to	 say,	 the	cost	of	getting	
labels.		
Key	question:	which	examples	do	we	want	to	use?		
	
ð Let’s	try	generalizing	our	binary	search	method	using	a	probabilistic	classifier.	We	

apply	something	like	logistic	regression.		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 128	

	
	
	 Query	the	examples	the	learner	is	most	uncertain	about.		

• Closest	to	0,5	probability	
• Closest	to	decision	surface	

	
Look	at	examples	close	to	the	decision	boundary	since	these	cause	the	boundary	to	
move.		
	
If	we	have	possible	and	negative	examples,	 look	at	examples	that	are	closest	to	the	
line.	We	take	one,	and	we	ask	someone	to	give	it	a	label.	Here,	it	is	given	a	negative	
label.	We	 retrain	 the	 classifier,	 giving	 a	 new	 decision	 boundary.	We	 again	 pick	 an	
example	close	to	the	boundary,	give	it	a	label,	and	we	do	this	again	and	again,	etc.	

	
	

The	intuition	here	is	that	we	should	first	observe	labels	of	points	close	to	the	decision	
boundary.		
	

3.3 Query-By-Committee	(CBC)	
	
Train	a	committee	C	=	{q1,	q2,	...,	qC}	of	classifiers	on	the	labeled	data	in	L.		
Query	instances	in	U	for	which	the	committee	is	in	most	disagreement.	Try	to	find	
models	that	are	consistend	with	the	training	data,	reducing	the	model	version	space.	
	
Key	idea:	reduce	the	model	version	space.	It	expedites	search	for	a	model	during	
training		
	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 129	

	

We	 have	 4	 labeled	 instances:	 3	
triangles	 and	 a	 square.	 Train	 a	
model	such	that	everything	inside	
rectangles	 is	of	class	squares	and	
everything	 outside	 is	 of	 class	
triangle.	

How	to	build	a	committee:		
• “Sample”	models	from	P(q|L)	[Dagan	&	Engelson,		

ICML’95;	McCallum	&	Nigam,	ICML’98]		
• Standard	ensembles	(e.g.,	bagging,	boosting)	[Abe	&	Mamitsuka,	ICML’98]		

	
How	to	measure	disagreement	

• «	XOR	»	committee	classifications		
• View	 vote	 distribution	 as	 probabilities,	 use	 uncertainty	 measures	 (e.g.,	

entropy)		
	

3.4 Alternative	Query	Types	
	
So	far,	we	assumed	queries	are	instances.	Ex:	for	document	classification	the	learner	
queries	documents.		
	
Can	the	learner	do	better	by	asking	different	types	of	questions?	Questions	not	about	
instances	but	about	different	features	for	instance.		

• Multiple-instance	active	learning	
• Feature	active	learning:	try	to	get	feedback	about	which	features	are	more	

useful	than	others.	You	can	then	get	better	results.	
In	NLP	tasks,	we	can	often	intuitively	label	features.		

o The	feature	word	“puck”	indicates	the	class	hockey	
o The	feature	word	“strike”	indicates	the	class	baseball.	

	
Tandem	 learning	 exploits	 this	 by	 asking	 both	 instance-label	 and	 feature-relevance	
queries.	Ex:	“is	puck	an	important	discriminative	feature?”	
	

4. Summary	
	

Both	try	to	attack	the	same	problem:	making	the	most	of	unlabeled	data	U.	Getting	
labels	is	expensive.	Each	attacks	from	a	different	direction:		

• Semi-supervised	learning	exploits	what	the	model	thinks	it	knows	about	
unlabeled	data.	Propagates	information	about	what	it	knows.	Propagate	
information	from	label	data	to	unlabeled	data.		

• Active	learning	explores	the	unknown	aspects	of	the	unlabeled	data.	Look	at	
what	is	uncertain.		

	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 130	

	
	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 131	

CHAPTER	10:	TIME	SERIES	
	

1. Time	Series	Intro	
	

Time	 series	 are	 a	 collection	 of	 measurements	 made	 sequentially	 in	 time.	 Usually	
people	only	want	to	measure	one	variable	when	looking	at	time	series.	

	
	
	 Time	series	faces	different	challenges	

• Lots	and	lots	of	data:	videos	for	instance.		
• Autocorrelation:	current	value	depends	on	previously	observed	values.		
• Data	is	messy:	you	usually	collect	time	series	from	sensors.	

o Different	 sampling	 rates	 and	 ranges	 (e.g.,	 clipping	 in	 accelerometer	
data)	

o Noise	
o Missing	values	(e.g.,	sensor	drops)	
o Etc.		

	
Standard	Pre-processing:	Z-Normalization	
	
Usually	when	working	with	collected	data	from	sensors	you	want	to	do	some	sort	of	
pre-processing.		

	
	 Given:	S	=	(s1,...,sn)		
	

	 Let	each		 	
	

	
	 	

2. Time	Series	Classification	
	

One	of	the	obvious	tasks	you	can	do	with	time	series	is	classification.		
	
Given:	a	set	of	time	series	with	known	labels.		

	
Goal:	 make	 prediction	 about	 future	 time	 series.	 You	 are	 given	 a	 new	 time	 series	
measurement	and	you	want	to	predict	the	class	of	this	instance.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 132	

	

	
Assumption:	labels	are	assigned	to	entire	sequence.	We	do	not	necessarily	know	what	
value/set	of	 values	are	 responsible	 for	 the	 label.	 I	 don’t	 know	which	measurement	
cause	the	time	series	to	be	labelled	positive	or	negative.		
	
Idea	1:	Define	features		
The	first	obvious	approach	you	can	do	is	to	define	features.	So,	given	a	time	series,	
convert	it	to	a	feature	vector	representation.	There	are	several	ways	to	do	so:	

• Use	statistics:	Min,	max,	etc.		
• Transformations:	discrete	wavelet	transform,	etc.	
• Entropy	
• …	

ð Apply	standard	supervised	learners	to	data	to	make	a	prediction.		
	

Idea	2:	Nearest	Neighbours	

	
Compare	 three-time	 series	 to	my	 training	 set	 and	measure	 distance	
similarity	between	them.	 Just	predict	 the	 label	based	on	the	smallest	
distance.	

ð How	can	we	measure	the	distance	between	time	series?		
	
• Euclidean	distance	

Given:	Two	time	series	of	equal	length	
	 Q	=	(q1,	q2,	…	qn)	
	 S	=	(s1,	…	sn)	
Take	 the	 Euclidean	 distance	 by	 comparing	 each	measurement	 in	 each	 time	
series	to	the	ones	of	the	other	time	series.		
	

	
	

ð Can	we	 capture	 this	 alignment?	One	 standard	 approach	 for	 doing	 this	 is	 called	
Dynamic	Time	Warping	(DTW)	
Basic	idea:	Allow	one-to-many	mapping.	Each	measurement	in	time	series	q	gets	
exactly	one	measurement	in	time	series	s.	It	allows	us	to	have	some	non-linearity	
in	the	data.	
Constraints	on	mapping:		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 133	

§ Must	match	the	beginning	and	end	of	sequence	
§ Monotonicity:	cannot	go	backwards	in	time	
§ Continuity:	no	gaps.		
§ (optional)	Warping	window:	w:	|i-j|	≤	w		

	

	
Compute	DTW	with	Dynamic	programming.	There	is	no	restriction	
that	both	sequences	should	have	the	same	length.	Again	we	have	
the	same	problem	set-up,	having	two	time	series	S	and	Q.		
Given:	S	=	(S1,	…	Sn)	and	Q	=	(q1,	…,	qm)	
Do:		

• Let	D	=	n	x	m	matrix	
• Let	δ(si,	qj)	be	the	distance	between	si	and	qj	
• D[i,j]	=	δ(si,	qj)	+	min(D[i-1,j-1],	D[i,	j-1],	D[i-1,j])	

	 	

If	w	is	given,	then	only	compute	D[i,j]	if	|i-j|	≤	w		

ð An	Example	is	given	in	the	slides.	

	

Trace	 back.	 We	 want	 to	 start	 from	 the	 right	
corner.	 Trace	 back.	 We	 know	 that	 5	 will	 be	
matched	to	7,	so	10	can	me	matched	to	7	and	8	
will	be	matched	to	7.	13	is	matched	to	12.	Etc.		

This	allows	a	mapping	between	both	sequences.	

	

	 This	is	a	good	way	to	measure	the	distance	between	both	sequences.		

If	we	have	a	working	window	of	1,	we	get	the	following	matrix.	Blue	entries	are	the	
ones	violating	the	constraints.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 134	

	

	 One	thing	to	know	is	that	DTW	is	not	a	Metric	…	Because	

o DTW	violates	the	triangle	inequality	
o Metrics	 are	 usually	 preferred	 as	 many	 efficiency	 tricks	 exploit	 the	

triangle	inequality	
§ However,	many	“tricks”	exist	for	DTW	
§ Can	compute	it	very	quickly	

o Also,	most	of	the	time	DTW	acts	like	a	metric.	Ex:	>	99%	of	randomly	
sampled	triples	will	satisfy	the	triangle	inequality	for	DTW.	

Exploiting	Triangle	Inequality	
	

	
	
	 	

Setting	the	Warping	Constraint	
	
The	Warping	 constraint	 has	 a	 big	 influence	 on	 results	 and	 “best”	 value	 is	 problem	
dependent.		

• Set	via	a	tuning	set	
• Usually	small	values	(e.g.,	<	20)	are	fine	
• As	training	set	size	gets	larger,	expect	that	less	warping	is	needed.	Why?	So,	

the	more	example	I	have,	I	will	expect	to	have	to	do	less	warping.	
	

Implementing	DTW	
	

• Dynamic	programming	DTW:	N2	time	and	space	per	pair	compared	
• Many	efficiency	 tricks	exist	 that	 scale	 this	 to	 very	 large	data	 sets	 (i.e,	 linear	

time)	
o Early	abandoning	of	computation	
o Exploiting	wrapping	constraint	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 135	

o Etc.		
	

So	far,	we	assume	time	series	measures	only	one	variable.	However,	multiple	series	
measure	multiple	variables:		S	=	(s1,...,sn)	where	each	si	=	(si,1,...,si,d).	The	question	is,	
how	can	we	deal	with	multiple	dimensional	variables?		
There	exist	two	ways	to	extend	DTW.		

• Independent:	 sum	each	dimension	 separately.	Align	 first	 dimensions	of	 two	
sequences,	 then	second	dimension,	 third	one,	etc.	So	we	essentially	assume	
dimensions	to	be	independent.	DTW(S,Q)	=	DTW(S1,Q1)+...+DTW(Sd,Qd)	

• Dependent:	single	matrix	and	compute	score	along	all	dimensions.	e.g.,	δ(si,	qi)	
is	d	dimensional	Euclidean	distance.		

	
Selecting	independent	or	dependent	metric	is	domain	dependent:		

• Independent:	Acceleration	on	foot	and	hand	
• Dependent:	Player	location	on	soccer	field	

	
Beware	of	curse	of	dimensionality!	

• DTW	probably	only	useful	if	d	<	10	(or	perhaps	even	smaller)	
• If	d	>	10,	probably	need	to	drop	some	dimensions.		

	
Allowing	for	Gaps:	Longest	Common	Subsequence	(LCSS)	
	
Potential	issues	with	DTW:	all	points	are	matched	so	outliers	can	distort	score.	
Longest	 common	 subsequence	which	 allows	 gaps,	meaning	 that	 not	 all	 points	 are	
matched.	We	will	ignore	some	noise	in	the	data.		

	 	
	
Computing	LCSS:	Dynamic	Programming	
Given:	S	=	(s1,...,sn)	and	Q=	(q1,...,qm)	
	

	
	
Notes	on	LCSS	

o This	is	a	similarity	not	a	distance	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 136	

o Symbolic	data	uses	si	=	qj	instead	of	δ(si,	qj)	<	ε	
	

Why	is	it	interesting	to	study	something	like	DTW?		
• DTW	is	common:	Medicine,	bioinformatics,	gesture	recognition,	music	analysis,	

etc.		
• Many	large-scale	empirical	evaluations	show	that	nearest	neighbour	with	DTW	

is	hard	to	beat	
o DTW	is	very	simple	and	easy	to	implement	
o Good	advice:	Try	simple	thing	first	

• Ideas	such	as	dynamic	programming,	etc.	translate	to	other	problems.	
	

3. Symbolic	Representations	
	

ð Why	a	symbolic	representation?		
• Enables	new	analysis	by	using	symbolic	approaches:	plot	them	for	instance.	
• Symbols	tend	to	be	easier	for	people	to	interpret	than	numbers	
• Compress	the	data	

	
SAX	representation	
	
Given:	A	time	series	S	=	(s1,...,sn)	,	an	window	size	w,	and	an	alphabet	size	a	
	
Do:	Convert	S	to	a	symbolic	sequence	of	length	n/w	which	involves	an	alphabet	of	a	
symbols.	So	we	will	divide	or	sequences	into	parts.		
	

	
How	does	this	approach	work?	First	we	assume	the	data	is	normalized,	then	we	apply	
the	Piece	aggregate	approximation.		
ð Z-normalize	the	time	series	

	
Apply	the	piece	aggregate	approximation	(PAA)	
• Divide	the	series	into	n/w	windows	
• Compute	the	average	value	in	each	window	and	replace	each	observed	value	

in	the	window	with	the	average	
Assign	a	symbol	based	on	ranges	of	PAA	values	
Convert	PAA	representation	to	a	string	

	
	 	 	 	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 137	

	
	

• Exploit	that	the	time	series	is	z	normalized	
• Divide	the	area	under	the	standard	normal	into	equal	size	regions	
• Assign	one	symbol	for	each	region	

	

	
Anything	 that	 falls	 into	 a	 particular	 gets	 the	 corresponding	
symbol.		

ð Why	SAX?		
• Converted	 time	 series	 to	 a	 string:	 Can	 apply	 fancy	 algorithms	 (e.g.,	 from	

bioinformatics)	
• Makes	visualization	easier	(borrowing	ideas	from	bioinformatics)	
• Most	 indexing	schemes	work	best	with	symbols:	Can	use	extensible	hashing	

with	SAX	
	

4. Applications	to	sports	
	

Three	new	types	of	Data	
• Event	stream:	Events	with	time	and	location	
• Athlete	monitoring:	GPS,	accelerometer,	etc.	
• Optical	tracking:	X,	Y	locations	of	players	

ð These	are	all	time	series		
	

Two	tasks	
• Rating	players:	Assign	a	rating	to	each	action	a	player	performs	in	a	match	
• Understands	strategy:	Discover	patterns	form	player	tracking	data	

	
STARSS	
Given:	Event	stream	with	type	and	location	of	all	events	(e.g.,	passes	and	shots)	
Do:	Assign	rating	to	each	action	by	assigning	a	value	to	each	action.	
Approach	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 138	

1. Split	matches	in	phases	
2. Rate	phases	
3. Distribute	phase	rating	over	individual	actions	
4. Aggregate	players’	ratings	over	season	
	
Rating	phases:	
1.	Find	k	most	similar	phases	(e.g.,	100)	
2.	Of	these,	count	how	many	result	in	a	goal	(e.g.,	6)	

	
	 	 	

ð Distribute	phase	rating	across	its	constituent	actions.	Actions	at	the	end	are	more	
important:	Exponential	Decay.		

	
Discover	Offensive	Strategies	in	Football	Matches	
	
Given:	Event	stream	with	type	and	location	of	all	events	(e.g.,	passes	and	shots)	
Locations	of	all	players	and	the	ball	(10	hz	sample)	
Find:	Typical	offensive	strategies	

	
	

	
§ Film	study	is	time	consuming	
§ Automation	can	help	speed	this	up	
§ Computers	good	at	finding	patterns	in	large	data	sets	

	
Challenges:		

	
• Relationships	and	how	they	change	over	time	are	important	

§ Space	
§ Interactions	between	players	

• Order	of	events	is	important	
• May	want	to	generalize	over	players	involved	
• Exact	same	sequence	of	events	unlikely	to	occur	multiple	times	

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 139	

	
Important	Steps	
	
1. Data	cleaning	

• Outliers	and	incorrect	values	
o Valid	field	coordinates	
o Player	and	ball	movements	seem	“possible”	

• Teams	 switch	 direction	 at	 half	 time:	 Normalize	 data	 such	 tat	
team	always	attacks	the	same	goal.		

• Account	 for	 changes	 in	 data	 (e.g.,	 position	 switches,	 new	
players,	etc.	
	

2. Event	stream	pre-processing	
	

	
	

3. Clustering	data	
Three	benefits	

• Teams	employ	multiple	strategies	
• Generalize	from	a	specific	location	
• Subsequent	step	more	computationally	efficient	

Divide	 phases	 into	 different	 groups	 such	 that	 the	 phases	 in	 a	 group	 are	
“similar”.		

	
4. Identifying	 important	 strategies:	 within	 each	 cluster,	 find	 frequently	

occurring	subsequences.	See	slides	for	more	details.		
	

5. To	conclude	
	

To	 conclude,	 time	 series	 occur	 in	 multiple	 domains:	 sports,	 healthcare,	 music,	
mathematics,	etc.	Sports	provides	many	rich	sources	of	data	form	historical	sources,	
sensors	provide	detailed	data.	This	relatively	simple	analysis	has	made	a	huge	impact	
on	several	sports.		

2016-2017	 Data	Mining	 Ysaline	de	Wouters	

	 140	

	
1-NN	approach	with	DTW	is	a	very	strong	approach	for	classifying	time	series.		

§ DTW	is	one-to-many	mapping	
§ Can	be	efficiently	computed	

Can	convert	time	series	into	a	symbolic	sequence.		
	
Key	challenges	include	

§ Volume	of	data	
§ Capturing	structure:	Spatial,	temporal,	etc.	

