Chapter 1: System Design Requirements

System software runs indefinitely, typically supporting other running programs and users; concept of
concurrent activity is central.

Concurrent => ‘at the same time’
L> system software has to support many users/programs at the same time => handle
separate activities which are in progress at the same time
=> two activities are concurrent if, at a given time, each is at some point between its starting point
and finishing point.

Inherently concurrent: system handles activities that can happen simultaneously in the world
external to the computer system (kan niet anders, moet concurrent)

potentially concurrent: it might be possible for an application to work on parts of a problem in
parallel by devising a concurrent algorithm for its solution (kan concurrent
gemaakt worden, bv om snelheid /)

1.1 Inherently concurrent systems

1.1.1 Real-time and embedded systems

Real-time systems => time requirements dedicated by the environment of the computer
system (nooit nul)
Hard real-time => timing requirements are absolute (harde grens)
Soft real-time => failing to meet a deadline will not lead to a catastrophe

bovengrens voor communicatie is snelheid van het licht
Static real-time => analysis of the activities that must be carried out by the system can be
done when the system is designed
Dynamic real-time => requests may occur at irregular and unpredictable times and the
system must respond dynamically and with guaranteed performance

Process control

Concurrent: veel componenten samen die
tegelijk het proces ondersteunen

Data is gathered from the controlled system
and analyzed

Accuracy depends on amount of data

gathered and the time that can be spent on
analysis

Data gathering ad analysis are periodic and

predictable

Period depends on process being controlled
Periodic activity must be integrated with ability to respond to unpredictable events
Monitoring => gathering data

Control => tuning, response to alarms

Trade-off: at times accuracy of data analysis may be sacrificed to rapid response

Not all real-time systems are distributed, multicomputer systems



Some may have a single embedded controlling computer (embedded: systeem dat in ander

systeem zit; embedded is altijd dedicated)

Multimedia support

Multimedia: ability to show moving pictures and
hear voice in addition to the traditional display of

text and graphics Speaker Comera Speaker [+
L> video & audio must be synchronized T '
Video conferencing, video phones Q}j f/’?’_//@
When multimedia data is stored, requests to
deliver it are unpredictable and the system must Micmphone/
respond dynamically => guarantees of certain
quality of service
video: required transfer rate: 200 kb/sec
Voice to be sync’d with video: 64 kb/sec
1.1.2 Operating systems and distributed operating systems
[ ows Memory Somicas. self-standing computer system
:yjj 'S—I (a) Single-user system
Wl (b) Multi-user system
Single-user => single computer is perceived
- ogsgr:g::c ,U::J‘i”ly Multi-user => users access the system via a
" ’Z‘lf',:lsi’x”,’ terminal -> separate from main memory,
progans /I\/:":l‘,:,":'r‘\li“”‘ central processor(s) and shared devices (disks,
intermediate controlling .
o, i printers,...)

Processor (CPU)
Processor (CPU)

)l

Scope for concurrency in both single-user and multi-user systems
= Devices tend to be very slow compared with processors

System might have large numbers of terminals

L> OS will attend to the devices when necessary, but run programs while the devices

are busy producing the next input or performing the last output

L> OS will attempt to overlap processing and device handling wherever possible

Events handled by OS tend to be irregular and unpredictable rather than periodic, load they

must handle is dynamic.

Multi-user OS must manage the sharing of system resources between users (with acceptable

service for all of them), respond to potentially conflicting demands from users for the

resources it manages. Requests will occur dynamically and some will involve a number of

related objects which are managed by the OS.



1.1.3

Distributed Operating Systems

distributed systems
L> computers connected by a

User at User at User at . . .
workstation workstation workstation communications medlum SUCh as a LAN
| | | Network . . .
[ [ Workstation OS = single-user system with
| File server I I Printer server | Scope for Concu rrency
-> likely that file storage is provided as a
User at User at User at .
workstation workstation workstation network-based service
I I | . . .
[ [ Network also likely that a number of file servers will be
| File server | | Printer server | needed to provide sufficient storage space

and processing capacity.

These shared servers must respond to simultaneous requests from clients => concurrent
systems

OS in computers part of a distributed system contain software for communications handling
=>a communications handling subsystem of an OS is itself a concurrent system

(subsystem: a major functional unit within a system)

There are many distributed systems connected by WANs and communications software is in
general designed to allow world-wide interactions.

Window-based interfaces

114

GUI, Window system: make concurrent activity explicit and natural to computer users

Database management and transaction processing systems

DB applications are concerned with large amounts of persistent data, that is, data on
permanent storage devices that exists independently of any running program.

DBMS is a concurrent system since it may have to handle several clients simultaneously
(queries, updates) (scope for concurrency). The term transaction is used for a request from a
client to a DBMS.

In applications where it is not critical that at all times the data appears to be up to date to
the current instant, updates may be batched and run when convenient. This approach
simplifies the management of the DB enormously and is likely to be used if at all possible.
Many of the problems associated with concurrent systems are avoided by this means.

In some systems the activities of reading and updating data are closely related and updates
cannot be deferred. Each transaction needs to see the up-to-date system state.

Concurrent access is desirable for a fast response to queries and there are unlikely to be
conflicting requests, i.e., requests that attempt to update and read the same part of the DB
at the same time. Any number of transactions which only require to read the DB may be run
in parallel. If it is possible to update the DB as well as read it, the DBMS must ensure that
transactions do not interfere with each other.

Data will be copied from secondary storage into main memory and reads and updates will



1.1.5

Database containing
flight information

use the main memory copy. Potential

problem: the copy of the data held on

secondary storage becomes out of date. If

- Booking clerks
at remote
terminals

the system crashes, the contents of main

memory may be lost. A transaction system @

Disseldorf |

must therefore support concurrent access

and allow for system failure at any time. [AviSTERDAM

[ LonDoN | [FRANKFURT |——{ Berlin]

figuur: (a) components of a transaction

HONG KONG

processing system for airline bookings

(b) world-wide nature of such a system [NEW YORK] [MaDRID]

PARIS
(b)

Requirements for building transaction processing and DB management systems:

- there is a need to support separate activities

- there is a need to ensure that the separate activities access and update common data
without interference

- there is a need to ensure that the results of transactions are recorded permanently and
securely before the user is told that an operation has been done.

Middleware (also chapter 16)

The idea is to build a layer of software (middleware) above the heterogeneous operating
systems to present a uniform platform above which distributed applications can run. This
simplifies the development of distributed applications by removing the need to port each
application to a range of operating systems and hardware.

1.2 Supporting potentially concurrent systems

Applications which might benefit from concurrent implementation.

General motivation for exploiting potential concurrency:

121

- There s a large amount of computing to be done;

- There s a large amount of data to be processed;

- Thereis a real-time requirement for the results;

- Hardware is available for running the potentially concurrent components in parallel.

Replicated code, partitioned data

Simplest approach is to use a sequential

3 . Partition Partition Partition Partition
algorithm but to partition the data. of data of data of data of data
figuur: if all the components must run to . ‘ \ l

i i i C f C f C f C f
completion the overall time taken is that of ooyl AL oy o
process process process process
the longest component plus the overhead of data data data data
initiating the parallel computations and
synchronizing on their completion. The Manager of parallel computations |

{initiates the computations, synchronizes the results)




speed-up achieved therefore depends on being able to divide the computation into pieces
with approximately equal computation time. If we can divide the computation into
components which require the same amount of computation time, we have maximized the
concurrency in the execution of the algorithm.

Particularly suitable for large amounts of data. While one parallel activity waits for more data
to be brought in from disk, another can proceed with processing data in main memory. In
some applications, once a solution is found by one component, all the others can cease their
activity.

1.2.2 Pipelined processing

starting Synchronization is needed between Another simple approach is the plpellne
the phases.
If the total function to be applied to the
First Second Third Fourth data can be divided into distinct
phase phase phase phase
of code of code of code of code processing phases, different portions of
[hane] (g ] (e ] [DAtAT ] data can flow along from function to
phase 1 done phases 1, 2 done phases 1, 2, 3 done finished fu nCtion

figuur: four-stage pipeline (example: compiler); as soon as the first program or module has
passed the lexical analysis phase it may be passed on to the parsing phase while the analyser
starts on the second program or module.

Requirements: separate activities have to be able to synchronize with each other: to wait for
new data to become available or to wait for the next phase to finish processing its current
data.

1.2.6 Requirements for supporting concurrent applications

* support for separate activities
- monitoring & control activities, running user programs, handling devices, ...

* support for the management of separate activities
- create, run, stop, kill activities
- indicate relative priorities of activities

» support for related activities to work together (part Il)
-activities generating part of a solution (cooperative)
- device handlers delivering data to user programs
- transactions on behalf of many customers (competitive)

» ability to meet timing constraints
- real-time constraints versus reasonable response time
- synchronized, jitter-free audio & video

» support for composite tasks (part Il)
- a single task may have several components, executed concurrently (with other tasks); the
system may fail before all components are completed



1.3 Architectures for software systems

* SISD: single instruction stream, single data stream => single processor fetching and
executing a sequence of instructions (original von Neumann model)

* SIMD (vectorprocessor): single instruction stream, multiple data stream => many
processing elements but they are designed to execute the same instruction at the same
time. Processors can be simple: they do not need to fetch instructions from their private
memory, but receive their instructions from a central controller. They do, however,
operate on separate data such as the items of vectors or arrays. (1 instructie uitvoeren

*  MIMD: multiple instruction stream, multiple data stream => systems with more than one
processor fetching and executing instructions. The instructions need not be closely
related and they are executed asynchronously. Very broad category, includes networks
of computers and multiprocessors built from separate computers. (meerdere instructies
simultaan uitvoeren — iedere instructie op 1 gegeven; hiervoor meerdere CPU’s nodig;
vb: laptop = MIMD: heeft meerdere cores)

A single uniprocessor computer may be used to implement some kinds of concurrent system.
Example: a time-sharing OS. Many users are interacting with the system simultaneously and
many programs are in the process of being executed at a given time. Only one processor may
be transparent to the programmer. At the application software level it is as though each
program is executing on a dedicated processor. The technique of forbidding interrupts may
be used for controlling concurrency. You can prevent the processor from doing anything
other than its current activity until it reaches the end of it, when you ‘enable interrupts’
again. This obviously has to be used with great care and for short periods of time.

1.3.1 System classification

op meerdere gegevens)
1.3.2 Conventional uniprocessors
1.3.3 Shared-memory multiprocessors

The conventional multiprocessor model is of a relatively small number of processors (2 — 30)
executing programs from a single shared memory. Only one copy of the OS and any other
system software is needed. Software from the same memory is being executed at the same
time on a number of processors. It is more difficult to write operating systems that run on
multiprocessors than on uniprocessors. Sometimes, to simplify the design, one dedicated
processor will execute the OS and one dedicated processor will handle all /0. When more
than some fairly small number of processors access a single shared memory, contention for
memory access becomes too great. The effect can be alleviated by providing the processors
with hardware controlled caches in which recently accessed memory locations are held.



1.34

Multicomputer multiprocessors

1.3.5

Interconnected computers

assumption: each processor accesses only its own local memory directly. The processors may
be placed on a shared bus. They communicate with each other through the control and data
paths of the bus. A hierarchy of buses may be used to increase the number of processors in
the system. To exploit massive concurrency we may wish to use many tens of processors. In
this case their connectivity is a major design decision.

A general problem with multicomputers is the complexity of the software systems required
to manage them and the time to load software prior to execution. At present, such
topologies tend to be used for software that will run indefinitely once loaded, such as in
embedded control systems.

Dataflow (data-driven) architectures

1.3.6

An instruction may execute as soon as its data operands are ready. Any number of
instructions can execute in parallel, depending on the number of processors available. It is
possible to arrange for the operations to be at most two arguments. The first argument to be
ready for an operation will detect that its pair is not yet available and will wait in memory
provided for the purpose. The second will detect that the first is ready, by an associative
match on the memory, and they will then go off together to a processor for execution. The
result of the operation will become an argument for another operation, and so on.

The concurrency made available by the dataflow approach is potentially very great and at a
very fine granularity: at the machine instruction level.

A problem with a data-driven approach is that unnecessary processing may be carried out for
paths in a program that may never be followed.

Architectures for functional languages

13.7

A pure functional language does not have destructive assignment statements. When a
function is applied to its arguments it always produces the same result since there can be no
side-effects.

It is argued therefore that functional languages are inherently concurrent. Any number of
function applications can be carried out in parallel. There is greater potential for controlling
the concurrency than in the dataflow approach if we can defer a function application until we
are sure that the result is needed: so called ‘lazy evaluation’. Both data-driven and demand-
driven architectures are still in the research domain.

Network-based systems

A local area network (LAN) offers full connectivity for some number of computer systems.
The basic philosophy of network communications software is to regard the network as a
shared resource which must be managed. Certain attached computers exist solely to support
communication, for example, when two LANs are connected by a gateway computer. LANs
are widely used as a basis for program development environments. The LAN is the



interconnection medium for a distributed system.
When computers of LANs need to be connected over long distances, wide area networks
(WANS) are used.

1.3.8 Summary of hardware bases for concurrent systems

The figure summarizes the ———{ Uniprocessor |————

topologies that might be used as \ \’ \
the hardware basis for a Novel architectures: One CPU with @\E
dataflow and functional special-purpose
concurrent system. The arrows language machines front-end and \
L . . back-end :l
|nd|Cate the d|reCt|0n Of processors @ntemet
increasing concurrency achieved \ ' A
through different paths of Vector and Shared-memory LsAy'\S‘{Z\r/nA;\'
array processors multiprocessor
development. (symmetric or with In all the networks
. special-purpose
The central path takes a single pp,gce‘;go‘;s, shown the attached
. tarti int and computers may be
uniprocessor as starting point an ! of any type.
attempts to introduce an Multicomputer

multiprocessor

increasing amount of processing
power. Special-purpose processors can handle devices, but a major design change comes
when several processors are used to execute programs residing in a single memory. Above a
certain number of processors accessing a given memory, a topology comprising
interconnected computers is necessary. There is a variety of possible interconnection
structures. Vector an array processors may be seen as special-purpose multiprocessor
machines.

An alternative to the complexity of the interconnection structures of multi-computer
multiprocessor systems is a network. A LAN medium may be used to achieve full connectivity
of a certain number of computers, but communication is achieved through software rather
than hardware protocols. As LAN performance increases, networked computers can be used
for distributed computations as well as the more conventional program development
environments, provided that the operating system and communications software impose an
acceptable and bounded overhead.

1.4 defining a concurrent system

Different activities are in the process of being executed at the same time, that is, concurrently.
Concurrency in the application must be supported by the system that runs it.

The figure shows some of the concurrent Clients’ requests
(sub)systems that have been mentioned. ¢ ¢ ¢ ¢ Other Concurrent algorithm
Lo i i applications

In each case a number of activities may be [ Transaction processing system | | PP YooY Y
i i ithi | | | Operating | | | | |
in progres.s simultaneously within the * + % system + ¢ * * ¢
system, either because components of a

. File management Memory management Communications
concurrent algorithm have been started (sub)system (sub)system handling

. (sub)system

off in parallel or because a number of Y

clients may simultaneously make 0 * ﬁ * * 0 y 4 *

| ! ! | | | | | |
demands on the system (as shown). Hardware events



The concurrent system may be an OS, a subsystem within an OS or an application-level service
running above an OS. In all cases, the concurrent system shown may be distributed across a
number of computers rather than centralized in a single computer.

Separate activities may be working together to solve a problem; they may be independent but
running above common system software and needing to share common system resources for
which they must compete.

The activities may need to interact with the external environment of the computer system and
may need to meet timing requirements when doing so; they may need to use the main memory
only of a single computer, or use main memory only but of a number of computersin a
distributed system; they may access or record data in persistent memory, in this case they use
both main memory and persistent memory of a single computer / computers in a distributed
system.

1.5 systems implementation requirements

* support for separate activities: monitoring & control activities, running user programs,
handling devices,...

* support for the management of separate activities: create, run, stop, kill activities,
indicate relative priorities of activities

* support for related activities to work together (part 2): activities generating part of a
solution (cooperative), device handlers delivering data to user programs, transactions on
behalf of many customers (competitive)

* ability to meet timing constraints: real-time constraints vs. reasonable response time,
synchronize, jitter-free audio & video

* support for composite tasks (part 3): a single task may have several components,
executed concurrently (with other tasks); the system may fail before all components are
completed

1.6 Security, protection and fault tolerance in system design

The need for this is orthogonal to the development of concurrent systems.

We can express a general requirement that it should be possible for policies to be expressed and
enforced relating to who may have access to computers, networks and information.

Huge topic, cfr. also other chapters.



