Examen Incentives \& Behavior Januari 2022

Question 1 about entering the market or not; which statement is true

P1/P2	E	N
E	$-1,-1$	2,0
N	0,2	0,0

c) The chance for a player to not enter the market is $1 / 32 x$
d) The chance that both players won't enter is $4 / 9$ (I don't remember the phrasing anymore, it's if both players enter 4/9)

Q2
Q3
Q4
Theory question about how prospect theory explains bonds vs stocks. What is not true?
You have to be extremely risk averseq to invest in bonds $1 x$
(I believe you'd always put money in bonds, how much depends on the timehorizon)

Q5
time preference with $u(c)=s q r t(w) y=(0, w, 0)$ and $c t+s t \leq y t+(1+r) s t-1$
one of the expressions was incorrect
d) $s 2=0$

Q6

Time inconsistent consumer B. What's true one of the 2 expressions was correct

- beta doesn't affect decisions
- At $t=2$ consumer will consume more than would've wanted
- 2 Expressions for c1 and ...

Q7
Indicate what's not true

- the lower p, the higher the fixed fee a sophisticated consumer is willing to pay
- It's optimal to price below mc when consumer is naive/sophisticated (these 2 were definitely true)
- for a given p, naive customer is willing to pay a lower fixed fee than sophisticated one

Q9
If the likelihood in period i is lower than the likelihood in j, the wage in period i is higher than wage j . This sounded true assuming that $\mathrm{i}<\mathrm{j}$.

Q10

False: bothe limited liability constraints are limiting (only one)

First open question:
Extensive form
Top node: player one decides to enter (E) or not (O)
Second level: player two decides to ask for a high (H) or low price (L).
Payoffs:
O-H:0,4
O-L: 0,2
E-H: 1, 1
E-L:-1, -1

- Write down the possible strategies of each player
- Write down the normal form and indicate best responses
- Determine SPNE (I believe E,HH ?)

2nd open question

Student has utility function $u(x)-1 / 2 e^{2}$. E is the effort the student has to do while studying for the exam and x is the obtained grade. The grade is increasing in effort and decreasing in difficulty of the exam, h. $x=e / h$. Also, the student is risk-averse and utility function has the following form $v(x-r) \ldots r$ is the reference grade the student would like to obtain.

1) write down the max. problem (3p) $\max v(e / h-r)-1 / 2 e^{2}$
2) If lambda $=1$, determine the optimal level of e $e / h-r-1 / 2 e^{2}$ FOC: $0=1 / h-e$ so $e=1 / h$
3) How does an increase in difficulty h affect e? Explain the intuition

$$
\frac{\delta e}{\delta h}=-1 / h^{2}
$$

4) Now say lambda $>=1$. Determine the optimal profit level for when $h>=s q r t(1 / r)$ or $\mathrm{h}<=$ sqrt(lambda/r)
5) Again optimal level, but at =
6) How does optimal effort level change with h now. What's different than in question 3.
