1. Calculate probability $P(Y=1 \mid x, w)$ given an x and w vector
a. Also recalculate weights
2. Question regarding gradient boosting: 3 decision trees given, calculate the new target variable (yi $-\mathrm{F}(x i)$). 2 examples where learning rate $=1$, 1 example where learning rate $=0.5$ (more complex)
3. Recommender system, collaborative filtering:
a. Graph given with ratings of user x compared with 3 other users. Order users according to impact on predicted rating (highest absolute weight first)
b. Given user $x 2$ rates $m 0.5$ under his average, $x 3$ rates $m 0.5$ under his average and $\times 4$ rates m 1 above his average. Do you expect the predicted rating to be above or below average and explain \rightarrow Solve with utilizing impact of question a
4. Insight question
5. Given a set of transactions, create the <e>-projection using prefixspan (simple question)
6. Association rules
a. calculate confidence of a rule
b. calculate lift of a rule
c. Which items could POSSIBLY be in the AH-projected tree of the data
i. Answer
7. None of the not-frequent items
8. Not A or H since already taken out
9. Not any item less frequent than A (since added as last)
10. Given $L 1$ and $L 2$ regularization and an empty graph, draw an estimation of the evolution of non-zero weights in function of the lamba for both regularizations ($->$ Illustration can be found in notebook of session 2)
11. Figure given with a lot of points with 5 points being bigger: Given A as initial cluster mean, which examples are likely to be picked next as cluster mean if we would use kmean++. Order the 4 points according to most likely
a. Answer: Furthest point away from A is most likely to be picked as next cluster mean
12. Question regarding DB scan (clustering): Figure given with a lot of points and some being assigned a letter
a. Q1: What is point A called according to DBscan
b. Q2: What is point B called according to DBscan
c. \quad O3: Would A and C be part of the same cluset?
i. Explain density connected and see if this is the case
13. Given a 1 D distribution of 10 examples (being + or -) on a x axis. We use a logistic regression classifier:

a. What is the max accuracy that this classifier can achieve (0.8)
b. Explain and draw decision surface (DS on right side of the - instances)
14. Given some frequent itemsets that are found using Toivonen:
a. Give the itemsets that are going to be part of the negative border
i. Answer: All immediate supersets of the frequent sets for which ALL subsets are frequent \rightarrow Generate using a similar way as Appriori Join and check if all subsets are frequent
