Introduction

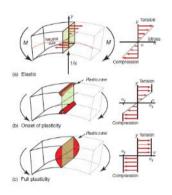
maandag 5 december 2016 10:25

Stiffness - limited design (H5)

- Design to avoid excessive elastic deflection

Strength - limited design

- Design to avoid plastic collapse
- To avoid yield (3 options)
 - Elastic design = totally elastic
 - Not always possible
 - Local yielding
 - Permissible
 - General yield
 - Avoided



Other fuctions of plasticity

- Absorb energy
 - Ex: Car crash
- Give formation
 - Ex: metal shapes

Standard solutions to plastic problems

maandag 5 december 2016 10:32

Yielding of ties and columns

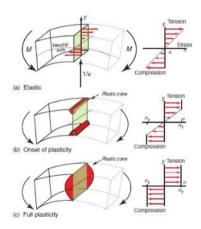
- Tie = rod (=staaf) loaded in tension
- Column = rod loaded in compression
- Stress in them is the same, if $\sigma > \sigma_y$ then it yields

Yielding of beams and pannels

- A bending moment M generates a linear variation of longitudinal stress σ across the section

$$\frac{\sigma}{y} = \frac{M}{I} = E\kappa$$

- y = distance to neutral axis
- I = influence of cross-section shape
- κ = kromtestraal



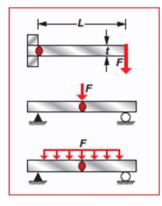
- Elastic section modulus = Z_e

$$\circ \quad Z_e = \frac{I}{y_m}$$

$$\sigma_{\max} = \frac{M y_{\rm m}}{l} = \frac{M}{Z_{\rm c}}$$

- σ_{max} = maximum longitudinal stress
- y_m = greatest distance from neutral axis
- $\circ~$ If $\sigma_{max} > \sigma_y$, then small zones of elasticity appear at the surface where the stress is highest
 - Beam is no longer elastic
- If moment is increased further
 - Stress near the surface remains σ_{γ}

- But plastic zones grow inward from surface until completely plastic => forming plastic hinges
- Plastic bending of beams



• Momentum

- M1 = FL
- M2 = FL/4
- M3 = FL/8
- Plastic hinges form at red areas
 - When maximum moment reaches right before collapse
 - Failure moment = M_f

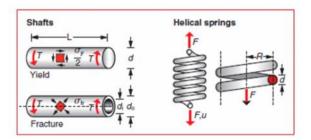
$$M_{\rm f} = \int_{\rm section} b(y) \ y \ \sigma_{\rm y} \ d_{\rm y} = Z_{\rm p} \sigma_{\rm y}$$

 \Box Z_p = plastic section modulus

- 2 new functions have been formed
 - $\circ Z_e$: for first yielding
- $\circ \quad Z_p : \text{for full plasticity}$ Ratio $\frac{Z_p}{Z_e} > 1$
- - o A measure for safety margin between initial yield and collapse
 - Form with more efficiency : $Z_p \approx Z_e$

Section shape	Area A m ²	Elastic section modulus Z_{e} m ³	Plastic section modulus Z _p m ³	
	bh	<u>bħ²</u> 6	$\frac{bh^2}{4}$	
	π <i>r</i> ²	$\frac{\pi}{4}r^3$	π ₃ r ³	
	$\pi (r_0^2 - r_1^2)$ $\approx 2\pi rt$	$\frac{\pi}{4r_0}(r_0^4 - r_1^4)$ $\approx \pi r^2 t$	$\frac{\pi}{3}(r_0^3 - r_l^3) \approx \pi r^2 t$	

Yielding of shafts



- Torque (= wringingsmoment) T produces shear stress τ

$$\circ \qquad \tau = \frac{Tr}{K} = \frac{G\theta r}{K}$$

- r = distance to central axis
- K = polar second moment of area
- $\frac{\theta}{L}$ = angle of twist per unit length
- Failure occurs when $\tau_{max} > \sigma_y$

$$\tau_{\text{max}} = \frac{TR}{K}$$

- R = radius of the shaft
- Yield occurs when $\tau_{max} = \frac{TR}{K}$
 - When torque is increased further, plasticity spreads inward
 - \circ Maximum torque that shaft can carry : τ = k
 - \circ Example : for a solid circular section , the collapse torque =

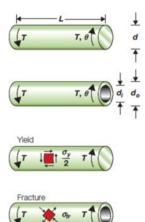
$$T = \frac{2}{3}\pi r^3 k$$

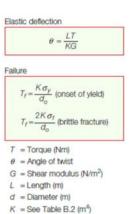
- Helical springs
 - Special case of torsional loading
 - \circ $\,$ When the spring is loaded axially, the individual turns twist

$$S = \frac{F}{u} = \frac{G d^4}{64 n R^3}$$

- S = spring stiffness
- n = numver of turns of wire
- G = shear modulus
- d = diameter
- R = radius
- F = axial force
- u = extension
- Elastic extension is limited by the onset of plasticity, this occurs at force :

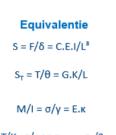
•
$$F_{\rm crit} = \frac{\pi}{32} \frac{d^3 \sigma_{\rm y}}{R}$$





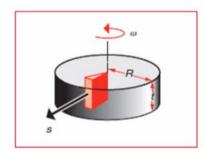
 $\sigma_y =$ Yield strength (N/m²)

 $\sigma_f = Modulus of rupture (N/m^2)$



 $T/K = \tau/r en \tau_{max} = \sigma_{\gamma}/2$ (d = 2r)

Spinning disks



- They store kinetic energy U
- Centrifugal forces generate a radial tensile stress
- Kinetic energy

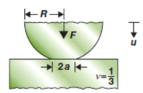
$$U = \frac{\pi}{4} \rho t \, \omega^2 \, R^4$$

- $\rho = \text{density}$
- R = radius
- t = thickness
- ω = angular velocity
- WITH poisson's ratio : v = 1/3
- Maximum stress

 $\sigma_{\rm max}\,=\,0.42\,\rho\,\omega^2\,R^2$

- The disk yields when $\sigma_{max} > \sigma_y$
 - $\circ~$ This defines maximum allowable ω and limits the inertial energy storage

Contact stresses



- If the surfaces are loaded, the contacts flatten elastically and the contact areas grow
- Stress state is very complicated

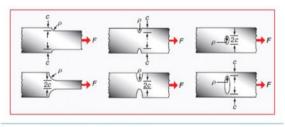
$$a = 0.7 \left(\frac{FR}{E}\right)^{\frac{1}{3}}$$
$$u = 1.0 \left(\frac{F^2}{E^2 R}\right)^{\frac{1}{3}}$$
$$v = 0.33$$

- Maximum value of shear stress
 - It causes first yield
 - $\circ~$ It is beneath the contact at a depth of a/2 $\,$

$$\circ \quad \tau_{\max} = \frac{F}{2\pi a^2}$$

- If this exceeds the shear yield strength $k = \frac{a_y}{2}$
 - Then plastic zones appear beneath the centre of contact

Stress concentrations



Stress concentrations. The change of section concentrates stress most strongly where the curvature of the surface is greatest.

- Yielding will start at places with holes, slots and threads (they concentrate stress)
- Nominal stress : σ_{nom}
 - Load divided by the cross-section, ignoring features that cause the stress concentration
- Maximum local stress : σ_{max}

$$\circ \ \sigma_{max} = \sigma_{nom} * K_{sc}$$

- Stress concentration factor : K_{sc}

 $K_{\rm sc} = \frac{\sigma_{\rm max}}{\sigma_{\rm nom}} = 1 + \alpha$

- ρ_{sc} = minimm radius of curvature of the stress-concentration feature
- c = characteristic dimension
 - □ Least of :
 - Half-thickness of remaining ligament
 - Half-length of contained notch
 - Length of an edge notch
 - Height of a shoulder
- α
 - \Box For tension ≈ 2
 - $\hfill\square$ \hfill For torsion and bending $\approx 1/2$

Material indices for yield-limited design

maandag 5 december 2016 12:15

Minimising weight : a light, strong tie-rod

Function	• Tie-rod
Constraints	Length L specified
	 Tie must support tensile load F without yielding
Objective	 Minimize the mass m of the tie
Free variables	 Choice of cross-section area, A
	 Choice of material

- Constraint:

$$\circ \sigma = FA < \sigma_y$$

- Objective: $\circ m = \rho^* A^* L$
- Together :

$$m \ge FL\left(\frac{\rho}{\sigma_{y}}\right)$$

- Material index

$$M_{t} = \frac{\sigma_{y}}{\rho}$$

Minimising weigth : light, strong panels

Function	Panel in bending
Constraints	 Width b and span L specified Panel must support bending load F without yield
Objective	 Minimize the mass m of the panel
Free variables	 Choice of thickness h Choice of material

$$M_{\rm p} = \frac{\sigma_{\rm y}^{1/2}}{\rho}$$

Light, strong beams : the effect of shape

Function	Beam in bending
Constraints	 Span L specified, section shape square Beam must support bending load F without yielding
Objective	 Minimize the mass m of the beam
Free variables	 Area A (or square section dimension b) Choice of material

Section Shape	Area A	Moment /	Moment K	Moment Z	Moment Z _p
	m ²	m ⁴	m ⁴	m ³	m ³
	bh	<u>bh³</u> 12	$\frac{bh^{9}}{3}(1-0.58\frac{b}{h})$ (h>b)	<u>bh²</u> 6	$\frac{bh^2}{4}$

$$M_{\rm b} = \frac{\sigma_{\rm y}^{2/3}}{\rho}$$

- Vormfactoren

$$Z = I/y_m$$

$$\phi_{\rm B}^{\rm y} = rac{Z_{\rm c}^{\rm shaped}}{Z_{\rm c}^{\rm solid}}$$

Case studies

maandag 5 december 2016 12:31

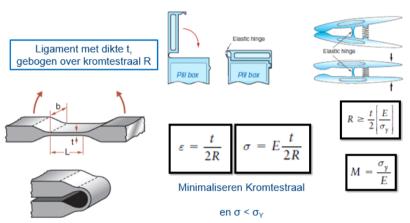
There are two types of plasticity problems

- The condition *σ* < *σ_y* must be met everywhere
 Complect elasticity
- Full plasticity is the aim

<u>HB p 179 - 184</u>

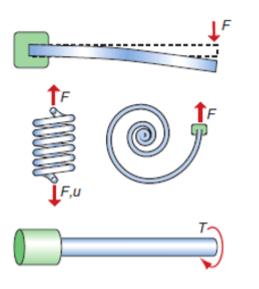
Elastische scharnieren

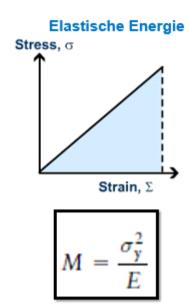
Elastische Scharnieren



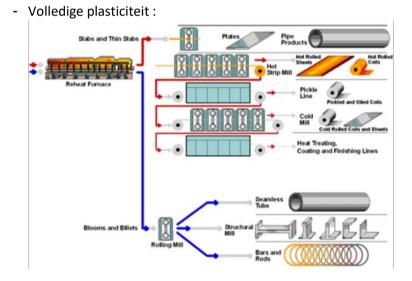
<u>Veren</u>

• Elastische Energie Opslag

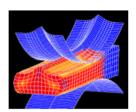


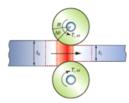


Arcellor Mittal



Walsen van metalen





Plastische Arbeid (per eenheid volume): $\sigma_{y} \epsilon_{gl} en \epsilon_{gl} = \Delta t / t_0$

Volume per eenheid dwarsopp gevoed in matrijs: $R.\Delta\theta.t_o$

Arbeid geleverd door de twee wals matrijzen: 2.Τ.Δθ

KOPPEL T (Torque)

$$T = \frac{1}{2} R \sigma_{\rm y} \, \Delta t$$

$$P = 2T\omega = R\omega \,\sigma_{\rm y} \,\Delta t$$

