ICT Service Management

Information technology in a business environment

- → Function = collection of related processes (ex. Marketing)
- → Business process = set of activities (ex. Create campaign)
- → Activity = simple action (ex. Determine target group)

Each function adds to the value chain of Porter.

- → Primary activities: contribute directly to add value
- → Supporting activities: ensure primary activities run smoothly
- ⇒ Difference is in the margin to create value

Create competitive advantage

- → Use information systems (=collective of equipment, services, humans,)
- → Used to support and automate business processes

How is IT used in businesses?

- → Data processing
 - Storage and processing
- → Task automation
 - Aim to automate complete process
- → Integrated information systems (increase overall efficiency and a complete chain of processes)
 - o Integration: ex. With ERP
 - Adjustment of business processes to information systems
 - o Complex systems: ex. Complex software

Important aspects when implementing integration:

- Use a structured approach
- Consider the whole organization
- Have a clear vision
- o The information system is designed as one united
- o There will be change
- Takes several phases to implement
- o It should not only be the task of IT specialists

Most important problems are not technical

- → Ever-changing user equipment
- → Budget limits
- → Unmotivated staff
- → Unacceptable project delays
- ⇒ The introduction of an information system should be thoroughly aligned with the strategy.

The benefits of information systems

- → Operational: more efficiently
- → Tactical: easier to realize goal
- → Strategic: may be able to develop better strategy
- → Quantifiable benefits: increase in profits
- → Non-quantifiable benefits: better customer service

Information systems and a competitive advantage

- → IT resources = abundantly available on the market (windows)
- → IT capabilities = takes years to develop, this makes a difference (the way an organization uses its resources)

A framework for information management

A Framework

Different elements:

- → Information system (runs through a life cycle)
 - o The business process (activities)
 - The data (information)
 - The application (support)
 - o The infrastructure (runs application)
- → IT management
 - o Decisions on its lifetime cycle
 - o IT of all departments
- → IT governance
 - Regulate the relationship between business and IT function
- → The concerns
 - Worries and issues of the stakeholders

The information systems

- → The domains:
 - Business processes = what happens in the organization
 - o The data: content and structure are important
 - o Application: like ERP
 - o Infrastructure: hardware, software, ...
- → Mutual relationship between the four domains:
 - o Business process and data: data is needed for daily processes
 - Business process and application: application supports daily processes
 - Application and data: data is needed to run application
 - Application and infrastructure: application needs hardware/software to operate
 - Data and infrastructure: datacentre
- → Life cycle:
 - Conception: starting point of design and implementation (tactical and strategic choices are made)
 - Architecture: description of how the information system will look like
 - o Development: information system is built
 - o Roll-out: system is made operational

- Operations: longest phase, system is used daily
- Decommissioning: retired of use, can bring security problems when scrapping hardware

IT management

IT function needs to be managed

- → Basic management activities:
 - o Project manager
 - o Operations management keeps operational information systems running
 - Services delivery management delivers IT services to the users
 - o Financial management: cos-benefit analysis of IT projects
 - Quality management
 - Supplier management
 - Human resource management

IT governance

Interaction between the business as a whole and its IT function \rightarrow objective is to create value

- → Activities:
 - o Business-IT alignment
 - Setting up and maintaining IT decision structures
 - o Exerting control: ensure that business goals are met as required

The concerns

Worries and issues related to stakeholders

- → Business concerns:
 - o Products and services
 - Economic aspects
 - o Compliance
- → System concerns:
 - Service levels
 - Usability
 - security

IT Management

IT as a service

IT function is organised as a service for users

Properties of IT services:

- → Services catalogue clearly describes the services
- → Service unit: price associated with unite
- → Users: customers/employees

Service quality:

- → Effectiveness: it does the right thing
- → Efficiency: sufficient capacity and performance

Service types:

- → End-user services
- → Basic services: needed to implement end-user services
- → Extra services: in addition to the services (maintenance)

Service classes:

- → Desktop services
- → Storage
- → Printing
- → Network
- → Application services
 - o Usage
 - Development
- → Support services
 - Assistance
 - o Maintenance and repair
- ⇒ Failure to bundle support led to problems:
 - o Insufficient users subscribe
 - Users do not subscribe and request maintenance

The service unit

- → Subscription based units:
 - o Independent of intensity of use
 - Most common
 - Easiest to define
- → Volume-based units
 - o Depends on intensity of use
 - o Variable
 - o Difficult to measure

IT services sourcing

Provider is internal:

- → One shared central IT department
 - +: Economies of scale
 - +: High degree of standardization
 - o +: Room for the development of new capabilities and new services
 - -: Ineffective services
 - -: IT is too far from business
 - -: Lack of flexibility and agility
- → One separate IT department per division
 - +: Customer intimacy
 - o +: Opportunity to specialize in IT services
 - o -: High cost
 - o -: IT is not managed close enough
- → Hybrid
 - o Splits between centralized and decentralized
 - o Basics provided by central department

Outsourcing:

- → Organization wants to focus on key competences
- → There are insufficient IT competences
- → Cost reduction
- → Better service
- → Choices:
 - Complete outsourcing
 - Outsourcing of system support: extern is responsible for daily operations and management of the infrastructure and applications
 - Outsource it servers
 - Outsources applications: SAP
 - o Desktop outsourcing: personal computer

Cloud computing:

- → Flexible on demand service
- → Metered use: only charged for used resource
- → Universal access
- → Services:
 - IAAS (infrastructure-AA-service)
 - Provider supplies computing processing, storage, and network capacity to customer
 - PAAS (Platform-AA-service)
 - Provider supplies additional system software and supporting software as part of the cloud service
 - SAAS (Software-AA-service)
 - Provider supplies an application
- → How to offer:
 - o Public cloud: to provide services to all users
 - o Private cloud: reserved for one user
 - o Community cloud: shared by certain customers
 - o Hybrid
- → Advantages:
 - Shift from capital to expense
 - o Scalable
 - Cost saving
 - Limited staff required
- → Risk:
 - Security and privacy
 - o Regulations and compliance
 - o Lock-in

IT management standards and frameworks

Five standards

- → ITIL:
 - Best practice standard
 - o Flexible
 - Describes architecture to set up IT services
 - o Five books:
 - Service strategy: helps develop general strategy
 - Service design
 - Service transition
 - Service operation: guidelines for internal management
 - Continual service improvement
- → ISO/IEC 20000:
 - Predictive
 - Nine parts, most important:
 - Service management systems requirements
 - Guidance on the application of service management systems
 - Process reference model
 - Exemplar implementations
- **→** IT4IT:
 - Approaches from the stance of the supply chain
 - Independent from vendors or software
 - o Flexible
 - o Also, stable enough
- → COBIT:
 - General framework for IT governance
- → CMMI-SVC:
 - Best practices to improve processes
 - Describes processes
 - Defines four capability levels:
 - Incomplete: Process is absent or partly implemented Some process goals not reached
 - Performed: Process realizes specific goals Not institutionalized
 - Managed: Planned and executed according to predefined policy Monitored, controlled, reviewed, evaluated
 - Defined: Managed process Maintained process description Derived from set of (overall) standard processes
 - Defines five maturity levels:
 - Initial:
 - Processes are unstable and ad-hoc
 - Success depends on who is doing the process
 - Overcommitted results
 - Not executed when problems
 - Success cannot be repeated
 - Managed:
 - Key processes are institutionalized
 - Agreements and contractual requirements defined

- Configuration management, quality assurance
- Planned processes, sufficient resources
- People have assigned responsibilities and are trained
- Process execution is evaluated
- Defined:
 - Implementation best practices (service continuity, incident handling)
 - Processes rigorously defined and described
 - Establishment consistent standard processes (variants in particular circumstances)
 - Proactive process management
- Quantitatively managed:
 - Quantitative measurement of process objectives and performance
 - Objectives based on customer requirements
 - Quality, performance statistically defined and managed
 - Process performance is predictable and consistent
- Optimized:
 - Outcome and performance variations managed quantitatively
 - Continuous focus on performance improvement (incremental, innovative)
 - Established and revisable quality and performance objectives
 - Process improvement effects measured

Services delivery management

The service catalogue

Description of the services offered

- → Name of service
- → Version
- → Description
- → Offered service levels
- → The group of users for whom the service is intended
- → Service units and its pricing
- → Specific terms and conditions for requesting the service

Service request handling

Two main channels:

- → The user contacts the service desk
 - Smaller requests
- → The request is handled by the IT service manager
 - o Larger request

Request will be evaluated:

- → Genuine
- → Requestor is authorized
- → Part of the catalogue

Request is categorized:

- → Simple request
- → Complex request, further inspection is needed:
 - Urgency
 - o Resources needed
 - o Estimated lead time
 - o Financial consequences for the customer
 - o Financial consequences for the IT department

If service is approved, it will be fulfilled. After fulfilment, the request will be closed

Services planning

Ensures that the correct service volumes are available when needed

Capacity forecast made on three levels (they are all related):

- → The business process: forecast the volume of business process
- → Service consumption: volumes at different services consumed
- → Resources: volume of resources needed

Two main techniques to obtain useful forecasts:

- → User forecast:
 - Users are asked to provide forecast
 - Not always reliable
 - Good for capturing large changes in business volume that are due to changes in the business constellation: mergers, ...
- → Trend analysis:
 - Extrapolate the past consumption
 - Cannot detect large changes in business
- → Reliable forecasts are usually a combination of the different techniques

Financial management

IT project cost benefit analysis

Fundamentally is the IT department not different than other department in case of the financial management.

IT delivers services in a complex environment → difficult to calculate

They will charge their users the service they provide through internal transfer/invoice

IT services cost calculation

Two options to recover cost:

- → Costs are pure indirect costs:
 - o Added to the general overhead cost
- → Costs are distributed across the users of the ICT services
 - o The ICT costs of the central department reappears on the cost budgets of the user

To calculate cost (7 steps):

- → Identification of the costs
 - Usually classified according to cost type
- → Identification of the services
 - As described in the catalogue
- → Identification of resources
 - o Hardware, software, ...
 - Correct choice is important = easy calculation
 - o IT resources should be a complete system, ex. A network, server, ...
- → Consolidation of the personnel costs
- → Calculation of the cost of each resource: cost of each IT resource
- → Allocation of the resources to the services
 - For each resource, determine the fraction of it used to implement each of the services
- → Calculation of the service unit price
 - Total cost divided by the number of service units

IT services charge-out

Charged out = internal IT department still calculates cost

The purpose is to shift the costs from the IT department to the individual budget of the users

Advantage: costs will become visible per user budget encouraging better management and cost control

Principles:

- → Understandable: customers and users should be able to understand the services definition and the service unit
- → Fair: user should only pay for the service they used
- → Predictable: user could easily make a prediction of the time used and the cost
- → Verifiable: the costs are clearly stated
- → Consistent: when users utilise the same service, they should be invoiced the same

Internal charge-out system in three steps:

- → Services definition
 - o In service catalogue
 - o Important to define appropriate service unit
- → Cost calculation
 - Cost associated to each service unit
 - Price charged is equal to the cost
- → Charge-out of consumed service
 - Actual use is charged to the user

Difference in total charge-out and actual cost can be different:

- → Difference between forecast and actual use
- → Difference between budget and actual IT cost
- → Differences should be absorbed in the cost of the enterprise

The aim of an IT department is to reach a zero net balance!

External charge-out:

- → In principle market conditions = cost + mark-up
- → Pricing resembles internal transfer pricing

Operations management

Support daily activities within IT department

Resource tracking

One of the basic activities

- → Stored in item database
- → Consists of two activities:
 - o Resource inventory creation
 - o Resource data management
 - Newly purchased product = create
 - Made operational: status is changed, relationships created
 - Modified: ex. Update
 - Decommissioned: status changed; relationships removed
- → Resource manager decides the granularity

Relationship between resource items:

- → Can consist of another item
- → Is installed on another item
- → Connected to another item
- → Associated with another item

Extra services handled with resource tracking:

- → Event handling
- → Incident handling
- → Problem handling
- → Change handling
- → Financial management
- → Service planning

Change handling

Three kinds of changes:

- → Standard change:
 - o Described in catalogue as standard
 - Can be ordered by user
- → Urgent change:
 - o Consequences of an incident
 - Performed immediately
 - Assessed and approved, always evaluated

- → Normal change
 - Normal operation

All change start with:

- → Request for change:
 - Technical staff
 - Service desk
 - o IT service manager
 - External supplier
- → Evaluate of request is genuine, requestor is authorized, reasonable and feasible and if the request type is correct (done by change manager)
- → Preparation considerations:
 - o Detailed evaluation
 - o Risk involved in the change
 - o Detailed implementation planning
 - o Back-out plan
 - Estimate cost involved
- → Task change committee (assess all normal and urgent changes)
 - Prioritizing important changes
 - Approving change
 - o Recommending
 - o Define guidelines
- → Change themselves are performed by technical staff
- → Post implementation review:
 - o Are the results realized?
 - o Are there undocumented side effects?
 - o Carried out in the timeframe and budget given?

Event, incident, and problem handling

Event:

- → Events signal normal operations
- → Threshold events: ex. Memory threshold exceeded
 - Are symptoms of a problem
- → Events reporting expectations
- → Events reporting malfunctions

Event handling:

- → Built-in detection: operating system signals events
- → Monitoring tools: network monitor detects transmission error
- → User reports (to service desk)
- → Needs to be logged:
 - o All relevant data will be stored

Incident (an unwanted interruption) handling:

- → Identification of service desk
 - Examines problem in detail
 - o Parameters:
 - Scope: what services and which users are affected
 - Severity: measure of degradation of the IT services
- → Determine severity:
 - Minor incident: small impact, solved immediately by service desk staff
 - o Major incident: ex. Failing application server, escalate to second-line support
 - Disaster: ex. Flooded server room
- → Diagnose of incident:
 - Diagnostic scripts
 - Incident matching
- → Incident solution:
 - Component replacing
 - o Back-up measures
 - Workaround: typical temporary solution
- → Possible escalation:
 - o Escalation to third line support: assistance of vendor
 - o Escalation to fourth line support: developers of system
 - o Hierarchical escalation: escalation to higher management
- → Incident review: for major incidents

Problem (underlying persistent cause of one or more incidents) handling:

- → Detection of problem
 - One or more incidents
 - o Incident review indicates problem
 - o One or more incidents not leading to incidents
 - Specific reports by system engineers and vendors
- → Registration in database
- → Problem is examined
- → Diagnosing the root problem:
 - Diagnostic script
 - o Problem matching
 - o Problem replication: in a testing environment
- → Possibility to install workaround:
 - o Install back up system
 - o Substitute service
 - Restrict system usage
- → Action to solve problem:
 - o Hardware repair or replacement
 - Software modification or upgrade
 - Installation of additional resources
- → Problem review

Quality management

Service levels

Quantitively definition of a minimum quality requirement

- about quality
- → Defines minimum requirements
- → Is quantitative

"In at least x% of all measurements of parameter y of the service, performed over a period p, a value will be obtained of at least/at most/equal to z" \Rightarrow "In at least 99% of all measurements of the response time of a database query, performed over one month, a value will be obtained of at most 2 seconds"

Types of service levels (defined with the same structure as noted supra):

→ Availability

Availability: The fraction of the time a piece of infrastructure, a resource or a service can effectively be used. $\Rightarrow \beta = (MTBF/MTBF + MTTR)$, unavailability = $1 - \beta$

Composite systems:

$$\beta_S = \prod_{i=1}^N \beta_{C_i}$$

$$1 - \beta_S = \sum_{i=1}^N 1 - \beta_{C_i}$$
e.g. 5%

Failure rate and reliability: The uninterrupted amount of the time a piece of infrastructure, a resource or a service can effectively be used

Availability improvement techniques:

- Servers
 - Goal: remove single points of failure
- Storage:
 - RAID (redundant array of inexpensive disks)
 - RAID 1: Disk (data) mirroring → expensive to create copy on remote site
 - RIAD 5: Block level striping (Write subsequent blocks to different disks) + redundancy (Write one parity block P per n blocks)
 - Combine multiple disks into one system Looks as one single disk system
 - Have more disks than necessary
 - Use extra disk(s) to store redundant information or spread redundant information over all disks
 - When component fails: use this redundant information to restore data (restoring data is possible without performance degradation)
- o UPS:
 - Guards against power failure

- Disaster recovery:
 - Have a plan
- → Capacity
 - Sufficient internet connection, network storage, minimum process capacity, printing....
- → Performance
 - o Responds time, ...
- → Administration and support,
 - Standard request fulfilment → maximum lead time, ...

Service level agreements

Between customers and IT provider

When levels are not met, action should be taken:

- → Meeting on affected service level with proposals for improvement
- → Discount on charges
- → Fines
- → (Partial) contract termination

Supplier management

Different suppliers

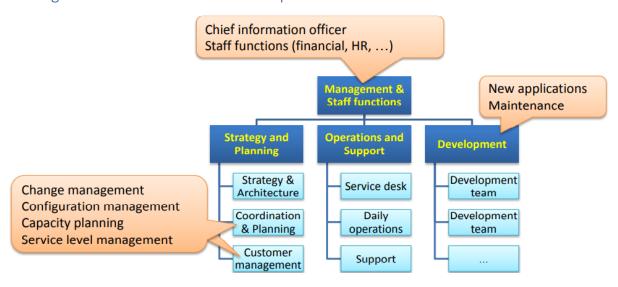
- → Hardware
- → Software
- **→** Commodity
- → Service supplier
 - Workforce services
 - Advisory (consulting)
 - Networking services
 - Outsourcing services (cloud)

Supplier classification

- → Strategic: partners, often sharing confidential information
- → Tactical: represent significant commercial activity and business interaction
- → Operational: supply products and services
- **→** Commodity

Supplier management activities

- → Identify new suppliers and suppliers' requirements
- → Evaluate new suppliers and new offerings
- → Establish new suppliers and contracts
- → Manage supplier and contract performance
- → Renew or terminate supplier contracts


Human resource management

IT personnel

Four broad categories:

- → Management
 - o Management and coordination
 - Senior: overall management
 - CIO: overall IT manager
 - Services director/service delivery manager: all services provision
 - Project management
 - Project manager
 - Team leader
- → Architecture
 - o Design and maintenance of new information systems
 - Business architect
 - Technical architect
 - o Requires knowledge of management and information systems
- → Service delivery
 - Service manager/coordinator
 - Service desk staff member
 - Security officer
- → Technical and administrative
 - System development
 - Analyst
 - Programmer
 - Tester
 - Support
 - System engineer
 - System administrator
 - Operator

The organizational structure of an IT department

IT governance

What is IT governance?

- → IT governance is concerned with the global relationship between the business and the
- → IT function IT governance aims at ensuring that the IT function behaves properly and delivers value to the business
- → IT governance defines and implements policies, procedures, processes, structures, and control mechanisms

IT governance standards

- → ISO/IEC 38500
 - o Framework with guidelines
 - Responsibility
 - Individuals and groups understand and accept responsibilities in respect to IT supply and demand.
 - Those responsible have authority
 - Strategy
 - Business strategy considers current and future IT capabilities.
 - Strategic IT plans satisfy current and ongoing business strategy needs
 - Acquisition
 - T Acquisitions are made for valid reasons
 - ...are based on proper analysis
 - ...balance benefit, opportunity, cost, risk
 - ...in the short term and the long term
 - Performance
 - IT is fit for purpose in supporting business
 - IT provides services, service quality meeting current and future business requirements
 - Conformance
 - IT complies with all mandatory legislation and regulations
 - Policies are clearly defined, implemented, and enforced
 - Human behaviour
 - Policies, practices, and decisions respect human behaviour
 - IT considers current and evolving needs of all the people in the process

- Three main responsibilities of directors
 - Evaluate current and future use
 - Direct preparations and implementation of plans and policies
 - Monitor performance
- o Guidelines for corporate
 - Responsibility
 - Evaluate:
 - Evaluate options for assigning responsibilities w.r.t. current and future use of IT
 - Evaluate competence of those given responsibility to decide on IT
 - Direct:
 - Ensure that plans are carried out according to responsibilities
 - Directors should receive information needed to meet responsibilities and accountability
 - Monitor:
 - Appropriate IT governance mechanisms should be established
 - Those responsible should acknowledge and understand responsibilities
 - Performance of those responsible for governance should be monitored
 - Strategy
 - Evaluate:
 - Ensure that IT provides support for future business needs
 - Ensure IT aligns with organization's objectives
 - o Ensure appropriate risk assessment
 - Direct:
 - Direct preparation and use of plans and policies to ensure benefits from developments in IT
 - Encourage submission of proposals for innovative use of IT
 - Monitor:
 - Ensure that proposals achieve objectives within time and resources
 - Ensure that use of IT achieves intended benefits
 - Acquisition
 - Evaluate:
 - Evaluate options for providing IT
 - Direct:
 - o IT assets should be acquired in an appropriate manner
 - Supply arrangements should support business needs
 - Monitor:
 - Ensure that IT investments provide required capabilities
 - Monitor shared understanding of organization's IT acquisition intent

Performance

Evaluate:

- ...proposals of managers to ensure that IT will support business processes with required capability and
- o ...risks from IT to continued operation of business
- ...risks to integrity of information and assets
- ...options for assuring effective and timely decisions on IT
- o ...effectiveness and performance of IT governance

• Direct:

- Ensure allocation of sufficient resources to meet organization needs
 - Those responsible should ensure that IT supports business

• Monitor:

- ...extent to which IT supports business
- ...extent to which allocated resources and budgets are prioritized
- ...extent to which policies are followed properly

Benefits:

- Implementation and operation of appropriate assets
- Responsibility and accountability of IT supporting organization goals
- Business continuity and sustainability
- o Alignment of IT with business needs
- Efficient allocation of resources
- Services, markets, and business innovation
- Good practice in stakeholder relationships
- Cost reduction
- Realization of benefits from investments in IT

Conformance

Evaluate:

- ...whether IT satisfies obligations (regulatory, legislation, common law, contractual)
- ...whether IT satisfies internal policies, standards, and professional guidelines
- ...internal conformance to IT governance

Direct:

- Those responsible should ensure that IT complies with obligations, standards, and guidelines
- Policies should be established and enforced enabling the organization to meet internal obligations in use of IT
- o Staff should follow relevant guidelines
- o All actions relating to IT should be ethical

Monitor:

- o ...IT compliance and conformance
- ...IT activities

- Benefits:
 - Balance risks
 - o Encourage opportunities from IT
 - Establish vocabulary Assure conformance with obligations
 - o Regulatory, legislation, common law, contractual
 - Security and privacy
 - o Spam
 - o Trade practices
 - o Property rights & licensing
 - Record keeping o Environment, health & safety
 - Accessibility, social responsibility
- Human behaviour
 - Evaluate:
 - o Identify and consider human behaviours
 - Direct:
 - IT activities should be consistent with identified human hehaviour
 - Anyone may identify and report risks, opportunities, issues, and concerns at any time
 - o Risks should be managed
 - Monitor:
 - Human behaviour should remain relevant
 - o Proper attention should be given to human behaviour
 - Work practices should be consistent with appropriate use of IT

COBIT

Five principals

- → Meeting stakeholders needs
 - o Four groups:
 - Financial goals (transparency in IT cost)
 - Customer related goals (delivery of IT service in line with business requirements)
 - Internal goals (IT agility)
 - Goals related to learning and growth (competent and motivated IT staff)
- → Enabling a holistic approach
 - Enablers: process, an organizational structure, or a piece of information (influences the IT governance and management → factors determining whether or not governance works)
 - Principles, policies, and framework: to implement
 - Processes: to organise
 - Organizational structures
 - Culture, ethics, and behaviour
 - Information
 - Services, infrastructure, and applications
 - People, skills, and competences

- → Separating governance from management
 - Governance is concerned with the stakeholders needs; management focuses on running operational activities
 - Five governance processes and thirty-two management processes
 - Governance: ex. Evaluate, direct and monitor
 - Management:
 - Align, plan, and organize
 - Build, acquire and implement
 - Deliver, service and support
 - Monitor, evaluate and assess
- → Covering the enterprise end-to-end
- → Applying a single integrated framework

IT decision-making

Five domains where decisions need to be taken:

- → General principles
- → IT investment
- → IT architecture
- → IT infrastructure
- → Applications

Parties involved

- → Top management
- → IT management
- → Departments representing the users

Two phases in IT decision making process

- → The input for the decisions
- → The actual decision making

IT spending and funding

Four areas, important to balance investments:

- → Strategic projects
 - o Improve strategic position (usually outside operational systems)
 - Evaluate new technology
 - 10-15 % spending
- → Informational systems
 - Information for business tactics and strategy
 - Business intelligence
 - o Increase control, acquire useful information
 - o 20% spending
- → Transactional systems
 - o Business process automation (more efficient, less labour, save cost)
 - Accounting, order processing, invoicing
 - o 10-15% spending

- → Infrastructure
 - Foundation of IT systems
 - Networks, clients, servers, storage, printing
 - Office and communication applications
 - o 50% spending

IT fundings:

→ Charge-out: users pay

→ Overhead: IT is general overhead cost

→ Heterogenous funding (hybrid)

Business IT alignment

What is business IT alignment

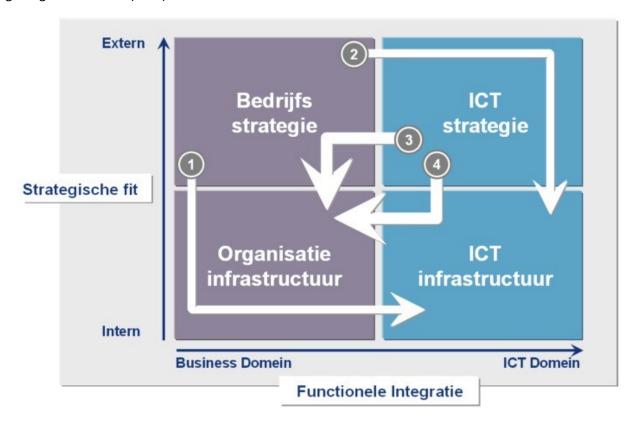
Business strategy influences IT strategy ⇔ IT opportunities influence business strategy

Business IT alignment → Henderson & Venkatraman (close related to COBIT)

Definitions:

- → A state:
 - o Business-IT alignment leads to competitive advantages for the company
- → A process:
 - o A (continuous) journey, not necessarily ending in a stable end state
- → Formal:
 - A formally established process seeking the alignment state
- → Informal:
 - Supposedly achieved without explicit process (but e.g., through governance)

Alignment when... (by Luftman)


- → There is mature and integrated communication between the business and IT
- → IT demonstrates value to the business There is proper governance of IT
- → There is a partnership between the business and IT
- → IT can provide flexible and customizable systems, supporting the business
- → IT skills are at a higher level

In summary:

Business alignment = <u>The proper governance of the IT function in accordance with the requirements of the business and the proper use of IT capabilities in the business</u>

Business IT alignment models

Strategic alignment model (SAM) → Henderson & Venkatraman

(1) Strategy execution

- Well-defined business strategy
- Business strategy determines organizational infrastructure and then drives development of IT infrastructure
- IT manager implements strategy
- Common in traditional businesses
- Classic view on strategic management
- IT is a cost of business operations
- Little or no IT strategy

(2) Technology transformation

- Starts from business strategy
- Business strategy drives IT strategy
- IT infrastructure follows from IT strategy
- Top management develops vision on technology
- IT managers develop information architecture
- Business envisioning technological leadership

- (3) Competitive potential
 - Use opportunities, offered by information technology
 - Start from IT strategy
 - Determine influence on business strategy
 - i. (Adjust business strategy to new IT opportunities)
 - Derive organizational infrastructure from business strategy
 - Top management has visionary role
 - i. (How IT trends shape the business strategy)
 - IT manager is catalyst
 - i. Identifies and evaluates new trends
 - ii. Assists senior management in development of vision
 - Businesses leveraging technology to gain competitive advantage
- (4) Service level
 - Create excellent IT service delivery
 - IT strategy is starting point
 - Determine IT infrastructure supporting the business "What do users want?"
 - Top management sets priorities
 - IT manager is the true leader
 - i. (Setting up services portfolio)
 - Businesses with focus on service

There is no best approach → depends on organization

Issues:

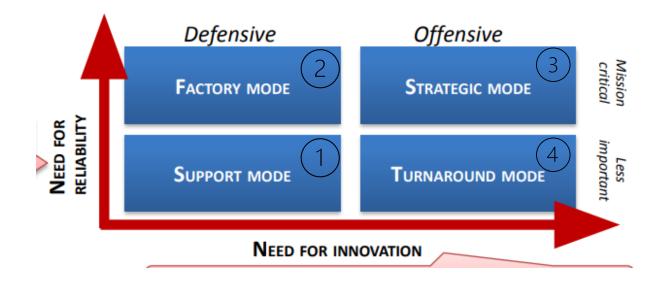
- → IT should consider external factors (the "business") for alignment
- → How business-IT alignment is achieved depends on the organization (requires a broad vision on the role of IT)
- → Roles and responsibilities of business and IT managers are very diverse: visionaries, leaders, executive managers
- → Evaluating IT is diverse:
 - (1) as a cost centre (cost efficiency)
 - o (2) as a service centre (services quality)
 - (3) as a profit centre (sense of IT market)
 - o (4) as an investment centre (how IT competencies are enhanced)

The business value of information technology in the organization, four categories:

→ Support mode

- Small industrial companies
- o IT is "standard" function
- o IT is rather unimportant
- o Minor cost in business operations
- o Technological "follower"
- Standard IT solutions ("vertically integrated")

→ Factory mode


- Hospital/airline reservation
- o IT is very important
- o More aggressive use of IT does not yield competitive advantage
- o Core business supported by on-line systems
- o Focus on reliable and stable IT

→ Strategic mode

- o Retail bank
- o IT is of strategic importance
- Critical on-line systems, 100% uptime
- Innovation is critical
 - renew systems at fast pace
 - acquire or maintain competitive advantage
- Managing IT is a challenge

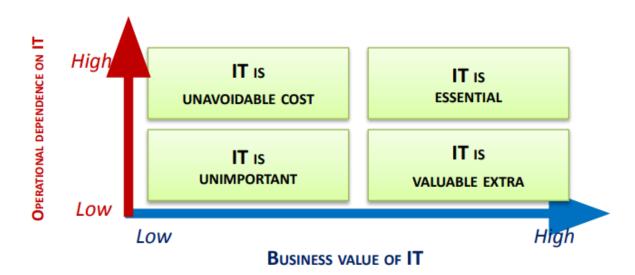
Turnaround mode

- o E-government
- No need for particularly reliable systems
- However: strong need to innovate
- Cost savings through innovation
- o ...often temporary situation on the way to "Support" mode

Three-level business IT alignment framework

Three layers

- **→** Strategic:
 - Business strategy ⇔IT strategy
- → Tactical:
 - Business projects/programs ⇔IT projects/programs
- → Operational:
 - Business operations ⇔ IT operations
- → Vertical and horizontal integration


Summary: Business and IT must be aligning with itself and each other

Strategic business IT alignment

Four focus points:

- → Financial focus (Ryanair, EasyJet...)
 - o Business:
 - Focus on low cost, high return
 - Strict cost management
 - Dominated by purchasing and financial control
 - Small, standardized product offering
 - o IT:
- Implements strict cost management
- Strict rules for IT funding
- Relation IT funding requirements management
- Closely monitored purchasing and supplier management
- → Operational focus (Toyota, Phillips...)
 - Business:
 - Operational efficiency, governance, compliance
 - Efficient and automated production facilities (large volumes)
 - R&D focused on process improvements
 - Efficient distribution channels
 - Access to extensive capital
 - Dominated by production/manufacturing
 - o IT:
- IT used to automate business processes to maximum extent (large-scale transaction processing)
- IT is efficient
- Reliable, high-performance systems and services
- Stable and efficient basic infrastructure
- IT operations is primary focus
- Continuous improvement of IT processes, services, and systems
- Active contribution to operational business process improvement
- Sufficient capital available

- → Product focus (Apple, Zara...)
 - o Business:
 - High-value products
 - Continuous innovation, aimed at differentiation
 - Emphasis on product development
 - Rapid follow-up of product generations
 - Flexible manufacturing/services delivery
 - Outsourcing
 - Extensive marketing and branding
 - o IT:
- IT is flexible and agile (e.g., supporting product diversity, granular pricing)
- IT supports creative processes (product development, prototyping), implementing communication and collaboration tools
- IT delivers non-standard services
- IT actively contributes to business products and services
- IT supports marketing (e.g., business intelligence)
- IT outsourcing
- → Customer Focus (emirates, Government...)
 - o Business:
 - Excellent customer service
 - Customer intimacy
 - Understanding customer needs
 - Flexible needs fulfilment
 - Dominated by customer-oriented departments (sales, customer service)
 - Agile sales and after-sales processes
 - Staff empowered to serve customer
 - o IT:
- CRM
- Support customer side of supply chain (delivery, after-sales)
- Actively support customer purchasing improvement initiatives (e.g., web, mobile)
- Actively support post-sales improvement initiatives

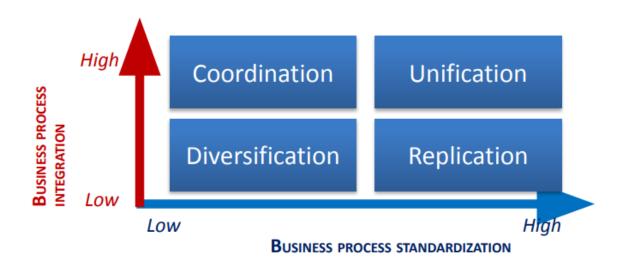
Evolution patterns:

- → Right to left = Erosion of competitive advantage
- → Bottom to top = IT becomes indispensable

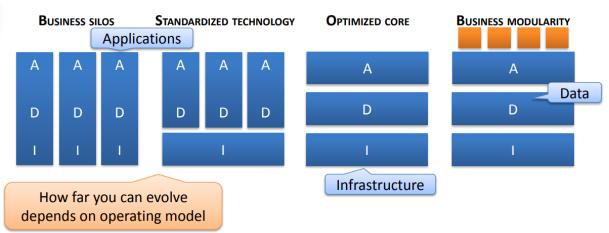
Tactical business IT alignment

Alignment trough enterprise architecture

Four operating models:


- → Coordination (Partena)
 - 'Silos' to support business units
 - No or few data standards
 - Separate IT departments
 - o Role of central IT limited (if any)
 - Independent business units
 - Autonomously managed
 - Few shared suppliers and customers
- → Replication (Carrefour, MC Donald's)
 - Central enterprise architecture
 - Identical silos
 - Often local data responsibility
 - o Central role of IT in silo design and management
 - Central business design
 - Similar business units
 - o Independent business transactions (usually aggregated)
 - o Locally owned business data

→ Diversification (KBC)


- Company has diverse business processes
- Standardized and shared business data
- Shared customers, products, suppliers
- o Autonomous business units
- Shared data or replicated data
- Typical different applications

→ Unification (BMW, Delta)

- Company operates as if single entity
- o Centralized management
- o Central business process design
- o Central business data management
- o Full integration of data
- Single application suite
- Strongly centralized IT

Architecture:

→ Business Silos

- o Low level of business-IT alignment
- Local alignment only (per business unit)
- No global alignment efforts

- → Standardize technology
 - o Full business-IT alignment on infrastructure level
 - Some effort towards global alignment (highest level for diversification operating model)
- → Optimized core
 - o Global business-IT alignment
- → Business modularity
 - o Agility on top of global business-IT alignment
 - Combination of 'local' and 'global' alignment

Operational business IT alignment

Alignment trough services management

Measuring business IT alignment

Luftman model:

→ Criteria:

- Communications maturity:
 - How good does IT understand the business?
 - How good does the business understand IT?
 - The quality of the organizational learning.
 - How the interaction between business and IT is regulated.
 - The organization of knowledge sharing between business and IT.
 - The breadth and effectiveness of the liaison between business and IT.
- Competence/value measurements maturity:
 - The quality of the IT metrics. The quality of the business metrics.
 - The link between the business and IT metrics.
 - The extent of use of service level agreements.
 - The use of benchmarking.
 - The use of formal assessments and reviews of the IT investments.
 - The implementation of continuous improvement programs.
- Governance maturity:
 - The extent of formal business strategic planning.
 - The extent of formal IT strategic planning.
 - How does IT fit into the organization?
 - The reporting relationship between the CIO and the organization.
 - The way IT costs are budgeted.
 - The rationale for IT spending.
 - The role of the IT steering committee.
 - The prioritization of IT projects.
- Partnership maturity:
 - The business perception of IT.
 - The role of IT in the business strategic planning.
 - The extent to which the business and IT share risks and rewards.
 - The management of the business-IT relationship.
 - The business-IT relationship style.
 - The sponsoring of IT projects from the business.

- Technology scope maturity:
 - The use of the primary systems.
 - The enforcement of standards.
 - The integration of the IT architecture into the business.
 - The perception of the IT architecture.
- Skills maturity:
 - The entrepreneurial environment and the encouragement of innovation.
 - Who takes the key decisions on IT human resources management?
 - The attitude towards change.
 - The frequency of career cross-over.
 - The implementation of cross-functional training and job rotation.
 - The level of social interaction between IT, the business and the customers and partners.
 - The ability to attract and retain top level talented staff.

→ Maturity levels:

- o Ad hoc
 - Lowest level
 - Minimal awareness
 - Alignment is improbable
- Committed process
 - Commitment to begin
 - Still minimal awareness
- Established process
 - Focused alignment awareness
 - IT embedded into business
 - IT used throughout enterprise
- Improved process
 - Effective governance
 - IT considered valuable, innovative, contributing to business
- Optimal process
 - Governance mature
 - Integration IT strategic plan into business plan
 - IT used in supply chain

→ 4-step approach

- From an assessment team
 - Typically, 10 to 30 executives of investigated organization
 - Both business and IT
- Gather information
 - Team members evaluate criteria, giving maturity level
 - Scores are discussed
- Decide on scores of each criterion
 - Agreement on average scores for each criterion
 - Calculation of average for each of the six categories
- Decide on overall alignment score
 - Total score = average over six categories
 - Discussion and agreement on total score